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APPERDIX IIX

SOLUTION OF LINEAR EQUATIORS

This appendix is addressed to those who are uninitiated in
numerical analysis. It is included here because of its usefulness in

Sections 12 and 18. We consider a linear system

al’lx(l) + ...+ al’nx(n) = y(1)
(1) : : ;
am’lx(l) + ...+ am,nx(n) = y(m)
of m equations in n unknowns x(1),...,x(n) . Let A = [ai,j] .
x = [x(1),....x(n)]° and y = [y(1).....y(m)1° . Given y € €, the

problem is to find x € " such that Ax =y . The m xn matrix A

is called the coefficient matrix of the system (1); it induces a

linear map from C" to C€" in a natural way, which we denote also by

A‘: The range of A is the linear span of its columns 8oy o
where %j(i) =a; - Thebrank r of A 1is the maximum number of
I{nearly independent columns of A . Clearly, r { max{m,n} . When
m = ﬁ ., A is invertible if and only if r =n if and only if
det A # 0 ; such a matrix is called nonsingular.

Let & = [O,...,O,I,O,...,O]t ., where 1 occurs in the k-th

place, and let In denote the n x n identity matrix. An n x n matrix

A 1is called elementary if A = In + B, where B has rank 1 . Then

A=In-’}\{x

for some x and y in c .
We say that an m x n matrix A is lower (resp., upper)
trapezoidal if a; j= O , whenever i < j (resp., i > j) : when

m=n, it is called lower (resp., upper) triangular.
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If A is lower trapezoidal, then one can aétempt to solve the
system (1) by forward elimination, and if A 1is upper trapezoidal then
by back substitution, in the most natural way. For this reason,
trapezoidal matrices are very important in solving linear systems. We
shall describe how elementary matrices can be used to reduce a given
matrix A to a product of a lower triangular or unitary matrix and an

upper trapezoidal matrix.
Gaussian elimination and IR factorization

For u = [u(l),...,u(m)]t e c" with u(k) # O , consider

% = [O 0 u(k+1) ugm!]t

u@® T u(k)

Then the matrix

H
(2) G = Im - Xe

is called a Gauss matrix. Note that G 1is an elementary matrix, and
for y € c" Gy =y - y(k)x . In particular,

Gu = [u(1),...,u(k), 0,...,0]t . Thus, multiplication by a Gauss matrix
on the left introduces zeros below a given nonzero entry of a vector.

We observe that a Gauss matrix (and hence a product of two Gauss
matrices) is a lower triangular matrix with 1’s on the diagonal.

Gaussian elimination consists of introducing zeros below the

diagonal elements of a matrix A by successively multiplying A on the
left by Gauss matrices. In order to achieve this, the k-th diagonal
element, called a pivot, must be nonzero at the k-th step. We have the

following result.
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THEOREM 1 Let the leading k x k principal submatrix of an m x n
matrix A be nonsingular for k = 1,...,min{m-1,n} . Then A =1IR ,
where L is a mxm lower triangular matrix with 1’s on the diagonal,
and R is an m x n upper trapezoidal matrix; if, in particular,

m=n and A is nonsingular, then L and R are unique.

The factors L and R can be computed by employing Algorithm
4.2-1 of [GV]. However, this procedure can fail on simple-looking
matrices like rf i] , if a leading principal submatrix is singular. To
take care of such a situation (and also to achieve stability in case the
pivots are nonzero but small), one can interchange the rows of A .

An m x m matrix P is called a permutation matrix if

P = [sv(l)""’~w(m)] , where w : {1,...,m} = {1,....,m} is a one to
one map, i.e., a permutation of {1,...,m} ; P is obtained by permuting
the columns of Im according to w . Note that P is unitary, i.e.,

PHP =1I= PPH ., so that P_-1 = PH corresponds to the permutation
vul . If A isan mx n matrix, then the matrix PA is obtained from

A by permuting its rows according to the permutation w_l

In Gaussian elimination with partial pivoting, one performs

Gaussian elimination process with the following interchange of rows.

Suppose the matrix A (= A(O)) is reduced to a matrix

A(k—l) A(k"l )

‘ 1,1 1,2
(3) alk1) |
(k-1)
0 A2’2
at the (k-1)st step. Then search the first column of Aékél) for an
entry with the largest absolute value, say j—th entry, and then swap the

kth and the jth rows of A(k-l) . We have the following result.
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THEOREM 2 Let the rank of an m x n matrix A be r . Then PA =1IR ,
where P is an m X m permutation matrix, L is an m xm lower

triangular matrix with 1’s on the diagonal and R is upper trapezoidal:

(4) R - Ri1 R of
0 0 m-r
r n-r

where R1 1 is an upper triangular matrix with nonzero diagonal entries.

Because the choice of an entry with»the largest absolute value in
the first column of A(k_l) is not unique, k =1,2,..., the
factorization in the above result is not unique. It can be computed by
using Algorithm 4.4-2 of [GV], which requires mns - (m+n)52/2 + 53/3
flops, where s = min{m-1,r} , and O(ms) comparisons. A flop is
basically one floating-point multiplication and addition of subscripted
arguments.

Having found the factorization PA = LR , we proceed to solve
Ax =y as follows. Since L is lower triangular and invertible, we
can find z € C" such that Lz = Py by forward elimination. Next, we

consider the equation

It has a solution only if the last (m-r) entries of z are zero. In
case z =0 , there are (n-r) linearly independent solutions. The
solutions can be obtained by backward substitution since R1 1 is upper

triangular and invertible.
Cholesky factorization and least squares problem

If A isan n xn positive (definite) matrix, i.e.,
{Ax,x> = §HA§ >0 for every x # O , then all the leading principle

submatrices of A are nonsingular, and we have
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A=1R
where L is an n x n lower triangular matrix with 1’s on the diagonal

and R is an n x n upper triangular matrix with positive diagonal

entries d.,...,d_ . Now,
1 n
A = Ldiag(d d )diag(d:L,...,d 1R
1004y 1 009y .
and, since A is self-adjoint,
H H.. -1 -1, 5. H
A=A =R dlag(d1 ,...,dn )dlag(dl,...,dn)L .
H,. -1 -1 R . . s .
But R dlag(d1 ""’dn )} 1is lower triangular with 1°s on the diagonal,
and diag(dl,...,dn)LH is upper triangular. Hence by the uniqueness

part of Theorem 1, we have
. H
R = dlag(dl,...,dn)L .
If we let G = diag(Jal,...,Jag)L , then

A = IR = Ldiag(d,,....d )L = cd" .

This is called the Cholesky factorization of a positive (definite)

matrix A . To implement it, one can use Algorithm 5.2-1 of [GV], which
requires n3/3 flops (and no comparisons).

Coming back to a general m x n matrix A , we note that the
n xn matrix B = AHA satisfies <Bx.x> = <Ax,Ax> 2 O for all x € X ,
and if A 1is one to one, then B is, in fact, positive (definite).
Now, A 1is one to one if and only if rank A = n . Consider, then, an
m xn matrix A with rank n (in particular, m > n), and let y € c" .
If there is an x € " such that Ax =y , then it can be found as

follows. Form B = AHA , Z = AHX , and solve the so-called normal

N
~
(™
o
[
(=9
5
(&

equations Bx =
~ ~s
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2
See Algorithm 6.1-1 of [GV]. This algorithm requires g-(m + g) flops.

Even when there is no x € c® such that Ax = y , the vector
v = Ay 1Ay

is the best approximation to y from the range of A . This follows by

noting that for every u € c® s
. H_, H
lhAw = Ayt w = Ay,ud = <y Aw

so that y' -y 1is orthogonal to the range of A . (See [L], 23.2.)

In other words, the vector
X = (AHA)-IAHX = ATx , say
is the (unique) solution of the least squares problem

(5) * Find x € € such that ﬂégn Ag-yll, = IAx-yll, *.

For this reason, x = ATx is called the least squares solution of

Au = y ; the operator (or the matrix)
Al - ()™ . s e

is called the Moore-Penrose inverse of the m x n matrix A of rank

n . Note that it satisfies the four Penrose equations: AATA =A,
T T

ATAAT = A , (AAT)H = AA" and (ATA)H = ATA . In particular, if y
belongs to the range of A and y = Ax , then ATx = (AHA)_IAHA§ =X ;
i.e., the least squares solution of Au =y 1is, in fact, the solution

of Au=y . Incase m=n, A =A

Householder method and QR factorization

There is an alternative, and perhaps better, way of finding the

least squares solution. To describe it, we go back to the upper



triangularization of an m x n matrix A .

For u € c" ., consider
0, if u=0
E:
wu's . i w#Q
Then the matrix
) H
(6) H=1,-x

is called a Householder matrix. Note that H is an elementary matrix,

and Huy = -u , while Hy =u if BHX =0 ; H 1is called the reflector

which reverses u . Observe that H is self-adjoint as well as unitary.
Given a € " , let u=a- Hg"zgl , and H be the reflector which

reverses u . Then Ha

[llgllz,o,...,O]t . Thus, like a Gauss matrix,
a Householder matrix can be used to introduce zeros in all the entries
of a vector except possibly the first.

Let A = [%1""’%n] be an m x n matrix. Let gkl be the first

nonzero column of A . Find a reflector H1 , as above, such that

H1%k1 N [Ilgklllz,o,...,o]t )

If
HA=|. . . A(2) .

we repeat the process for the (m-1) x (n—kl) matrix A(z) to find an
appropriate reflector ﬁz ., which is an (m-1) x (m-1) unitary matrix.
Let H2 = diag(Il,ﬁz) , which is also unitary. Continuing this

process, we find that
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o R T
(7) Hr...H1A=R= . .

where r is the rank of A, and R is upper trapezoidal with
nonnegative diagonal entries. Letting U = Hl"'Hr ., we obtain the

following result.

THEOREM 3 Let the rank of an m x n matrix A be r . Then
A=UR, where U isan mxm unitary matrix and R isan mxn

upper trapezoidal matrix.

Having found the factorization A = UR , we proceed to determine
the solutions of Au =y as follows. Since U is unitary, we find

z € €™ such that Uz =y by letting z UHX . Next, we consider the

o R
RE = 2 =
0o

It has a solution only if the last (m-r) entries of z are zero. In

equation

N

case z =0 , there are (n-r) linearly independent solutions. The
solutions can be obtained by backward substitution since R 1is upper
trapezoidal.

Let us consider the case when A has rank n, i.e., r=n{m.
In this case the n x n upper triangular matrix R is invertible. Let

¥y € ™, and z = UHX = [e(1),...,e(n).d(1),..., d(m—n)]t . Then for

every u € c® . Wwe have

Ay - g2 = 10"y - U = iRy - g2 + g

It is then clear that the quantity HAg—xﬂz is minimized exactly when
Ru=c, i.e., u=R ¢ . Thus, the least squares solution of Au =y

is given by x = R_lg . where the n-column vector ¢ consists of the
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first n entries of 2z = UHx . In other words, ATx = R_lg . This is

known as the Householder orthogonalization method for finding the least

squares solution of an m x n linear system of rank n . It requires
n2(m - g) flops.

While on the subject of factoring an m X n matrix A as a
product of a unitary and an upper trapezoidal matrix, we state the

following result.

THEOREM 4 (QR factorization) Let A be an m x n matrix of rank r .
Then A =QR where Q is anm x r matrix satisfying QHQ = Ir and R
is an r x n upper trapezoidal matrix with nonnegative diagonal
entries; Q and R are unique. If r =n, then R is upper

triangular with positive diagonal entries.

The proof of the existence is immediate since A = R = U{g] and
we can let Q = UIm,r , where Im.r consists of the first r columns
of Im . Note that if A =QR , then the r colums of Q form an
orthonormal set in C" since QHQ = Ir . They are obtained by
successively orthonormalizing the linearly independent columns of A in
the order 8y.--002) by the Gram—Schmidt process. The fact that the

diagonal entries of R are nonnegative then gives the uniqueness of this

construction.

Perturbation of the solution

We now consider the sensitivity of the solution x of Au =y to
the changes in the coefficient matrix A and in the given right hand
side y .

First, let m =n and the matrix A be nonsingular. By (9.1) and

Problem (9.1) . we obtain the following result.
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THEOREM 5 Let A and A be n x n matrices, and A be nonsingular.
If IIA_l(f\—A)lI <1, then A is also nonsingular. Also, if XX )2

and ’% are in € such that Yy #0 and

~

Ax =y and A=y .

then

SR Y
Tyl AT

Ix - xll
=

ST < NAN BAT

1
Tl :

(8

1-na~t(a-ayn

If we let

L AT S
e T TR 7.V I

then & = HA"(A-A)I < HAN 1A llle , and hence

IIx - xli -1 5
e < 2eBAIIATTI(L + 6 + 67 + ...)

< 201 1A e + 2"A"2"A—1"262(1 + 5+ 8+ ..) .

In other words,

lIx—xll

=X -1
(9) T = 201 1A

lle + 0(&2) , as e =0 .
This shows that the relative change Ilg—yl / lixll  in the solution x of
Au = y 1is bounded essentially by 2lAll IIA_III times the larger of the

~

relative changes in A and in y . For this reason, the quantity

(10) k(A) = nAn na~ln

is called the condition number for the linear system having the

nonsingular matrix A as its coefficient matrix.



408

If we use the Euclidean norm || ||2 s then the condition number
k2(A) = IIAII2 IIA—lll2 can be given another interpretation. First note
that since NATAN = nanZ = naa™i2 | we have

2 2 2
H,,1/72 H,1/2
(11) ky(A) = k()12 = 1 (a2

Let )\I(A), c. ,7\n(A) denote the eigenvalues of A arranged so

that |7\1(A)| 2 .02 |7\n(A)I #0 . Let B bean mx n matrix. Then

aJ.(B) = J)\j(BHB) is called the j-th singular value of B ; it is the
positive square root of the j-th largest eigenvalue of BHB . Notice

that if A is normal, then )\j(AHA) = I)\j(A) I2 , so that

(12) o (A) = N = J)\j(AHA) (A normal) .

Now, since AHA is always normal,

H H
(13) nan, = N, = 4 (%) = o (4)
and since AJ(A) = I/An_j+1(A_1) for j=1,...,n, we have
-1 H,-1 -1,,H,-1
AT, = H(AT) T, = J?\l((A (AY)

W)™ = 1A () = 1o )
Thus, we have

o) (A)
AON

(14) ky(A) =

Let us now consider a more general case when A is an m x n
matrix of rank n . Then the equation Au =y has at most one solution
for every y € C" . Unless m=n, there exists y € ¢" for which
there is no solution. All the same, there is a unique least squares

solution for every y € c" . In analogy with the square nonsingular
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matrix case, we define the condition number of an m X n matrix A of

rank n by
(15) Kk(A) = nAn na'n .

Note that for the Fuclidean norm Il i, ,

2
2 H
NANS = HATAIl,
(16)
T2 T, 1.H H,.-1,H, H -1 H,-1
HATHZ = HAT(A)"Hy = H(A"A) TATA(ATA) Ty = H(ATATO)I,
Hence by (12) and (14)
i -1 i a;(A)
(17) ky(A) = duafang dncatay Ty = Jky(afa) - T

as in (10) and (14).

Let y € C" . In the method of normal equations to find the least
squares solution of Au=y . we let B = AHA and find XN such that
B§N = AHX . Let B be another n x n matrix such that
B-A"A)(A"A) M < 1. so that B is nonsingular. If Bf =2, then

since k2(AHA) = k2(A) by (9).

II}A(,N—;\gII2

(18) "¥"2 S 2[k2(A)]26 + 0(62) s as e =0 s

~ H H H H
where e = max{llz-A ;[Il2 /A )CII2 , IB-A AH2 / NA All2} .
In case y belongs to the range of A , the relative change in
the least squares solution of Au = y has a better bound, as the.

following result shows.

THEOREHM 6 Let A and A be m xn matrices and let A have rank n .

It UAT(A-A)I < 1, then A is also of rank n . Let y and y be in

m

€ , and x and g be in C° such that
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Ax =y and HAx-yll, = min_ lAu-yll, .
2 l"l‘e‘]:n 2

Assume that

g - xlly, WA - A, 1
€ = max s <

Then
g - xlly )
N§H2 = 2k2(A)e +0(e”) , as e =0 .

The first part of the above theorem is easy to prove: Let

Ay =0 . Since IA'(A-A)I < 1 and

fhall uATAgu = nAT(Ag—Ag)u < AT (a-gyn full ,

we see that llull u =0 . This shows that A is one to

L1}
o
P
®

one, i.e., rank A =n . The second part of the theorem is difficult to

prove and we refer the reader to pages 141, 143 and 144 of [GV].

Mumerical stability

While solving a system of.linear equations Ax =y on a computer,
we have to use the floating-point representation of the entries of A
and y ; thus the entries are only approximately correct. Further, in
the process of solving the problem, round-off errors arise due to the
floating-point arithmetic of the computer. (See Section 18 for some
details.) For many well known methods of solving a linear system, it
can be shown that the computed solution % , 1in fact, satisfies a
nearby system K% = i . In these cases, the perturbation analysis of
the solution given earlier becomes applicable.

In the case of Gaussian elimination with partial pivoting for an

n x n nonsingular system, the computed solution satisfies a linear
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system with coefficient matrix A such that

(19) NA-AN, = SanIIAIIwé + 0(52) .

where 6 = %-Bl_t , with B the machine base and t the machine
precision, and p 1is a certain growth factor which measures how large
the entries become in the solution process. Empirically p is known to
be of modest size ([GV], p.67).

If m# n , then a round-off error analysis for Gaussian
elimination with partial pivoting for an m X n system is not feasible,
because the pivots are not uniquely determined. Thus, it is not
possible to associate a unique x € C" as the ‘solution’ of Au = y for
an arbitrary y € c" .

In the case of the Householder method for the m x n least squares
problem Au =y of rank n, it can be shown that the computed solution
% satisfies

IAx - yll, = min_ HlAu - yii
~ 2 o~

ue 2

where A and i satisfy

A - All, = n&(6m-3n+41)a + 0(52) .

9 =
(20)
I - ylly = nd(6m-3n+40)liylly + 0(6%)
2 s 2
with o = J |ai jl (See p.149 of [GV].)
i, j=1 =

While Gaussian elimination with partial pivoting has a smaller flop
count, the Householder method has guaranteed stability. There are
several other methods for solving linear systems. But the above two are

of ten recommended from the point of economy and numerical stability.



