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19. :m.DIERICAL ~ 

In this section we report the results of our numerical calculations 

and illustrate the use of the algorithms given in Section 17. 

We consider the space X = C([a,b]) of all complex-valued 

continuous functions on the interval [a,b] Given a positive integer 

M , let , (M} (M) 
t 1 , ... ,tM be points in [0, and let 

(19.1) 

* (M) where (x,f.> = x{t. ) and f. E C([O,l]) is such that 
1 1 1 

fi(tJM)) = oi,j i,j = l, ... ,M A~ element x of C([a,b]) is 

discretized by 'ITMX . 

Let T be a Fredholm integral operator on C([a,b]) given by 

Tx(s) = s: k(s,t)x{t)dt , s E [a,b] , x E C([O,l]) , 
a 

where k is a continuous complex-valued function on [a,b] x [a,b] . 

Note that T is a compact operator on C([O,l]) . 

Given a convergent quadrature formula (cf.(16.5)) 

M 
I x E C([a, b]} , 

j=l 

with nodes at t~M) , j 
J 

1, ... ,M, we replace the operator T by its 

Nystrom approximation 

(19.2} Tx(s) 
M 
I 

j=1 
s € [a,b] , X € C([a, b]) , 

which is easier to handle numerically. From now on we do not make any 

distinction between T and T . 
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A finite rank operator T0 which is near T and for which the 

eigenvalue problem can be solved easily is chosen from a sequence (T ) 
n 

which approximates T in the norm or in a collectively compact manner. 

The approximating sequence of operators determines the 'method' of 

approximation: projection, Sloan, Galerkin (1 and 2), Nystrom, or 

Fredholm (1 and 2). (See Remark 17.12 and Table 17.1.) Let 

For the projection, Sloan, Galerkin and Fredholm methods we employ the 

projection 

(19.3) 
n (n) 

v0x = 2 x(t. )e. , 
i=1 1 1 

where ei € C([0,1]) satisfies e. ( t ~n)) = {j. • , 
1 J 1,J 

i ,j = 1, ... ,n . 

As we have discussed in Section 18, we need the following matrices 

to implement the algorithms of Section 17: 

* [AV] * A= [<x .. x.>] [<x .• f.>]M J 1 nxn J 1 xn 

[TAH] * [T2AH] [<~fj,x7>JnxM = [<Tfj,x/]nxM = 

[TM] * [T2M] [<~f .• f~>]M M = [<Tfj,fi>]MxM = J 1 X 

To characterize these matrices for each of the methods listed 

above, we introduce the following auxiliary matrices: 

[KNJ [w~n)k(t~n) t~n))] 
J 1'J nxn [KM] [w~M)k(t~M),t~M))]MxM 

J 1 J 

[KH] [w~M)k(t~n),t~M))] xM 
J 1 J n [KV] = [w~n)k(t~M),t~n))]Mxn J 1 J 

[IV] * = [<e., f. >]M J 1 xn 

where (n) 
= i e.(t)dt , j = 1, ... ,n . w. 

J a J 
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In the following table, the entries in the first column refer to 

those in the first column of Table 17.1. 

To A [AV] [TAH] [T2AHJ [TM] [T2M] 

Tp 
0 [KH][IV] [IV] [KH][KM] [TAH][KM] [KM] [I<M]2 

Ts 
0 [KH][IV] [KM][IV] [KH] [TAH][KM] [KM] [KM]2 

I{ [KH][IV] [IV] [KH][IV][KH] [TAH][KM] [KM] [KM]2 
TG 

0 2 [KH][IV] [IV][KH][IV] (KH] [T AH] [Kill] [KMJ [KM]2 

~ [KNJ [KV] [KH] [TAH][KM] [KM] [KMJ2 

1{ [KN] [IV] [KN][KH] [TAH][KM] [KM] [KMJ2 
TF 

O 2 [KNJ [KN] [KH] [TAH][KMJ [KM] [KMJ2 

Table 19.1 

We remark th..at the matrix [KV] appears only once as the matrix 

[AV] for the Nystrom method. Also, in all cases, the matrix [TM] 

equals the rnatrix [KM] , and the matrices [T2AH] and [T2M] are 

obtained by multiplying the matrices [TAH] and [TM] , respectively 

on the right by the matrix [KM] . In case the kernel k is conjugate 

symmetric (i.e., satisfies k(t,s) = k(s,t) for all s and t) as 

well as all the weights are real and equal, the matrices [KN] and 

[KM] are self-adjoint; note that the matrix A (= [KH][IV]) may still 

not be self-adjoint for the projection, Sloan and Galerkin methods. 

Employing the raatrices given in the above table, we can use the 

discretization procedure outlined in Section 18 to implement the 
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algorithms of Section 17. Starting with a nonzero simple eigenvalue X0 

of A and a corresponding eigenvector M such that 

where ~ is an eigenvector of AH corresponding to 

and c. 
~J 

these 

algorithms iteratively generate approximations Aj 

(j = 0,1, ... ) of a simple nonzero eigenvalue X(M} and a corresponding 

eigenvector (M) 
£ of [TM] . The elements and (M) 

£ are 

supposed to represent eigenelements X and <P of T For this 

reason, we denote £(M) and X(M) '~'j , <P and X in the 

numerical tables. 

For the numerical experiments reported here, we have taken 

[a,b] = [0,1] Since we replace the operator T by its Nystrom 

approximation T (given by (19.2)), the choice of the functions fi , 

i = 1 .... ,M, used for discretizing a continuous function x E [0,1]) 

by vMX (as in {19.1)), is immaterial as long as 

i,j=l,, .. ,M. The functions e. 
l 

i = l, ... ,n appearing in the 

expression for the projection 1r0 (employed in the projection, Sloan, 

Galerkin and Fredholm methods) are the piecewise linear hat functions 

with nodes at t~n} . The exact value of e. at t E [0,1] can be 
l l 

found from the explicit formulae given in Section 3 for 

i=L ... ,n .. 

We consider two different kinds of nodes: 

(i) Equidistant points: t~M) i-1 
i 1, 0 0 0 ,!>!: 

1 M-1 ' 

t~n) i-1 
i 1, ... ,n 

1 n-1 

in this case the compound trapezium rule Q1 is applied for which 

{ 2(li;l) ' if i 1 or M 
{ 2(n~l) if i 1 or n 

(M) (n) w. w. 
1 l 

M-1 , otherwise 
n-1 , otherwise 
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{ii) Gauss two points (repeated) : 

t~M) 
[i l)!lt and ~(n) [i l)/n if c. ' l 

'b 
]. .,[} 

i is odd 

t(M:) [i 1 + ~~Jilt &J.d t ~n) = [i - 1 + lJ/n 
1 1 -5 

if i is even 

in this case the compound Gauss two point rule Q2 is applied for which 

("M) w. 
l 

1/M , i 1, ... , M , and 1/n , i 1, ... ,n . 

We have often chosen r.1 = 100 and n = 10 ; since n - 1 divides 

M - 1 the grid with n equidistant points is contained in the grid 

with 1J!: equidistant points. This is not the case for the (repeated) 

Gauss two points, however. 

We consider integral operators on C([O,l]) with the following two 

kernels: 

exp(st) , 

= { s(l-t) , 

t(l-s} , 

0 s s t s 1 

if 

if 

Both k 1 and k2 are nonnegative &J.d symmetric. Note that k1 

is smooth (in fact, real analytic in s and t) , but k2 is not 

(the partial derivatives are discontinuous on the diagonl of the square 

(0,1] X [0,1]) . 

The 4 largest eigenvalues of the integral operator with kernel k1 

are simple and have the decimal expansions 

1.3530301647 .. , (1.0598322 .. )10-1 , {3.560749 .. )10-3 , (7.6379 .. )10-5 . 

The nonzero eigenvalues of the integral operator with kernel k2 are 

all simple; they are 
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1 
2' 9lr 

1 

16Jr2 

and the corresponding eigenfunctions are sin kvt , t E [0,1] , 

k = 1,2, .... 

Since the computed iterates converge to eigenelements of a 

discretized version of T , it is important to be able to choose an 

appropriate discretization scheme to start with. We illustrate this 

point by comparing the largest eigenvalue obtained by discretizing the 

integral operator with kernel k1 by various nodes 

always with weights w~n) = 1/n 
1 

t~n) -1 

n 
! 
2 

8 

10 

100 

f i -1/D)/n , i odd 

(i-1+1/D)/n i even ' 

1.352080 ... 

1.353026 ... 

1.353028 ... 

1.353030 ... 

Table 19.2 

2i-1 
2il 

1.351644 ... 

1.353021. .. 

t~n) E [0, 1] , 
1 

but 

i-1 
n-1 

1.379129 ... 

1.373071. .. 

1.354777 ... 

The above table shows that with the choice M = 100 , w~M) = k , and 

t~M) = ~=~ , the largest eigenvalue A(M) of [TM] agrees with the 

largest eigenvalue A of T only in the first two decimal places and 

hence we cannot even hope to approximate A up to more than 2 decimal 

places by any of the iteration schemes. 

Our computations were performed on a cyber 170 Model 840 (Network 

Operating System 2.4.3,647/642) in single precision, for which the 

floating-point arithmetic gives 14 reliable decimal digits. Thus, 

10-15(=1.0 E-015) is considered to be equal to 0 . 
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The iteration process is stopped, unless otherwise specified, when 

the residual norm RESID = IIT<p .-A. .<p .11 00 as well as 
J J J 

increment RELIN = ll<pj+1-<pjll00/ll<pjll00 are both less 

the relative 

than 

-12 10 (=1.0 E-12), or if 30 iterates have already been calculated. 

With the kernel k1 , quadrature formula ~ and the Fredholm 

method(2), the time taken (in CP seconds) for implementing the 

Rayleigh-Schrodinger iteration scheme is listed below. 

n M Compilation Execution 

10 100 1.150 2.337 

10 150 1.169 4.261 

These times include the calculation of all the 10 eigenvalues and 

eigenvectors of A . They should be compared with the execution time of 

14.436 CP seconds for solving the 100 x 100 matrix eigenvalue problem, 

and of 48.802 CP seconds for the 150 x 150 matrix eigenvalue problem. 

Olmments on the numerical results 

Tables 19.3, 19.4 and 19.5 

Performance of the four iteration schemes discussed in Section 17 

is compared in the case of two specific examples. In Table 19.3, the 

Rayleigh-Schrodinger scheme gives a slow improvement of accuracy, while 

the fixed point scheme gives substantially better results. The Ahues 

scheme is only marginally better than the fixed point scheme, while the 

modified fixed point scheme gives a spectacular rate of convergence. 

The values for some subsequent iterates of the Rayleigh-Schrodinger 

scheme are as follows: 
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j g 10 12 14 

J\ - -7.7 E-10 2.4 E-ll -7.1 E-13 1.6 E-14 

lhp-<p .II 
J 00 

2.1 E-ll 3.4 E-13 4.2 E-14 7.1 E-15 

In Table 19.4, the behaviour of the Rayleigh-Schrodinger Scheme and 

the fixed point scheme is similar; one can note the semigeometric 

convergence of the eigenvalue iterates as expected under the 

col compact convergence . (11.30} and Problem 11.1) but, 

unexpectedly, the convergence of the eigenvector iterates is geometric. 

The modified fixed point scheme and the Ahues scheme give very fast 

convergence. 

Table 19.5 compares the number of iterations needed for satisfying 

the stopptng criteria for the four iteration schemes in various 

examples. The modified fixed point scheme gives the best results. 

Table 19.6 

The results for the power iteration scheme (11.36) with various 

pairs of starting vectors exhibit the expected linear rate of 

convergence for the eigenvector iterates, although the eigenvalue 

iterates occasionally give an improved accuracy. (See (12.6).) Note 

that in this case the ratio of the second largest eigenvalue to the 

largest eigenvalue is 
-1 (1.05983)10 /1.353030 = .078, approximately.) 

The phenomenal accuracy of the starting vector N 
~O and the consequent 

accuracy of the first eigenvalue iterate are noteworthy. 

Table 19.7 

Performance of the five methods: projection, Sloan, Galerkin(2), 

Nystrom &!d Fredholm(2) in approximating the second largest eigenvalue 

and a corresponding eigenvector of the integral operator with kernel k2 

is compared. The Sloan method gives the fastest convergence. 
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Table 19.8 

The four largest eigenvalues of the integral operator T with 

kernel k1 are approximated. The convergence is almost immediate for 

the largest eigenvalue /\(1) and becomes progressively delayed for the 

next three eigenvalues , /\(3) and /\(4) . In the case of 

and the norm of the relative increment does not become less 

than l0-12 even up to 30 iterates. Note that 

dist(/\(l),a(T)'{/\(1)}) 

dist(/\(3), a(T)'{(3)}) 

approximately. 

Tables 19.9 and 19.10 

1.2 , dist(J,(2), a(T)'{/\(2)}) = 1.0 E-01 , 

34£-03, dist(l\(4). a(T)'{/1.(4)}} =7.5£-05 

The effect of lowering the size n of the initial eigenvalue 

problem is considered in these tables. As the size n decreases from 

10 to 2 , the number of iterations needed to satisfy the stopping 

criteria increases. This increase is marginal in Table 19.9, but 

substantial in Table 19.10. Even the 30th iterates do not satisfy the 

stopping criteria for the size n = 2 in Table 19.10. 



Rayleigh-Schrodinger 

j A - A 
j II<P-<P j I leo 

0 -1.0 E-03 7.3 E-04 

1 1.0 E-03 1. 6 E-05 

2 2.2 E-05 6.7 E-06 

3 -9.3 E-06 5.4 E-07 

4 -7.4 E-07 1. 1 E-07 

5 1. 5 E-07 1. 7 E-08 

6 2.4 E-08 1.8 E-09 

7 -2.6 E-09 5.6 E-10 

Comparison of various iteration schemes 

Method: Fredholm (2), Kernel: k2 , Quadrature: Q1 
M = 100, n = 10, A : the largest eigenvalue 

Fixed point Ahues 

A - A. II<P-<P j I leo A - A. II<P-<P j I leo J J 

-1.0 E-03 7.3 E-04 -1.0 E-03 · 7.3 E-04 

1.0 E-03 1.6 E-05 1.0 E-03 7.1 E-06 

2.2 E-05 2.1 E-07 -1.0 E-05 7.0 E-08 

2.8 E-07 2.8 E-09 9.8 E-08 6.9 E-10 

3.5 E-09 3.6 E-ll -9.7 E-10 6.8 E-12 

4.4 E-ll 4.7 E-13 9.5 E-12 6.9 E-14 

5.6 E-13 7.1 E-15 -9.7 E-14 7.2 E-15 

4.9 E-15 ~ 7.2 E-15 -1.3 E-15 7.3 E-15 

Table 19.3 

Modified fixed point 

A - A 
j II <P-<P j II co 

-1.0 E-03 7.3 E-04 

1.0 E-03 2.7 E-08 

3.0 E-08 1.1 E-12 w 

"' 0 

1. 2 E-12 7.3 E-15 

-2.7 E-15 7.3 E-15 



Rayleigh-Schrodinger 

j A - A. II(P-qJ j llo,, 
J 

0 1.7 E-06 1.3 E-02 

1 4.2 E-04 l. 3 E-04 

2 9.9 E-08 2.9 E-06 

3 -9.7 E-08 7.3 E-08 

4 -8.6 E-ll 1.1 E-09 

5 4. 2 E-ll 4.8 E-11 

6 5.7 E-14 5.1 E-13 

7 -2.1 E-14 7.5 E-14 

Comparison of various iteration schemes 

Hethod: Fredholm (2), Kernel: k1 , Quadrature: q2 

H = 100, n = 10, A : the largest eigenvalue 

Fixed point Ahues 

A - A. ll(j)-(p .II A - A, II qJ-qJ j II"" J J 00 J 

1.7 E-06 1.3 E-02 L7 E-06 L3 E-02 

4.2 E-04 1.3 E-04 4.2 E-04 3.0 E-06 

9.9 E-08 1.1 E-06 -1.0 E-07 7.6 E-10 

3.1 E-08 9.5 E-09 2.5 E-ll 1.9 E-13 

5.2 E-12 8. 2 E-11 -1.4 E-14 5.0 E-14 

2.3 E-12 6.8 E-13 

-1.4 E-14 4.3 E-14 

-1.4 E-14 4.3 E-14 

Table 19.4 

Nodified fixed point 

A - A. ll(j)-(j) j 1100 
J 

1.7 E-06 1. 3 E-02 

4.2 E-04 1. 0 E-06 

w 
2.8 E-08 6.9 E-ll 

0'\ 
,~ 

L 9 E-12 3.9 E-lb, 

-1.4 E-14 3.9 E-14 
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Number of iterations (i) needed to satisfy the stopping criteria 

Method: Fredholm{2). Jl.! = 100, n = 10 

Iteration scheme Kernel Quadrature :i. 11\-J\.! 
]. 

II<P-<P i 11 00 

kl Ql 7 2.2 E-13 8.2 E-14 

Rayleigh kl Q2 7 2.1 E-14 7.4 E-14 

-Schrodinger 14 1.6 E-14 7.1 E-15, 

k2 14 4A E-16 5.1 E-15 

kl Ql 5 2.1 E-14 8.3 E-14 

Fixed point 7 1.4 E-14 4.2 E-14 

k2 7 4.9 E-15 7.2 E-15 

k2 Q2 8 5.7 E-15 2.4 E-15 

kl Ql 4 L4 E-14 8.3 E-14 

Ahues k 1 4 1.4 E-14 4.9 E-14 

k2 Ql 7 1.3 E-15 7.2 E-15 

k2 Q2 7 4.8 E-15 2.6 E-15 

kl Ql 4 3.6 E-14 8. 7 E-14 

Modified kl Q2 4 1.4 E-14 3.9 E-14 

fixed point k2 Ql 4 2.6 E-15 7.2 E-15 

k2 ~ 5 4.8 E-15 2.8 E-15 

Table 19.5 



Power iteration with various starting vectors 

Kernel: kl • Quadrature: Q2 
M = 100, n ~ 10, A. : the largest eigenvalue 

G * >'<G N * *N F * *F 
xo = qlo xo = qlo X 

0 = qlo X 
0 qlo xo = qlo xo = qlo 

j A. - A.. llqJ-x .11 A. A.. ll(r-x .11 A. - A.. llqJ-x .11 
J J 00 J J 00 J J 00 

0 1.3 E-02 9.3 E-07 1.3 E-02 

1 4.2 E-04 1.3 E-04 8.0 E-ll 5.3 E-08 4.2 E-04 L2 E-04 

2 3.9 E-07 9.6 E-06 9.7 E-13 4.1 E-09 2.3 E-09 8.9 E-06 

3 3.1 E-08 7.5 E-07 5.0 E-14 3.2 E-10 L5 E-10 7.0 E-07 
w 
<1' 
uo 

4 2.4 E-09 5.9 E-08 -7.1 E--15 2.5 E-ll 1.2 E-ll 5.4 E-08 

5 1.9 E-10 I+. 6 E-09 -7.1 E-15 L9 E-·12 9.2 E-13 lf' 3 E-09 

6 1.5 E-ll 3.6 E-10 -L4 E-14 1.5 E-·13 6.4 E-14 3.3 E-10 

7 1.1 E-12 2.8 E-ll -1.4 E-14 3.2 E-14 -1.4 E-14 2.6 E-ll 

8 7. 1 E-14 2.2 E-12 -7.1 E-15 2.0 E-12 

9 0.0 L7 E-13 -7.1 E-15 1.5 E-13 

10 -1.4 E-14 2.8 E-14 -2.1 E-14 3.6 E-14 
Table 19.6 



Comparison of various methods 

Scheme: Fixed point 

Kernel: k 2 , Quadrature: Q2 
M = 100, n = 10, ,\ : the 2nd. largest eigenvalue 

Projection method Sloan method Galerkin method(2) 

j "A-A.. 
J 

"A-A.. 
J 

0 8.2 E-04 L 1 E-01 8.2 E-04 2.7 E-05 8.2 E-04 2.6 E-03 

1.2 E-05 4.2 E-03 1.~ E-05 1.0 E-06 8.2 E-04 2.7 E-05 

2 -1.1 E-07 1.7 E-04 -1.1 E-07 3.7 E-08 1.2 E-05 3.0 E-06 

3 4.4 E-09 6.6 E-06 4.4 E-09 1.3 E-09 -8.2 E-08 2.2 E-07 

4 -1.0 E-10 2.6 E-07 -1.0 E-10 4.8 E-ll 

5 3.0 E-12 9.8 E-09 3.0 E-12 1.7 E-12 5.2 E-10 2.2 E-09 

6 -8.6 E-14 3.7 E-10 -8.6 E-14 6.4 E-14 -4.0 E-ll 2.9 E-10 

7 2.6 E-15 1.4 E-ll L 7 E-15 2.2 E-15 6.4 E-12 2.7 E-1 

8 -1.1 E-15 5.2 E-13 -6.7 E-16 1.1 E-15 -5.5 E-13 3.3 E-12 

9 -7.8 E-16 8.2 E-14 7.2 E-14 3.4 E-13 

10 -2.0 E-15 6.3 E-14 -7.8 E-15 4.1 E-14 

-2.2 E-16 4.4 E-15 

12 -1.2 t-15 1.3 E-15 

13 

Table 19.7 

Nystrom method 

"A-A., 
J 

-9.1 E-04 7.6 E-04 

8.8 E-04 6.8 E-05 

7.1 E-05 4.3 E-06 

3.6 E-06 2.8 E-07 

1.9 E-07 1.9 E-08 

1.1 E-08 1.4 E-09 

7.3 E-10 1.0 E-10 

5.0 E-ll E-12 

3.6 E-12 6.1 E-13 

2.7 E-13 4.7 E-14 

2.0 E-14 3.2 E-15 

1.1 E-15 1.1 E-15 

Fredholm method(Z) 

"A-"A. 
J 

-9.1 E-04 2.7 E-03 

8.4 E-04 2,0 E-,04 

6.6 E-05 5.4 E-06 

3.5 E-06 4.6 E-07 

1.9 E-07 4.3 E-08 

L 1 E-08 ~ . 8 E-09 

7.3 E-10 6.4 E-10 

5. 3 E-ll 9.0 E-ll 

4.2 E-12 1 ? E-ll 

3.7 E-13 1.6 E-12 

3.4 E-14 2.1 E-13 

2.6 E-15 2.8 E-14 

-6.7 E-16 4.1 E-15 

-7.8 E-16 1.1 E-15 



A. = A.(l) 

j A.-A.. lltt>-<Pj II CO 
J 

0 1.7 E-06 9.3 E-07 

1 8.0 E-ll 2.1 E-·11 

•) 
L. 0.0 5.3 E-14 

3 

4 

Results for the four largest eigenvalues 

Scheme: Fixed point, Method: Nystrom 

Kernel: k 1 , Quadrature: Q2 

M = 100, n = 10 

Stopping criterion: RESID < 10-12 

A. "" A.(2) A. = 

A.-A.. II tt>-<P j II 00 
),-A.. 

J J 

7.6 E-06 1.0 E-06 8.3 E-06 

1.4 E-09 L3 E-10 2.5 E-09 

1. 6 E-14 1.4 E-14 -7.9 E-12 

-4.4 E-15 L 3 E-14 1. 7 E-14 

Table 19.8 

A.(3) A. = A.(4) 

lltt>-q> j 1100 A.-A.. II cp-q> j II 00 J 

9.2 E-07 2.0 E-06 4.1 E-07 

L 7 E-09 -1.8 E-09 L 1 E-09 
(.,.> 

"' U1 

3.3 E-12 -3.9 E-ll 5.3 E-ll 

7.5 E-15 L 2 E-12 l.. !; E-12 

·~2 .. 7 E-14 3.2 E-14 



n+ 10 8 

j lc - A. ll<jl-<jl j 1100 A. - A.. 
+ J J 

0 1.7 E-06 9.3 E-07 4.1 E-06 

1 8.0 E-ll 2.1 E-ll 4.7 E-10 

2 0.0 5.3 E-14 7.1 E-15 

3 -2.1 E-14 -7.1 E-15 

4 

5 

6 

Results for varying values of n 

Scheme: Rayleigh-Schrodinger, Method: Nystrom 

Kernel: k 1 , Quadrature: 

M = 100, A : the largest eigenvalue 

6 4 

ll<jl-<jl j !100 A. - A. ll<jl-<jlj 1100 A. - /-,. 
J J 

2.5 E-06 L3 E-05 9.2 E-06 6.4 E-05 

L4 E-10 4.6 E-09 1 " •-' E-09 1.1 E-07 

4.3 E-14 3.4 E-13 Ll E-13 4.1 E-ll 

-L4 E-14 5.3 E-14 1.4 E-14 

-2.1 E-14 -2.1 E-14 

Table 19.9 

2 

II qJ-ql j II"" A. - II cp-cp j II"" 

5.6 E-05 9.5 E-04 L2 E-03 

4.5 E-08 2.1 E-05 Ll E-05 
w 
0\ 
0\ 

1.6 E-ll 8.0 E-08 4.0 E-08 

8.2 E-14 3.0 E-10 2.2 E-ll 

-1.4 E-13 1.7 E-12 

-2.1 E-14 9.2 E-14 

-7.1 E-15 



n."?" 10 8 

j A - A II <P-<P j II co A - A. 

+ 
j J 

0 -8.9 E-04 7.6 E-04 -1.4 E-03 

1 8.9 E-04 1. 7 E-05 1.4 E-03 

5 1.1 E-07 1.3 E-08 3.4 E-07 

10 1. 2 E-ll 1.4 E-13 1.3 E-10 

15 -4.0 E-15 4.4 E-14 

16 -6.7 E-15 

20 

21 

29 

30 

Results for varying values of n 

Scheme: Rayleigh-Schrodinger, Method: Nystrom 

Kernel: k2 , Quadrature: Q2 
M = 100, A : the largest eigenvalue 

6 4 

II<P-<Pj 1100 A- Aj II <P-<P j II oo A- Aj 

1.2 E-03 -2.5 E-03 2.8 E-03 -5.9 E-03 

4.3 E-05 2.5 E-03 1. 7 E-04 5.5 E-03 

7.6 E-08 1.1 E-06 7.8 E-07 -6.4 E-06 

1. 2 E-ll 1.9 E-09 8.7 E-10 -1.3 E-07 

5.3 E-15 3.9 E-12 1. 2 E-12 -2.1 E-09 

9.9 E-13 1.6 E-13 2.3 E-10 

2.7 E-15 3.2 E-15 -3.2 E-ll 

-1.8 E-15 -2.4 E-12 

-2.7 E-15 

-9.3 E-15 
Table 19.10 

2 

II<P-<P j 1100 A - A. II<P-<P j II co 
J 

5.8 E-03 -4.3 E-03 4.7 E-03 

8.1 E-04 2.5 E-02 1.7 E-02 

9.1 E-06 -2.9 E-03 8.8 E-04 w 
0\ 
-..! 

5.0 E-08 .,-5.0 E-04 1.7 E-03 

3.6 E-10 5.2 E-04 2.7 E-04 

4.6 E-10 1. 2 E-04 5.0 E-04 

4.7 E-12 1.1 E-04 5.4 E-04 

4.9 E-12 2.9 E-04 4.9 E-04 

9.8 E-15 1. 2 E-04 2.9 E-05 

-2.2 E-05 


