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ON ISOLATED SINGULARITIES OF MINIMAL SURFACES 

Leon Simon 

We here want to give a brief discussion of some 

questions related to minimal surfaces with isolated singulax'ities; 

the many questions related to minimal surfaces with more complicated 

singular sets are not considered. 

We first make our terminology precise. For simplicity 

of exposition we discuss embedded submanifolds of Euclidean space -

making the necessary comments about the more general Riemannian 

setting at appropriate points. 

M will denote a smooth n-dimensional embedded 

submanifold of ~n+k, n ~ 2 k ~ I , Hhere we always use the 

term "embedded" to mean locally properly embedded. Thus for each 

y E M there is an open ball Bp(Y) with centre y and radius 

p> 0 , and a C2 diffeomorphism 1jJ of Bp (y) onto BpCO) such 

that 1jJ (1)1nB (y») = ~n nBC 0) , 
p p Here and subsequently we identify 

. h h ub r mn+k Wlt t e s space or ~, consisting of all points 

~j = n+l, ... , n+k . 

M is said to be minimal if the mean curvature of 1>1 

is' identically zero. As is well-known, this condition is equivalent 

to the local area minimizing property: for each y E 1>1 there is 

some open ball BpCy) c~n+k such that 
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(Hn = k-dimensional 

Hausdorff measure) 

whenever M cp(M), "here cp Bp(Y) -+ BpCy) is a Cl diffeomol"phism 

such that {x E B (y) : cp(x) f. xl is contained in a compact subse-t of p 

Bp (y) This explains the use of the term minimal. 

The regular set reg M of M is defined to be the set 

of all points y E clos M ( closure of M taken in JRn+k) such that 

Bp Cy) II clos M is an embedded n-dimensional C2 submanifold of 

JRn+k for some p > 0 The singular set sing M of M is defined 

by sing M = clos M "J reg M By definition sing M is a closed 

subset of JRn+k and reg M ' M ; if the inclusion reg M ,M is 

strict, then there are removable singularities. We always assume 

here that such singularities have been removed, so that 

M reg M , sing M clos 11 ~ M . 

A point y E JRn+k is said to be an isolated singularity 

of M if Y E sing M and sing M II BpCy) = {y} for some p > 0 

The simplest examples of embedded minimal M with 

isolated singularities (indeed the only known codimension 1 examples 

until the Hork [CHS] to be described in §2 below) are the embedded 

minimal cones; that is, minimal M representable in the form 

(0.1) M fAY yE z:, 0 < A < -;;;y , 

Ii/here z: is a compact embedded C n-l )-dimensional submanifold of 

Sn+k-l 
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There are many such minimal cones (see e.g. [HL]). 

A simple example (corresponding to n = 3, k = 1) is 

M 
2 3 

x , x , ( 1) 2 (2) 2 X) + x 

In this case the corresponding submanifold L C S3 (as in (0.1» 

is just the two dimensional flat torus 

More generally for any p > 1 

M {(x, y) E JRP x JRP ~ {oJ 

is a (2p-l)-dimensional minimal cone, corresponding to L C S2p-l 

defined by L = [~ SP-l) x (~ sp-1J 

The study of minimal surfaces generally is closely 

related to quasilinear P.D.E. theory, by virtue of the fact that U 

is an open subset of JRn and if u = k) k u : U .... JR is a 

C2(U) function with values in JRk , then 

(0.2) M graph u - {(x, u(x» x E U} 

is minimal if and only if u satisfies the system of equations 

(0.3) 

Here 

n ij !I, 
I g DiJ·u 

i,j=l 

(gij) 

o on U, l,,..,k. 

g .. = 0 .. + D.u • D.u. The system (0.3) 
lJ lJ l J 

is called the minimal surface system (minimal surface equation in 
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case k = 1), and with respect to suitably chosen coordinate axes 

any minimal M C Rn+k can be represented locally as graph u for 

some u satisfying (0.3). All this is readily checked by directly 

computing the mean curvature vector of M in case M has the 

form (0.2). (See, for example, [OJ.) 

We should make a point here: it is not in general 

true that M can be represented in the form (0.2) in the neighbourhood 

of an isolated singular point. Indeed in the codimension 1 case 

(when k = 1), no M of the form (0.2) can have isolated singular 

points. For this and related results see [FRJ, [B], [MMJ, [SL2,3J. 

On the other hand in case n = 4, k = 3 there is an example due 

to Lawson and Osserman [LOJ of an M having the form (0.2) and 

having an isolated singularity. The example is also of the form (0.1) 

for some compact smooth ~ C S3 

The outline of the present article is as follows: 

in §l we discuss an old question (still unsettled) as to whether an 

embedded minimal surface in R3 can have an isolated singularity. 

§2 gives a brief summary of recent work of Caffarelli, Hardt, Simon 

[CHSJ on examples of minimal submanifolds with isolated singularities, 

obtained by perturbation of minimal cones (as in (0.1». In §3 we 

briefly discuss the important question of whether or not a minimal 

surface is asymptotic to a minimal cone near an isolated singular 

-------------- ---~-----------~--~----------~------__i 

For reference in these subsequent sections we here 

make some remarks concerning the area growth of minimal surfaces 

near an isolated singularity. Thus we let M C Rn+k be as above and 
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we suppose that sing M n B = {oJ 
Po 

for some Po > 0 . Here and 

subsequently we abbreviate Bp Bp(O) Since we assume M is 

locally properly embedded we have 

(0.4) o < 0 < p < Po . 

Now by plugging in a function of the form w(lxl)x in the first 

variation formula (see [AWJ or [SL1J or [MS] for a discussion) we 

get the identity 

(0.5) 

provided support W is a compact subset of (0, po) . In (0.5), 

V denotes gradient on M; that is Vf(x) is the orthogonal 

projection of the ordinary ~n+k gradient of a function f onto the 

tangent space T M • 
x 

We now choose p E (0, Po), 0 E (0, p) and replace 

W by the function Wo defined by ,p 

where tI"o (t) ::: 0 fit, tl'o(t) == 0 for t < 0/2, tI'(t) == 1 for 

t > 0 w'(t) ~ 0 fit ,and wet) o for t::: 1 Then (0.5) 

implies, for 0 < 0 < P < Po ' that 

(0.6) 
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dd 
where we have used -P ap [1/!(t/p)] = t~1/!(t/p)] (the common value 

being (t/p)1/!'(t/p». Taking E E (0, 1) , 1/! = 1 on [0, l-E] 

and multiplying through by p-n-l and rearranging the res~lting 

expression, making use of the fact that p-n l1/!' (lxl/p) I ": (~:~~n I1/! , (Ixl/p) I 

(because 1/!(t/p) = 1 for t S (l-E)p ), we then deduce 

so that in particular 

(0.7) 

where, in the last line, we used (0.6) again. This is valid for 

o < T < p < PO. Holding p, T fixed, and letting 0 + 0 we deduce 

by virtue of (0.4) that 

(o.s) 

Then we can let ~o t 1 and 1/! t X ,where X is the characteristic 

function of the interval [0, 1) . This gives 

-n n( ) S P H MlB < 00, 0 < T < p < Po • 
P . 
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This is the well-known monotonicity formuZa for minimal surfaces, 

which we have thus shown to be valid if ~1 has an isolated 

singularity at 0 (Actually it is valid in the presence of 

much more serious singularities - in fact for arbitrary stationary 

varifolds - but in this case one needs a-priori to assume finiteness 

of the area, which we did not need to assume here.) 

A formula like (0.9) continues to hold in the more 

general case when M is a submanifold of a Riemannian manifold N 

in this case the are Geodesic balls in N , P must be 

sufficiently small, and there is an additional factor of the form 

(l+cp) on the right hand side (c a ~onstant depending on N). 

§L 2-dimensional surfaces in R3 

Here we suppose n = 2, k = 1 ; thus M is an 

embedded 2-dimensional minimal surface in ~3. The question is 

whether or not such surfaces can have an isolated singularity at O. 

We shall here sketch the simple proof that such an 

isolated singularity cannot exist if we make the additional assumption 

that M is stable in B 
Po 

~ {O} for some Po > 0 Thus we shall 

assume that sing M n (B ~{O}) 11 and 
Po 

(1.1 ) 1,7<pI2 

whenever support {o} is compact, where A denotes the 
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second fundamental form of M. «1.1) is just the stability 

inequality; see for example [SLIJ for an elementary discussion.) 

We want to prove 0 ~ reg M Note first that 

(1.1), taken together with the area bounds (0.9), implies 

immediately tha-t 

(1.2) 

(To check this, just take <p in (1.1) with <p - 1 on Bp ~ Bo ' 

o on <p - 0 in BO/2 ' and Iv<pl<c/o then let 

o + 0 and use (0.9) to bound the right hand side.) Also by the 

curvature estimates ([SSYJ of [SSlJ) for stable minimal surfaces we 

have that 

(1.3) lA(x) I ::: c/lxl , 

Now let Pk + 0 and let 1\ = {p~ \ : x E B}. By 

(1.3) and -the Arzela-Ascoli lemma we can select a subsequence 

{k I} C {k} such that {Mk ,} converges (in a Cl sense) to a 

minimal surface C with sing C = {O}. (Notice that we do this 

by locally representing the Mk' as graphs of functions satisfying 

the minimal surface equation, which is possible in a uniform way by 

(1.3), because (1.3) tells us that the second fundamental form Ak! 

- of . Mk ,· isunifQrmly bounded .in any armular.regioT:L Bp'~ Bo as_ 

k' + ro .) By virtue of the monotonicity formula (0.9), we easily 

check that f CnB (1-1 vi x 112) = 0 (1,7 = gradient operator on C, so 
P 
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that IVlx11 = 1 on C). Then C must be a cone with vertex at 

the origin, and C n S2 is a l-dimensional embedded minimal surface 

(i.e. a geodesic) in S2, and hence must be a great circle in S2 . 

Thus we finally deduce that C is a plane through the origin. 

Wi thout loss of geneI'ali ty, let us suppose that the unit normal of 

C is e 3 =: (0, 0, 1) 

Since Mk , approaches C locally (away from 0) in 

a Cl fashion, we see that 

as k t-+-oo , 

where V =: unit normal of M. In particular if we take any r > k 

and if we let I 
k,r 

be any component of M n if 

we write L =: dIk ' then we see -that the Gauss map V : M + S2 
k,r ,r 

takes L to an 
k,r s-neighbourhood of e 3 ' where s + 0 as 

k~ r -+ 00 

On the other hand the Jacobian (area magnification 

factor) of the Gauss map is minus the Gauss curvature of M, which 

is 11 IA 12 . 

f I IAI2 
k,r 

Hence the area of the Gauss image of I k,r 
is 

, which converges to zero as k + 00 by (1.2), and 

furthermore the Gauss map is either a constant map on an open map 

(because the Gauss curvature vanishes at only isolated points of 

Ik runless L is contained in a plane). We therefore deduce 
, k,r 

that the Gauss image of I must be contained in the same 
k,r 

s-neighbourhood of e 3 as L ,where s + 0 as k + 00 • 
k,r 
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Letting 1" ->- 00 ,holding k fixed (but large), vJe 

can thus deduce that the oscillation of V on any component of 

B n M is small, Writing B' = B , it follows that 
Pk,/2 

for each component M'" of B n M with a E clos W': we have a 

minimal graph G with 

a E (clos G) A B' (clos M"') n B' , 

provided k' is sufficiently large. (In checking this one needs to 

use the fact that the oscillation of V on M'" is small, together 

with the fact that M"' is connected, embedded, and 3M'" C dB .) But 

by the discussion of the introduction, we know that isolated 

singularities of codimension 1 minimal graphs are removable, hence 

we have 

clos M* n B' G, 

where G = graph u , with u(a) = a and with u satisfying the 

2 minimal surface equation in some neighbourhood of the origin in JR • 

This essentially completes the proof, except tha-t we 

have to check that there cannot be more than one component M'" of 

M n B whose closure contains the origin. However if there were 

another, then we could apply the above argument to it in order to 

deduce that there are -two minimal graphs Gl , G2 with Gl n G2 = {a} 

Since the difference of two solutions of the minimal surface eCjuation 

satisfies the maximum principle, this is impossible. 

Notice that the above result has been extended to the 

case 2 < n < 6 ; thus if 2 < n S 6 (k = 1 and M stable in 
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B ~ {oJ still being assumed), then M cannot have an isolated 
Po 

singularity at o , Indeed if Hn ~1r1B ) < 00 (which is automatic 
Po 

from (0.9) in case M has an isolated singularity at 0 and Po is 

sufficiently small) and if M is stable in B ~ sing M , then 
Po 

o ;> sing M n B 
Po 

(In particular this guarantees isolated singularities are removable 

for 2 < n ~ 6.) (1.4) is proved in the recent work of Schoen and 

Simon [SSlJ. The results of [SSl] are actually only stated for the 

case when M is stable in Bp ,but the reader will see that the 
o 

proofs of [SSl] actually apply to the case when M is only stable 

in B 
Po 

sing M (in the sense that (1.1) holds for any 

<P E c~ (B )). 
Po 

All this generalizes to the case when M is a 

codimension 1 embedded submanifold of a general Riemannian manifold, 

and to the case when M has bounded (rather than zero) mean 

curvature. In fact [SSl] is already presented in this setting, and 

the main change needed in the above 2-dimensional argument relates to 

the fact that the Gauss map is no longer necessarily open. One then 

needs to use the iterative procedure described in §2 of [SS2] to prove 

that the oscillation of \! on M'-' is small as before. 
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§2. Examples of minimal surfaces with isolated singularities 

The material in this section is an outline of some 

parts of recent joint work [CHS]. 

Let E be any smooth (n-l)-dimensional submanifold 

of Sn+k-l, 1 S k n ~ 2 , and let C be the cone over E. 

Thus 

e {AW A > 0, wEE} 

and C has an isolated singularity at 0 unless it is a n-dimensional 

plane through the origin. Write also 

e C n B 
r r 

so that 

For the moment we are not assuming C is minimal. 

We consider first the linear Dirichlet problem 

(2.1) 
1j! on E, 

where f, 1j! are given functions on Cl and E respectively, and 

~ where _T_ is --a----linear -second -order o-pe-rator" of the f0rm we 

LCU = "'Cli + Qu , 

where "'C denotes the Laplace-Beltrami operator for C , and Q has 
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the form 

Q(x) r- 2q(w), x E C, r = lxi, W x fix I E Z • 

Since C is a cone, we have 

(2.2) 1 a ( n-l ()U) - '/ ( ) -- -- r "r + r - ll"u+q(w)u n--l dr (' t.. 
r 

where on the right u = u(r, w), 0 < r < 1, W f Z and liZ 

(the Laplace-Beltrami operator for Z) acts on u(r, w) as a 

function of [tl E Z with r fixed. 

Our initial aim in this section is to discuss the 

following simple question concerning solutions of (2.1): 

Suppose p > 0 , 

(2.3) IIfll s r 
p-2 

c r , 'rio < r < 1 , 

where Ilflir = Uz f2(rW)dW)~ ; then for which boundary data \j! in 

(2.1) can we find a solution u of (2.1) such that u decays near 

o in the sense 

(2.4) lIull Sc' r P , 
r 

(Notice that the requirement IIfll S r 

'rio < r < 1 . 

p-2 c r is evidently necessary 

for there to exist any such boundary data \j! in view of the form 

of the operator LC ') 

We write LZ liZ + q and we let 
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denote the eigenvalues of LE , and let 

be a corresponding orthonormal basis for L2(E) 

these <p. 
] 

are automatically of class on 

(Notice that 

E by virtue of 

the assumption that q is Co,a.) Thus any u E L2 (Cl ) can 

be written 

00 

u(x) - u(rW) I 
j=l 

a.(r)<p.(w) 
] ] 

00 

where L a:(r) < 00 a.e. 
] 

r E [0, 1] , and (by (2.2)) such a 
j=l 

u 

is a solution of the equation LCu = f (in the generalized sense) 

if and only if 

(2.5) j 1, 2, ... 

(in the generalized sense), where 

f. (r) 
] 

where ° < r < 1 . 

(fCrw), CP.(w)) 2 
] L (E) 

The homogeneous equation (i.e. (2.5) with 

has solutions crY, where Y is any root of 

(2.5)' ° , 
so 

f. - 0) 
] 
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y n-2 1.(n-22) 2 - -2- ± ,II + llj 

for each we let be the root corresponding to the plus sign. 

Then since w. 
J 

(r
n -l+2Yj w~lf 

J) 

(2.6) a. (r) 
J 

-y. 
r J a. satisfies the equation 

J 

n-l+y. 
r J f. we see that there are solutions 

J 

-(n-I)-2y. n-l+y. ] 
Jr s J JSo J () 13 T f J. T dTds , 

j 

where are constants with J3. > 0 • 
J 

We now make the 

additional assumption on p that there is an integer jo:":: 1 such 

that p > 0 (as before) and 

(2.7) Refy· )) < p < Re (y . 1 J . 
,J O lJ o+ 

The expressions for a. 
J 

in (2.6) make sense, and give a solution 

of (2.5), provided that we take 

1aj 
EJR arbitrary, and 13. 1 for j > jo + 1 

J 

h 0 , and 13. 0 for j S J O J 

Indeed one easily checks that then 

u = L 
j=l 

a. (r )<jl. (w) 
J J 

satisfies (2.1) with 
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[ 
-(n-l)-2y. n-l+Y. J 

fl J ISo J Re 0 s T fj(T)dTdS 

and that 

(2.8) o < r < 1 

as required. Furthermore one readily checks that u is the unique 

solution of (2.1) satisfying sUPO<r<l r -p Ilulir < 00 , together ,vi th 

the boundary data 

(2.9) (tim tl u(rw), cp_.(0.d) 2 a. 
r J L (2::) J 

(We want to emphasize particularly that we have no control over the 

numbers (Hmrtl u(rw), CP.(w») 2 ' 
J L (2::) 

S jo ; these are uniquely 

determined by f .) 

Using the notation to denote the II. : L2(2::) -)- L2(2::) 
J O 

operator w f-----+ L (w, CP.) 2 cp., we have thus proved that for 
j:O:jO+l J L (2::) J 

any given ~ E L2(2::) there is a unique solution u of 

(2.10) 
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(2.10)' lIui! ::: c [IiIT. 1jJ1l 2 + suPo <l T2- p IIfll ) r P , 
r J o L (E) <r T 

where uIE{W) = ~imrtl u(rW). Of course we are still assuming 

( 2 • 3) and (2. 7 ) . 

To describe applications of this to non-linear 

equations (and to minimal surfaces) consider the Banach spaces 

where we use the notation that V2u denotes the covariant Hessian 

of u, 

[w] 
Ci;r 

Iw(x)-w(y) I 

Ix-ylCi 

and where Ci is a fixed constant in the interval (0, 1) . 

Now consider the quasilinear problem of finding 

u E B such that 
p 

(2.11) {
LU + N(u) = f on 

IT. (u-1jJ) = 0 on 
J o 

E , 
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where f, ljJ, j 0 are as above but where we now make -the additional 

assumption 

(2.12) Re Yo"': 1 , 
J O 

so that (2.7) implies p > 1. Concerning the operator N we assume 

(2013) Nu (1) ? -1 (?) 
N (x, u/r, Vu) • V-u + r N - (x, u/r, Vu) 

Here, for (x, z, p) E Cl x JR x JRn +k N(l)(X, z, p) is a symmetric 

bilinear fOl"m on JRn +k and Nel ) (x, u/r', Vu) 0 V2u should be taken 

to mean trace Sl 0 S2 ' where Sl' S2 are the symmetric bilinear 

transformations on T C x T C associated with 
x x 

NO,) (x, u/r, Vu) IT C x T C and V2u(x). We also assume that 
x x 

n(l), N(2) have a C2 dependence on (x, z, p) Cx;tO) and satisfy 

the structural conditions 

(2014 ) 

([() () J () r IN/ (x, z, p) I + IN/ex, z, p) I + INz
l Cx, z, p) I 

(1) 2 1_0[ CO) (") J + IN (x, z, p)1 + I' I (Izl+lpl) J IN~J (x,z,p)I+IN J (x,z,p)1 
p j=l •• z xp 

2 
+ I 

j=l 
IN J (x z [ 

(0) 

zz ' ~ 
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(Here subscripts denote partial derivatives with respect to the 

indicated variables.) 

Subject to these assumptions, the result described 

in (2.10) above, together with a standard application of the 

implicit function theorem (or the contraction mapping principle), 

enables us to assert that if (2.3), (2.7), (2.11), (2.12), (2.14) 

hold, then there is a constant So > 0 such that the problem 

(2.15) 

is solvable for any 

(2.15)' 

jLU + N(u) 

II. (u-Sl/J) 
J o 

o on L 

u E B 
p 

2 ::: cS , 

satisfying 

where is the solution of the linear problem (2.10) with 

Sf, Sl/J in place of f, l/J 

If Cl is minimal of codimension 1 (i.e. k 1), 

and if M is the graph of a function 

M {x + v(x)u(x) (v 

u E B 
p 

over 

unit normal of Cl ) , 

then M is a minimal hypersurface if and only if u satisfies 

MCu = 0 on Cl ,where MC is the minimal surface operator (1. e. the 

mean curvature operator). As is well known, MC has the form 
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with N as in (2.13), (2.14) and with LC as in (2.2) with 

(2.16) q on 

A = second fundamental form of C. Therefore the above general 

existence result gives a large new class of examples of minimal 

surfaces with isolated singularities. Specifically: 

THEOREM 1. Suppose C is minimal. k = 1, q is as in (2.16), 

and suppose jo is chosen so that (2.7), (2.12) hold for some 

p > 1 Then for any given ~ E C2,a(L) with (l-rrjJ~ = 0 , 

there is a l-parameter family {uS}o<S~So c Bp of solutions of 

~ . 

x E cl U L. In fact we have 

y. 
Re L r J (~, <P.) 2 (p • on Cl 

j":jO+l J L (L) J 

All the above discussion extends straightforwardly 

to the case when our functions are sections of the normal bundle 

...L 
TC of C, provided we take 

(2.17) 
...L -2 

I1c + r q (w) , 

where I1C...L is the normal Laplacian (see [SJ]) and q(w) 
..L ..L 

T L ->- T L w w 
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is linear with smooth dependepce on w. If C is minimal, the 

minimal surface operator MC in this arbitrary codimension case 

..L 
is an operator taking smooth sections of TC to smooth sections 

..L 
of TC with the form 

with LC as in (2.17) with 

(2.18) 

where Aw 

q(w) A 
w 

where A is the second fundamental form of L (thus vl • Aw is 

a bilinear form on T L x T L), and where N satisfies similar 
w .w 

structural conditions to the N in (2.13), (2.14). (As before, 

MCu = 0 on Cl if and only if graph u = {x + u(x) : x E Cl } is 

an n-dimensional minimal submanifold of ffin+k .) 

We thus have in particular the following theorem. 

THEOREM 2. Suppose C is minimal, k ~ 1, q is as in (2.18) 

and suppose jo is chosen so that (2.7), (2.12) hold for some 

p > 1. Then for any given ~ E C2 ,a(L, TL~ there is a l-parameter 

famiLy B~ of solutions of Mcu = 0 such that 



Here the notation is as follows: Uo 

deno·tes the set of C2 , a: (Cl ' lRn +k) 

such that each component I-Jj is in 

1 
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-1 = tim S Us as before, 
S+o 

functions w = (wl , 

B 
p 

and such that 

functions w = (w , . ~ ~ , wn+k ) such that each 

c2 ,ct(l:) 
J.. 

is in and w(x) E T l: flx E l: 
x 

component 

J.. 
B 

p 

I-J 
n+k) 

The question now arises whether or not these perturbed 

solutions are stable in case the underlying minimal cone is stable. 

To facilitate further discussion we first derive a criterion 

(involving eigenvalues of Ll: ) for the cone C to be stable. 

Since there are no 2-dimensional minimal cones other than the 2 planes, 

we assume n ~ 3 for the remainder of this section. 

To begin, let us suppose C is an arbitrary cone 

(no·t necessarily minimal) and let LC = 6C + Q as before. 

Let ~ E C~(Cl) be arbitrary, and write 

<:;(rw) L a . (r) rp. (w) , Hhere 
J J 

Then by (2.2) 
j =1 

so that since and since 

(2.19) n-3 
r 

are orthonormal in 

L )loa:) dr 0 

j=l ] J 
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Now using integration by parts we have 

00 

(2.20) fl n-3 ~ 2 fl ~ - 2 n-3 
- 0 r L~' a. dr ~ 0 L ~. a. r dr 

j =1 ] ] j=l J J 

~: = max{-~., o} , 
J J 

and 

00 00 

(2.21) fl ~ - 2 n-3 ___ 2 __ fl ~n-2 ~ - , 
L ~.a.r dr = 2 o. L~' a.a. dr 

o j =1 ] J n- j =1 J J J 

[

CO J},; [ 00 l},; 21 n-l· - ,2 .. In-3 ~ - 2 -
~ n-2 fo r .I ~.a. dr for .L ~.a.dr , 

J =1 ] J ] =1 J ] ) 

so that 

4 ~ - 00 

< __ 1_ fl r n - 1 ~ (,)2 d La. r, 
- (n_2)2 0 j=l J 

using this in (2.20) we see that Ie sLes ~ 0 Vs E e~(el) provided 
1 

(2.22) 

(2.23) 

__ 4_ ~ >-1 
(n_2)2 1-

provided that (2.22) holds. 
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The condition (2.22) is equivalent to the requirement 

that all the roots y in (2.5)' are real. We then easily see 

(since a complex root Yl gives oscillatory solutions 

Yl 
Re(r ) for LC Sl = 0) 

<jll 

if (2.22) fails. Thus we conclude that (2.23) holds if and only if 

(2.22) holds. 

In case C is minimal of codimension 1 and 

-21 12 Q = r A (w) (A = second fundamental form of C, restricted to I) 

(2.23) is then exactly the stability inequality for C (cf. (1.1)). 

This extends routinely to the case of arbitrary codimension (as for 

Theorem 2). In this case the stability inequality requires 

(2.24) 

and by the appropriate modifications of the argument above, we see 

that this is true if and only if (2.22) holds, where now Vl is the 

minimum eigenvalue of the operator 

..L 
where ~I is the normal Laplacian for I (see [SJ]) and where A 

is as in (2.18). 

The condition (2.22) for stability (at least in the 
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codimensiona1 1 case) was first derived by J. Simons [SJ; 

Lemma 6.1.6J. R. Schoen has pointed out that it is equivalent to 

the requirement that l: be conforma11y equivalent to a positive 

scalar curvature manifold. 

It is instructive to check -the condition (2.22) 

for the codimension 1 examples 

readily checks in this case that 

III is the minimum eigenvalue of 6l: + 2p 

(The minimum eigenvalue of 6l: is zero. ) 

this case, the criterion 

is stable if and only if 

Le. 

(2.22) tells us 

(-n+l ) 
---2::: - J4 
(n-2) 

n ::: 7 . 

One 

on l: , so that 

, which is trivially 

Since n = 2p + 1 in 

that the cone C over 

-2p 

l: 

(Cf. [SJJ.) Similar considerations show that if l: is a codimension 

1 minimal submanifold of Sn, with second fundamental form having 

constant length K, then the cone over l: is stable if and only if 

n-2 
K < -2-

We note that the argument a.bove actually establishes 
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so that if we have strict inequality in (2.22), then 

(2.25) 

for some constant 8 E (0, 1). Using the identity 

f fl d (n-2 2 ) 
L: 0 dr r 1; (rw) dr dw = 0 , so that 

(2.26) 

where 8' > 0 is positive. 

Notice that (by virtue of the standard representation 

of minimum eigenvalue in terms of Rayleigh quotient) (2.23) is 

equivalent to the assertion that the eigenvalue problem 

ru 

A 
0 C {x E C £<Ixl<l} + "2- u on £,1 -

r 
(2.27) 

u = 0 on ~C £,1 

has minimum eigenvalue V£ > 0 , while (2.26) is equivalent 

to A~ ~ e' > 0 (e' independent of E). 

That is, (2.22) ~ A~ ~ 0 V£ > 0 ~ (2.23); and strict 

inequality in (2.22) ~ A~ ~ 8 > 0 for some 8 independent of £ 

~ (2.26) for some e' > 0 . 

In view of this, and the fact that the Us obtained 
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..L 
in Theorems 1, 2 lie in B 

p 
(B respectively) we now easily 

p 

deduce the following theorem. 

THEOREM. If C is stPiatly stable in the sense that striat 

inequality holds in (2.22), then there is So > 0 suah that all 

the minimal graphs of Theorems 1,2 are stable for S ~ So . 

(If 
(n_2)2 

~l = ---4--- , then the minimal graphs of 

Theorems 1, 2 are stable in the weak sense that the stability 
..L 

inequality holds for ~ E B q (respectively B) with ~ = 0 and 
q 

1: and II~IIB ~ K , provided q> - (n;2) and provided S is 
q 

sufficiently small, depending on K). 

§3. The question of classifying isolated singularities -

uniqueness of tangent cones. 

To facilitate the discussion of this section let us 

assume that M has an isolated singularity in the following very 

strict sense: 

DEFINITION. M is said to have an isolated singularity at 0 in 

the strong sense if sing Mil B 
P 

{oJ for some 

the second fundamental form A of M satisfies 

(3.1) IA(x)l~c/lxl, o<lxl<p· 

p > 0 and if 

One would of course ultimately like to understand the general case 

when it is simply assumed M II B 
P 

{oJ , but for our present purposes 
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the above assumption is convenient. Notice that (by the compactness 

and regularity theory developed in [SSlJ) (3,1) will automatically 

hold for a seven dimensional stable embedded minimal hypersurface 

with an isolated singularity at O. 

In viel, of the examples of the pr·evious section, one 

might be led to conjecture that M is always asymptotic to a 

minimal cone C near an isolated singular point at 0, at least 

in the sense 

(3,2) o 

for some minimal cone C This would in fact be extremely 

illuminating, because it is elementary to check that (3.1), (3.2) 

imply that sing C = {a} and that the spherical nearest point 

projection ljJ (taking a point y E M n OBo to the point z E C n ;)B 
o 

with least distance, measured in dB o ' from y) is a smooth covering 

projection. Thus we get a precise description of the exact nature of 

the isolated singularity at 0 in terms of the minimal cone C and 

an integer multiplicity (which is constant on the components of C). 

Unfortunately, (3.2) appears very difficult to prove, 

even if we assume the strong condition (3,1). It is true that there 

always exist tangent cones in the sense that if {Pk } is a sequence 

of positive numbers converging to zero, then there is a subsequence 
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