10. RAYIEICH-SCHRO̊DINGER SERIES

Let λ_{0} be a simple eigenvalue of $T_{0} \in \operatorname{BL}(X)$ and φ_{0} be a corresponding eigenvector. For $V_{0} \in B L(X)$, consider the family of operators $T(t)=T_{0}+t V_{0}, t \in \mathbb{C}$. For suitable values of t, we develop an iterative procedure of obtaining an eigenvalue $\lambda(t)$ of $T(t)$, and a corresponding eigenvector $\varphi(\mathrm{t})$ starting with the initial terms λ_{0} and φ_{0}. We give conditions on t for which this procedure is guaranteed to converge. We also discuss the question of the simplicity of $\lambda(t)$, and of its isolation from the rest of $\sigma(T(t))$. The theory of linear perturbation developed in the last section will be heavily relied on.

Since λ_{0} is a simple eigenvalue of T_{0} with a corresponding eigenvector φ_{0}, it follows from Theorem 8.3 that there is an eigenvector φ_{0}^{*} of T_{0}^{*} corresponding to the eigenvalue $\bar{\lambda}_{0}$ such that $\left\langle\varphi_{0}, \varphi_{0}^{*}\right\rangle=1$, and that the spectral projection P_{0} associated with T_{0} and λ_{0} is given by

$$
\begin{equation*}
P_{0} \mathrm{X}=\left\langle\mathrm{x}, \varphi_{0}^{*}\right\rangle \varphi_{0}, \mathrm{x} \in \mathrm{X} . \tag{10.1}
\end{equation*}
$$

The reduced resolvent S_{0} associated with T_{0} and λ_{0} satisfies

$$
\begin{equation*}
S_{0}=\lim _{z \rightarrow \lambda_{0}} R_{0}(z)\left(I-P_{0}\right) \tag{10.2}
\end{equation*}
$$

Let Γ be a curve in $\rho\left(\mathrm{T}_{0}\right)$ which isolates λ_{0} from the rest of $\sigma\left(\mathrm{T}_{0}\right)$. Then Corollary 9.9 shows that for all t in the disk

$$
\begin{equation*}
\partial_{\Gamma}=\left\{t \in \mathbb{C}:|t|<\underset{z \in \Gamma}{1 / \max _{\sigma}} \mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)\right\} \tag{10.3}
\end{equation*}
$$

the operator $T(t)$ has only one spectral value $\lambda(t)$ inside Γ, it is a simple eigenvalue of $T(t)$, and $t \mapsto \lambda(t)$ is an analytic
function on ∂_{Γ}. Let the Taylor expansion of $\lambda(t)$ around 0 be given by

$$
\begin{equation*}
\lambda(t)=\lambda_{0}+\sum_{k=1}^{\infty} \lambda_{(k)} t^{k}, \quad t \in \partial_{\Gamma} \tag{10.4}
\end{equation*}
$$

Also, for all t with $|t|$ sufficiently small.

$$
\begin{equation*}
\varphi(\mathrm{t})=\frac{\mathrm{P}(\mathrm{t}) \varphi_{0}}{\left\langle\mathrm{P}(\mathrm{t}) \varphi_{0}, \varphi_{0}^{*}\right\rangle} \tag{10.5}
\end{equation*}
$$

is an eigenvector of $T(t)$ corresponding to $\lambda(t)$ and it satisfies

$$
\begin{equation*}
\left\langle\varphi(t), \varphi_{0}^{*}\right\rangle=1 . \tag{10.6}
\end{equation*}
$$

where $P(t)$ is the spectral projection associated with $T(t)$ and Γ. Since $\varphi(\mathrm{t})$ is analytic on a neighbourhood of 0 , we can consider its Taylor expansion around 0 :

$$
\begin{equation*}
\varphi(\mathrm{t})=\varphi_{\mathrm{O}}+\sum_{\mathrm{k}=1}^{\infty} \varphi^{\infty}(\mathrm{k})^{t^{k}}, \quad \mathrm{t} \text { near } 0 \tag{10.7}
\end{equation*}
$$

(Since $P(0) \varphi_{0}=P_{0} \varphi_{0}=\varphi_{0}$ and $\left\langle\varphi_{0}, \varphi_{0}^{*}\right\rangle=1$, we have $\varphi(0)=\varphi_{0}$.)
The series (10.4) and (10.7) are known as the Rayleigh-Schrödinger series for $T(t)$ with initial terms λ_{0} and φ_{0}, respectively.

We remark that instead of considering an eigenvector φ_{0} of T_{0} corresponding to λ_{0} and the eigenvector φ_{0}^{*} of T_{0}^{*} corresponding to $\bar{\lambda}_{0}$ which satisfies $\left\langle\varphi_{0}, \varphi_{0}^{*}\right\rangle=1$, we can consider any $x_{0} \in X$, $\mathrm{x}_{0}^{*} \in \mathrm{X}^{*}$ with $\left\langle\mathrm{P}_{0} \mathrm{x}_{0}, \mathrm{X}_{0}^{*}\right\rangle \neq 0$ and the Taylor expansion of the analytic function

$$
\begin{equation*}
x(t)=\frac{P(t) x_{0}}{\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle} \tag{10.8}
\end{equation*}
$$

in a neighbourhood 0 . Although this flexibility in the choice of
$x_{0} \in X$ and $x_{0}^{*} \in X^{*}$ can be useful, we restrict ourselves to the case $x_{0}=\varphi_{0}$ and $X_{0}^{*}=\varphi_{0}^{*}$, and leave the general case to Problem 10.1.

PROPOSITION 10.1 The coefficients in the Rayleigh-Schrödinger series (10.4) and (10.7) are iteratively given by

$$
\begin{align*}
\lambda_{(k)} & =\left\langle V_{0} \varphi_{(k-1)}, \varphi_{0}^{*}\right\rangle \\
\varphi_{(k)} & =S_{0}\left[-V_{0} \varphi_{(k-1)}+\sum_{i=1}^{k} \lambda_{(i)^{\varphi}(k-i)}\right] \tag{10.9}\\
& =S_{0}\left(\lambda_{\left.(1)^{I}-V_{0}\right) \varphi}^{(k-1)}+\sum_{i=2}^{k-1} \lambda_{(i)} S_{0}^{\varphi}(k-i),\right.
\end{align*}
$$

for $\mathrm{k}=1,2, \ldots$, where ${ }^{\varphi}(0)=\varphi_{0}$.
In case X is a Hilbert space, T_{0} and V_{0} are self-adjoint, and $\left\|\varphi_{0}\right\|=1$; then

$$
\begin{aligned}
\lambda_{(1)} & =\left\langle V_{0} \varphi_{0}, \varphi_{0}\right\rangle, \\
\lambda_{(2)} & =\left\langle V_{0} \varphi^{\varphi}(1) \cdot \varphi_{0}\right\rangle,
\end{aligned}
$$

(10.10)

$$
\begin{array}{r}
\left.\lambda_{(2 k+1)}=\left\langle V_{0} \varphi_{(k)}, \varphi(k)\right\rangle-\sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{(2 k+1-i-j)}{ }^{\langle\varphi}(i), \varphi(j)\right\rangle \\
k=1,2, \ldots \\
\left.\lambda_{(2 k)}=\left\langle V_{0}{ }^{\varphi}(k-1)^{, \varphi}(k)\right\rangle-\sum_{i=1}^{k-1} \sum_{j=1}^{k} \lambda_{(2 k-i-j)^{\langle\varphi}(i), \varphi}(j)\right\rangle \\
k=2,3, \ldots
\end{array}
$$

Further, each $\lambda_{(k)}$ is a real number.
Proof Since for all t near $0, \lambda(t)$ is an eigenvalue of $T(t)$ and $\varphi(\mathrm{t})$ is a corresponding eigenvector, we have

$$
\begin{aligned}
T(t) \varphi(t) & =\lambda(t) \varphi(t) \text {, i.e., } \\
\left(T_{0}+t V_{0}\right)\left[\sum_{k=0}^{\infty} \varphi(k)^{t^{k}}\right] & =\left[\sum_{k=0}^{\infty} \lambda(k)^{t^{k}}\right]\left[\sum_{k=0}^{\infty} \varphi(k)^{t^{k}}\right]
\end{aligned}
$$

with ${ }^{\varphi}(0)=\varphi_{0}$ and $\lambda_{(0)}=\lambda_{0}$, by (10.4) and (10.7). Since T_{0} and V_{0} are continuous operators, we have

$$
\sum_{k=0}^{\infty} T_{0} \varphi(k)^{t^{k}}=-\sum_{k=0}^{\infty} V_{0} \varphi(k)^{t^{k+1}}+\sum_{k=0}^{\infty}\left[\sum_{i=0}^{k} \lambda_{(i)^{\varphi}(k-i)}\right] t^{k}
$$

Let us compare the coefficients of t^{k} on both sides. For $k=0$, we simply get

$$
\mathrm{T}_{0} \varphi_{0}=\lambda_{0} \varphi_{0}
$$

This is the known fact that λ_{0} and φ_{0} are eigenelements of T_{0}. For $k=1,2, \ldots$, we have

$$
\begin{equation*}
\left(T_{0}-\lambda_{0} I\right) \varphi(k)=-V_{0} \varphi(k-1)+\sum_{i=1}^{k} \lambda_{(i)^{\varphi}(k-i)} \tag{10.11}
\end{equation*}
$$

Now, by (10.6), we see that

$$
1=\left\langle\varphi(t) \cdot \varphi_{0}^{*}\right\rangle=1+\sum_{k=1}^{\infty}\left\langle\varphi(k) \cdot \varphi_{0}^{*}\right\rangle t^{k}
$$

for all t near 0 . Hence

$$
\begin{equation*}
\left\langle\varphi(\mathrm{k}), \varphi_{0}^{*}\right\rangle=0, \quad \mathrm{k}=1,2, \ldots \tag{10.12}
\end{equation*}
$$

Taking scalar products with φ_{0}^{*} on both sides of (10.11) and using (10.12), we obtain

$$
-\left\langle\mathrm{V}_{0} \varphi_{(\mathrm{k}-1)}, \varphi_{0}^{*}\right\rangle+\lambda_{(\mathrm{k})}=\left\langle\left(\mathrm{T}_{0}-\lambda_{0} \mathrm{I}\right) \varphi(\mathrm{k}), \varphi_{0}^{*}\right\rangle=\left\langle\varphi(\mathrm{k}),\left(\mathrm{T}_{0}^{*}-\bar{\lambda}_{0} \mathrm{I}\right) \varphi_{0}^{*}\right\rangle=0,
$$

since φ_{0}^{*} is an eigenvector of T_{0}^{*} corresponding to $\bar{\lambda}_{0}$. Thus,

$$
\lambda_{(k)}=\left\langle V_{0} \varphi_{(k-1)}, \varphi_{0}^{*}\right\rangle, k=1,2, \ldots .
$$

Next, applying S_{0} on both sides of (10.11), and noting that

$$
\mathrm{S}_{0}\left(\mathrm{~T}_{0}-\lambda_{0} \mathrm{I}\right) \varphi_{(\mathrm{k})}=\left(\mathrm{I}-\mathrm{P}_{0}\right) \varphi_{(\mathrm{k})}=\varphi_{(\mathrm{k})}-\left\langle\varphi(\mathrm{k}) \cdot \varphi_{0}^{*}\right\rangle \varphi_{0}=\varphi(\mathrm{k})
$$

we have

$$
\varphi_{(k)}=S_{0}\left[-V_{0}{ }^{\varphi}(k-1)+\sum_{i=1}^{k} \lambda_{(i)^{\varphi}(k-i)}\right]
$$

This proves (10.9), if we note that $S_{0} \varphi_{0}=S_{0} P_{0} \varphi_{0}=0$.
Let, now, T_{0} and V_{0} be self-adjoint operators on a Hilbert space X, and $\left\|\varphi_{0}\right\|=1$. Then $\varphi_{0}^{*}=\varphi_{0}$. We claim that for $\mathrm{k}=3,4, \ldots$ and $\mathrm{m}=1, \ldots, \mathrm{k}-2$,

$$
\lambda_{(k)}=\left\langle V_{0} \varphi(k-m-1) \cdot \varphi(m)\right\rangle-\sum_{i=1}^{k-m-1} \sum_{j=1}^{m} \lambda_{\left.(k-i-j)^{\langle\varphi}(i), \varphi(j)\right\rangle . . .}
$$

This relation can be proved for each fixed k by induction on m if we use (10.9) and the self-adjointness of T_{0}, S_{0} and V_{0}. The proof simply consists of a long calculation and we omit it. (Cf. [S], Problem 14 on p .296.) Changing k to $2 \mathrm{k}+1$ and to 2 k , and putting $\mathrm{m}=\mathrm{k}$, we obtain (10.10).

Since T_{0} is self-adjoint, its eigenvalue λ_{0} is real. Let a circle Γ with centre λ_{0} separate λ_{0} from the rest of $\sigma\left(T_{0}\right)$. Then by Corollary 9.9, $\lambda(t)=\lambda_{0}+\sum_{k=0}^{\infty} \lambda_{(k)} t^{k}$ is the only spectral value of $T(t)=T_{0}+t V_{0}$ inside Γ for all $t \in \partial_{\Gamma}$. Since $\lambda(t)$ is a simple eigenvalue of $T(t)$, and the conjugate curve $\bar{\Gamma}$ coincides with Γ, it follows by Corollary 8.2(c) that $\overline{\lambda(t)}=\bar{\lambda}_{0}+\sum_{\mathrm{k}=1}^{\infty} \overline{\lambda_{(k)}} \overline{\mathrm{t}}^{\mathrm{k}}$ is ine only spectral value of $[\mathrm{T}(\mathrm{t})]^{*}=\mathrm{T}_{0}+\overline{\mathrm{t}} \mathrm{V}_{0}$ inside Γ for all $\mathrm{t} \in \partial_{\Gamma}$. But $\lambda(\overline{\mathrm{t}})=\lambda_{0}+\sum_{\mathrm{k}=1}^{\infty} \lambda_{(\mathrm{k})} \overline{\mathrm{t}}^{\mathrm{k}}$ is the only spectral value of $T(\bar{t})=T_{0}+\overline{\mathrm{t}} \mathrm{V}_{0}$ inside Γ for all $\mathrm{t} \in \partial_{\Gamma}$. Thus, $\overline{\lambda(\mathrm{t})}=\lambda(\overline{\mathrm{t}})$ for all $t \in \partial_{\Gamma}$. This shows that $\bar{\lambda}_{(k)}=\lambda_{(k)}$ for all k, i.e., $\lambda_{(k)}$ is real. //

We note that the coefficients in the two Rayleigh-Schrödinger series with initial terms λ_{0} and φ_{0} can be calculated iteratively in the following order:

$$
\lambda_{(1)} ; \varphi(1) ; \lambda_{(2)}, \varphi(2) ; \lambda_{(3)} ; \varphi(3) ; \ldots .
$$

In case T_{0} and V_{0} are self-adjoint, then we can, in fact, find

$$
\lambda_{(1)}, \varphi_{(1)} ; \lambda_{(2)}, \lambda_{(3)}, \varphi(2) ; \lambda_{(4)}, \lambda_{(5)}, \varphi(3) ; \ldots
$$

in this order.
The calculation of the $\lambda_{(k)}$'s involves only the scalar products, while the calculation of the $\varphi(\mathrm{k})$'s involves finding $\mathrm{x}=\mathrm{S}_{0} \eta$, where $\eta \in X$ is such that $P_{0} \eta=0$. Since $P_{0} S_{0}=0$ and $\left.S_{0}\right|_{\left(I-P_{0}\right) X}$ is the inverse of $\left.\left(T_{0}-\lambda_{0} I\right)\right|_{\left(I-P_{0}\right)(X)}$, we see that x is the unique element of X such that

$$
\left(\mathrm{T}_{0}-\lambda \lambda_{0} \mathrm{I}\right) \mathrm{x}=\eta, \quad \mathrm{P}_{0} \mathrm{x}=0
$$

For $t \in \mathbb{C}$, and $j=1,2, \ldots$ let

$$
\begin{aligned}
& \lambda_{j}(t)=\lambda_{0}+\sum_{k=1}^{j} \lambda(k)^{t^{k}}, \\
& \varphi_{j}(t)=\varphi_{0}+\sum_{k=1}^{j} \varphi(k)^{t^{k}},
\end{aligned}
$$

where $\lambda_{(k)}$ and $\varphi_{(k)}$ are given by (10.9). Thus, $\lambda_{j}(t)$ and $\varphi_{j}(t)$ can be calculated in an iterative manner, and for $|t|$ sufficiently small, they converge to eigenelements $\lambda(t)$ and $\varphi(t)$ of $T(t)$ respectively, as $j \rightarrow \infty$.

It is of particular interest to know specific values of the parameter t for which $\lambda_{j}(t)$ and $\varphi_{j}(t)$ will approximate eigenelements of $T(t)$; a larger absolute value of such t implies the possibility of allowing bigger perturbations. We note that the

Rayleigh-Schro̊dinger series (10.4) for $\lambda(t)$ converges, i.e., $\lambda_{j}(t) \rightarrow \lambda(t)$ for all $t \in \partial_{\Gamma}$. It will then be advisable to choose a suitable curve Γ around λ_{0} so that ∂_{Γ} is as large as possible; it would also be helpful if we know some lower bounds for the radius of such ∂_{Γ}. The Rayleigh-Schro̊dinger series (10.7) for $\varphi(t)$, however, is known to converge only in some neighbourhood of 0 . This is because the denominator $\left\langle\mathrm{P}(\mathrm{t}) \varphi_{\mathrm{O}}, \varphi_{0}^{*}\right\rangle$ of $\varphi(\mathrm{t})$ may have a zero at some $t_{0} \in \partial_{\Gamma}$, and then, unless the numerator $P(t) \varphi_{0}$ also has a zero of the same order at t_{0}. we will have a pole of $\varphi(t)$ at t_{0}. Thus, it is useful to know the values of $t \in \partial_{\Gamma}$ for which the denominator does not vanish, and more generally, even if it vanishes, does not cause a singularity of $\varphi(\mathrm{t})$.

Before we address ourselves to the above questions, we remark that if r is the radius of convergence of the series (10.7) for $\varphi(t)$, then for every t with $|t|<r$, the series (10.7) and hence the series (10.4) (since $\lambda_{(k)}=\left\langle V_{0} \varphi_{(k-1)} \varphi_{0}^{*}\right\rangle$) converge to, say, $\Phi(t)$ and $\Lambda(\mathrm{t})$. Then we must have

$$
T(t) \Phi(t)=\Lambda(t) \Phi(t),\left\langle\Phi(t), \varphi_{O}^{*}\right\rangle=1, \text { for all }|t|<r
$$

This is because the analytic functions

$$
f(t)=T(t) \Phi(t)-\Lambda(t) \Phi(t) \text { and } g(t)=\left\langle\Phi(t), \varphi_{0}^{*}\right\rangle
$$

are equal to 0 and 1 , respectively, on a neighbourhood of 0 , and hence must equal 0 and 1 , respectively, in any domain in which they are analytic and which contains 0 . This is an immediate consequence of the identity theorem. (See Problem 4.2.) The above argument also shows that if both the functions $\lambda(\mathrm{t})$ and $\varphi(\mathrm{t})$ have analytic continuations to a domain D, which may be larger than the disk of convergence of (10.7), then the continuations represent eigenelements of
$T(t)$, and the scalar product of the eigenvector with φ_{0}^{*} is equal to 1. This is of ten possible if one knows the singularities of the limit function on the circle of convergence.

By repeatedly shifting the origin to points where $\lambda(t)$ and $\varphi(t)$ are analytic, we obtain Taylor expansions for $\Lambda(t)$ and $\Phi(t)$ such as

$$
\begin{aligned}
& \Lambda(t)=\sum_{k=0}^{\infty} \Lambda_{(k)}\left(t-t_{0}\right)^{k}, \\
& \Phi(t)=\sum_{k=0}^{\infty} \Phi(k)\left(t-t_{0}\right)^{k},
\end{aligned}
$$

where Λ_{k} and Φ_{k} can be calculated in terms of $\lambda_{(k)}$ and $\varphi_{(k)}$. These series converge very rapidly near the new origin t_{0}.

Examples

We now consider simple examples to get an idea of what is involved in finding the disk ∂_{Γ} and in calculating the coefficients $\lambda_{(k)}$ and $\varphi(k)$ by the formulae (10.9). Other examples will be treated numerically in Section 19.
(i) Let $X=\mathbb{C}^{2}$.

$$
T_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right] \text { and } V_{0}=\left[\begin{array}{cc}
0 & 1 / 16 \\
4 & 0
\end{array}\right]
$$

Let $\lambda_{0}=2$ and $\varphi_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]=\varphi_{0}^{*}$. If $z \neq 0,2$, then

$$
R_{0}(z)=\left[\begin{array}{cc}
-1 / z & 0 \\
0 & 1 /(2-z)
\end{array}\right], \quad V_{0} R_{0}(z)=\left[\begin{array}{cc}
0 & 1 / 16(2-z) \\
-4 / z & 0
\end{array}\right]
$$

Since $\operatorname{det}\left(V_{0} R_{0}(z)-\mu I\right)=\mu^{2}+1 / 4 z(2-z)$, we see that $\sigma\left(V_{0} R_{0}(z)\right)=\{ \pm 1 / 2 \sqrt{z(2-z)}\}$. Let Γ_{ϵ} denote the circle with centre $\lambda_{0}=2$ and radius $\epsilon<2$. Then for $z \in \Gamma_{\epsilon}$, we have $|z-2|=\epsilon$, so that

$$
\begin{gathered}
r_{\sigma}\left(V_{0} R_{0}(z)\right)=1 / 2 \sqrt{\epsilon|z|} \\
\max _{z \in \Gamma_{\epsilon}} r_{\sigma}\left(V_{0} R_{0}(z)\right)=1 / 2 \sqrt{\epsilon(2-\epsilon)} .
\end{gathered}
$$

z-plane

t-plane

Figure 10.1

Thus, $\partial_{\Gamma_{\epsilon}}=\{t \in \mathbb{C}:|t|<2 \sqrt{\epsilon(2-\epsilon)}\}$. We find that the radius of $\partial_{\Gamma_{\epsilon}}$ is largest when $\epsilon=1$, i.e., when $\epsilon=\operatorname{dist}\left(\lambda_{0}, \sigma\left(T_{0}\right) \backslash\left\{\lambda_{0}\right\}\right) / 2$, and the radius of $\partial_{\Gamma_{\epsilon}}$ then equals 2 . We have

$$
P_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \text { and } S_{0}=-\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right]
$$

(Cf. $P_{\lambda(t)}$ and $S_{\lambda(t)}$ for $t=0$ in the example which illustrates (7.8).) Now.

$$
\begin{aligned}
& \lambda_{(1)}=\left\langle\mathrm{V}_{0} \varphi_{0}, \varphi_{0}^{*}\right\rangle=[0,1]\left[\begin{array}{c}
1 / 16 \\
0
\end{array}\right]=0, \\
& \varphi_{(1)}=-S_{0} V_{0} \varphi_{0}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
1 / 16 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / 32 \\
0
\end{array}\right], \\
& \lambda_{(2)}=\left\langle V_{0} \varphi_{(1)}, \varphi_{0}^{*}\right\rangle=[0,1]\left[\begin{array}{c}
0 \\
1 / 8
\end{array}\right]=1 / 8, \\
& \varphi_{(2)}=S_{0}\left(\lambda_{(1)}-V_{0}\right) \varphi_{(1)}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
1 / 8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \\
& \lambda_{(3)}=\left\langle V_{0} \varphi_{(2)} \cdot \varphi_{0}^{*}\right\rangle=0,
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{(3)} & =S_{0}\left(\lambda_{(1)}-V_{0}\right) \varphi(2)+\lambda_{(2)} S_{0} \varphi(1) \\
& =-1 / 8\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
1 / 32 \\
0
\end{array}\right]=-\left[\begin{array}{c}
1 / 512 \\
0
\end{array}\right] . \\
\lambda_{(4)} & =\left\langle V_{0} \varphi(3) \cdot \varphi_{0}^{*}\right\rangle=-[0,1]\left[\begin{array}{c}
0 \\
1 / 128
\end{array}\right]=-1 / 128 .
\end{aligned}
$$

In two more steps, we would obtain $\varphi_{(4)}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \lambda_{(5)}=0$, and ${ }^{\varphi}(5)=\left[\begin{array}{c}1 / 4096 \\ 0\end{array}\right], \quad \lambda_{(6)}=1 / 1024$. Thus, we have

$$
\begin{aligned}
\lambda(t) & =2+t^{2} / 8-t^{4} / 128+t^{6} / 1024 \ldots \\
\varphi(t) & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
t / 32 \\
0
\end{array}\right]-\left[\begin{array}{c}
t^{3} / 512 \\
0
\end{array}\right]+\left[\begin{array}{c}
t^{5} / 4096 \\
0
\end{array}\right] \ldots \\
& =\left[\begin{array}{c}
t / 32-t^{3} / 512+t^{5} / 4096 \ldots \\
1
\end{array}\right]
\end{aligned}
$$

If we calculate sufficiently many terms of the above series, we can see that the series for $\lambda(t)$ is none other than the Taylor series for

$$
1+\sqrt{1+t^{2} / 4}=\frac{1}{2}\left[2+\sqrt{4+t^{2}}\right]
$$

where $\sqrt{4+t^{2}}$ denotes the principal branch of the square root of $4+t^{2}$. Similarly, $\varphi(\mathrm{t})$ has 1 as the second component while the first component is given by the Taylor series for

$$
-\frac{1}{4 t}\left[1-\sqrt{1+t^{2} / 4}\right]=-\mu(t) / 4 t
$$

where $\mu(t)=\frac{1}{2}\left[2-\sqrt{4+t^{2}}\right]$. Thus

$$
\varphi(t)=\left[\begin{array}{c}
-\mu(t) / 4 t \\
1
\end{array}\right]
$$

It is easy to check that these results agree with the direct calculation of the eigenvalues $\lambda(t)$ and $\mu(t)$ of

$$
T(t)=T_{0}+t V_{0}=\left[\begin{array}{cc}
0 & t / 16 \\
4 t & 2
\end{array}\right]
$$

and the eigenvector $\varphi(\mathrm{t})$ corresponding to $\lambda(\mathrm{t})$ satisfying $\left\langle\varphi(t), \varphi_{0}^{*}\right\rangle=1$. (Cf. the example which illustrates (7.8).)

It can be seen that both the series for $\lambda(\mathrm{t})$ and $\varphi(\mathrm{t})$ converge for $|t|<2$ and hence represent eigenelements of $T(t)$. Moreover, they have analytic continuations across every point on the circle of convergence $|t|=2$, except for the points $t= \pm 2 i$, and will continue to represent eigenelements there.
(ii) Suppose that the operator T_{0} is diagonalizable, i.e., T_{0} can be represented by a diagonal matrix

$$
\operatorname{diag}\left(\lambda_{0}, \mu_{1}, \mu_{2}, \ldots\right)
$$

with respect to a Schauder basis $\varphi_{0}, x_{1}, x_{2}, \ldots$ for X. Further assume that there is a Schauder basis $\varphi_{0}^{*}, x_{1}^{*}, \ldots$ of X^{*} which is adjoint to $\varphi_{0}, x_{1}, \ldots$, i.e. $\left\langle x_{i}, x_{j}^{*}\right\rangle=\delta_{i, j},\left\langle\varphi_{0}, x_{i}^{*}\right\rangle=0=\left\langle x_{i}, \varphi_{0}^{*}\right\rangle$, and $\left\langle\varphi_{0}, \varphi_{0}^{*}\right\rangle=1$. With respect to this basis T_{0}^{*} is represented by the diagonal matrix

$$
\operatorname{diag}\left(\bar{\lambda}_{0}, \bar{\mu}_{1}, \bar{\mu}_{2}, \ldots\right)
$$

Suppose that $\operatorname{dist}\left(\lambda_{0},\left\{\mu_{1}, \mu_{2}, \ldots\right\}\right)>0$, i.e., λ_{0} is a simple eigenvalue of T_{0}. Then P_{0} and S_{0} are represented by the matrices $\operatorname{diag}(1,0,0, \ldots)$ and $\operatorname{diag}\left[0, \frac{1}{\mu_{1}-\lambda_{0}}, \frac{1}{\mu_{2}-\lambda_{0}}, \ldots\right]$, respectively. Also,

$$
\begin{aligned}
& \lambda_{(1)}=\left\langle\mathrm{V}_{0} \varphi_{0}, \varphi_{0}^{*}\right\rangle \\
& \varphi_{(1)}=-S_{0} V_{0} \varphi_{0}=-\sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mu_{\mathrm{k}}-\lambda_{0}}\left\langle\mathrm{~V}_{0} \varphi_{0}, \mathrm{x}_{\mathrm{k}}^{*}\right\rangle \mathrm{x}_{\mathrm{k}}, \text { and } \\
& \lambda_{(2)}=\left\langle\mathrm{V}_{0} \varphi_{(1)}, \varphi_{0}^{*}\right\rangle=-\sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mu_{\mathrm{k}}-\lambda_{0}}\left\langle\mathrm{~V}_{0} \varphi_{0}, \mathrm{x}_{\mathrm{k}}^{*}\right\rangle\left\langle\mathrm{V}_{0} \mathrm{x}_{\mathrm{k}}, \varphi_{0}^{*}\right\rangle .
\end{aligned}
$$

The above formulae are of ten found in textbooks on quantum mechanics where X is assumed to be a Hilbert space and T_{0} is a (usually unbounded) self-adjoint operator, so that we have $\varphi_{0}^{*}=\varphi_{0}$ and $\mathrm{x}_{\mathrm{k}}^{*}=\mathrm{x}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots$. (Cf. [S], p.247.) Note that $\lambda_{1}=\lambda_{0}+\lambda_{(1)}$ and $\lambda_{2}=\lambda_{0}+\lambda_{(1)}+\lambda_{(2)}$ give the first order and the second order approximations to the eigenvalue λ of $T=T_{0}+V_{0}$. It should be noticed that in the expressions for ${ }^{\varphi}(1)$ and $\lambda_{(2)}$, the terms for which $\left|\mu_{k}-\lambda_{0}\right|$ is small dominate; these come from the eigenvalues of T_{0} which are closest to λ_{0}. In practice, only these terms are considered to obtain approximations of $\varphi_{(1)}$ and $\lambda_{(2)}$.

We return to the consideration of the values of $t \in \partial_{\Gamma}$ for which the function $\varphi(t)=P(t) \varphi_{0} /\left\langle P(t) \varphi_{0}, \varphi_{0}^{*}\right\rangle$ is analytic. The first result in this regard gives conditions on t under which the denominator does not vanish. See [N], Theorem 2.3.1 for a similar result. We introduce the following notations: For a curve Γ in $\rho\left(T_{0}\right)$, let
(10.13)

$$
\begin{aligned}
& \mathrm{a}_{0}=\max _{\mathrm{z} \in \Gamma}\left\|\left(\mathrm{~V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)^{2}\right\|, \\
& \mathrm{b}_{0}=\max _{\mathrm{z} \in \Gamma}\left\|\mathrm{~V}_{0} \mathrm{R}_{0}(\mathrm{z})\right\|, \\
& \mathrm{c}_{0}=\ell(\Gamma)\left\|\mathrm{V}_{0} \varphi_{0}\right\|\left\|\varphi_{0}^{*}\right\| / 2 \pi\left[\operatorname{dist}\left(\lambda_{0}, \Gamma\right)\right]^{2},
\end{aligned}
$$

where $\mathcal{\ell}(\Gamma)$ is the length of Γ. Note that the constants $\mathrm{a}_{0}, \mathrm{~b}_{0}$ and c_{0} depend on the curve Γ.

PROPOSTTION 10.2 Let

$$
\begin{equation*}
a_{0}+\left(a_{0}+b_{0}\right) c_{0}<1 . \tag{10.14}
\end{equation*}
$$

Then for all t with $|t| \leq 1$, we have $t \in \partial_{\Gamma}$ and $\left\langle P(t) \varphi_{0}, \varphi_{0}^{*}\right\rangle \neq 0$, so that the two Rayleigh-Schrödinger series (10.4) and (10.7) converge to eigenelements of $T(t)$.

Proof Since

$$
\max _{\mathrm{z} \in \Gamma} \mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right) \leq \max _{\mathrm{z} \in \Gamma}\left\|\left[\mathrm{~V}_{0} \mathbb{R}_{0}(\mathrm{z})\right]^{2}\right\|^{1 / 2}=\mathrm{a}_{0}^{1 / 2}<1,
$$

it follows that $t \in \partial_{\Gamma}$ for all t with $|t| \leq 1$. Consider the Kato-Rellich perturbation series (9.15)

$$
P(t)=P_{0}+\sum_{k=1}^{\infty} P_{(k)} t^{k} .
$$

Now, $P_{0} \varphi_{0}=\varphi_{0}$, and for $k=1,2, \ldots$, we have by (9.16),

$$
\begin{aligned}
P_{(k) \varphi_{0}} & =\frac{(-1)^{k+1}}{2 \pi i} \int_{\Gamma} R_{0}(z)\left[V_{0} R_{0}(z)\right]^{k-1} V_{0} R_{0}(z) \varphi_{0} d z \\
& =\frac{(-1)^{k+1}}{2 \pi i} \int_{\Gamma} \frac{R_{0}(z)\left[V_{0} R_{0}(z)\right]^{k-1} V_{0} \varphi_{0}}{\lambda_{0}-z} d z
\end{aligned}
$$

since $R_{0}(z) \varphi_{0}=\varphi_{0} /\left(\lambda_{0}-z\right)$ for $z \in \rho\left(T_{0}\right)$. Also, for $x \in X$,

$$
\begin{aligned}
\left\langle R_{0}(z) x, \varphi_{0}^{*}\right\rangle & =\left\langle R_{0}(z) x, P_{0}^{*} \varphi_{0}^{*}\right\rangle=\left\langle P_{0} R_{0}(z) x, \varphi_{0}^{*}\right\rangle \\
& =\left\langle R_{0}(z) P_{0} x, \varphi_{0}^{*}\right\rangle=\left\langle x, \varphi_{0}^{*}\right\rangle /\left(\lambda_{0}-z\right)
\end{aligned}
$$

so that

$$
\left\langle\mathrm{P}_{(\mathrm{k})^{\varphi}}, \varphi_{0}^{*}\right\rangle=\frac{(-1)^{\mathrm{k}+1}}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\left\langle\left[\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right]^{\mathrm{k}-1} \mathrm{~V}_{0} \varphi_{0}, \varphi_{0}^{*}\right\rangle}{\left(\lambda_{0}-\mathrm{z}\right)^{2}} \mathrm{dz}
$$

Putting $k=1$, we see that $\left\langle\mathrm{P}_{(1)} \varphi_{0}, \varphi_{0}^{*}\right\rangle=0$, and for $k=2,3, \ldots$,

$$
\begin{aligned}
\mid\left\langle\mathrm{P}_{(\mathrm{k})^{\varphi}}, \varphi_{0}^{*}>\right| & \leq \frac{\ell(\Gamma)\left\|\mathrm{V}_{0} \varphi_{0}\right\|\left\|_{0}^{*}\right\|}{2 \pi\left[\operatorname{dist}\left(\lambda_{0}, \Gamma\right)\right]^{2}} \max _{z \in \Gamma}\left\|\left[\mathrm{~V}_{0} \mathrm{R}_{0}(\mathrm{z})\right]^{\mathrm{k}-1}\right\| \\
& =c_{0} \max _{\mathrm{z} \in \Gamma}\left\|\left[\mathrm{~V}_{0} \mathrm{R}_{0}(\mathrm{z})\right]^{\mathrm{k}-1}\right\|
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|\left\langle P(t) \varphi_{0}, \varphi_{0}^{*}\right\rangle\right| & =\left|1+\sum_{k=2}^{\infty}\left\langle t^{k_{P}}(k) \varphi_{0}, \varphi_{0}^{*}\right\rangle\right| \\
& \geq 1-c_{0}|t| \sum_{k=2}^{\infty} \max _{z \in \Gamma}\left\|\left[t V_{0} R_{0}(z)\right]^{k-1}\right\| .
\end{aligned}
$$

We show that for $|t| \leq 1$,

$$
c_{0}|t| \sum_{k=2}^{\infty} \max _{z \in \Gamma}\left\|\left[t V_{0} R_{0}(z)\right]^{k-1}\right\|<1
$$

to conclude $\left\langle\mathrm{P}(\mathrm{t}) \varphi_{0}, \varphi_{0}^{*}\right\rangle \neq 0$. Since

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \max _{z \in \Gamma}\left\|\left[t V_{0} R_{0}(z)\right]^{k-1}\right\| \leq\left[|t|{\mid \max \left\|V V_{0} R_{0}(z)\right\|}_{z \in \Gamma}^{\left.|t|^{2} \max _{z \in \Gamma}\left\|\left[V_{0} R_{0}(z)\right]^{2}\right\|\right]}\right. \\
& x \sum_{j=0}^{\infty}\left[|t|^{2} \max _{z \in \Gamma}\left\|\left[V_{0} R_{0}(z)\right]^{2}\right\| I\right]^{j} \\
& \leq \frac{|t|\left(b_{0}+|t| a_{0}\right)}{1-|t|^{2} a_{0}} \text {, }
\end{aligned}
$$

we see that for $|t| \leq 1$,

$$
c_{0}|t| \sum_{k=2}^{\infty} \max _{z \in \Gamma}\left\|\left[t V_{0} R_{0}(z)\right]^{k-1}\right\| \leq \frac{c_{0}\left(b_{0}+a_{0}\right)}{1-a_{0}}
$$

which is less than 1 by assumption. This completes the proof.

We shall later show that in many practical situations the hypothesis $a_{0}+\left(a_{0}+b_{0}\right) c_{0}<1$ is, in fact, satisfied. (See Remark 14.10.)

COROLLARY 10.3 If

$$
\begin{equation*}
b_{0}\left[b_{0}+\left(1+b_{0}\right) c_{0}\right]<1 \text {, or } b_{0}+c_{0}<1 \tag{10.15}
\end{equation*}
$$

then the conclusions of Proposition 10.2 hold.

Proof Since $\mathrm{a}_{0} \leq \mathrm{b}_{0}^{2}$, we see that

$$
a_{0}+\left(a_{0}+b_{0}\right) c_{0} \leq b_{0}\left[b_{0}+\left(1+b_{0}\right) c_{0}\right]
$$

Hence the result follows in the first case; as for the second, note that if $b_{0}+c_{0}<1$, then $b_{0}<1$ and

$$
b_{0}\left[b_{0}+\left(1+b_{0}\right) c_{0}\right]<b_{0}^{2}+\left(1+b_{0}\right) c_{0}=b_{0}\left(b_{0}+c_{0}\right)+c_{0}<b_{0}+c_{0}<1 .
$$

We remark that the conditions given in (10.15) are, in general, less stringent than the condition

$$
\mathrm{b}_{0}\left[1+\frac{\ell(\Gamma)}{2 \pi}\left\|\varphi_{0}^{*}\right\| \max _{\mathrm{z} \in \Gamma}\left\|\mathrm{R}_{0}(\mathrm{z})\right\|\right]<1
$$

stated on p. 143 of [C], since $1 \leq \operatorname{dist}\left(\lambda_{0}, \Gamma\right) \max _{z \in \Gamma}\left\|R_{0}(z)\right\|$ and $\left\|V_{0} \varphi_{0}\right\| \leq \operatorname{dist}\left(\lambda_{0}, \Gamma\right) b_{0}$, when $\left\|\varphi_{0}\right\|=1$. See Problem 10.2 for a concrete illustration.

In order to estimate the domain of analyticity of the function $\lambda(t)$, we wish to find a lower bound for the radius of ∂_{Γ}, at least for some particular curve Γ. As far as the function $\varphi(\mathrm{t})=\mathrm{P}(\mathrm{t}) \varphi_{0} /$ $\left\langle\mathrm{P}(\mathrm{t}) \varphi_{0}, \varphi_{0}^{*}\right\rangle$ is concerned, both the numerator and the denominator are analytic on ∂_{Γ}. However, $\varphi(\mathrm{t})$ would have a pole at t_{0} if the
denominator has a zero of a higher order than the order of the zero of the numerator. We do not know whether, in fact, $\varphi(\mathrm{t})$ can have a pole in ∂_{Γ}. We shall, therefore, content ourselves by finding a disk (with centre 0) in ∂_{Γ} which is pole-free. Our results are in terms of the following quantities:

$$
\begin{array}{ll}
\eta_{0}=\left\|V_{0} \varphi_{0}\right\|, & p_{0}=\left\|\varphi_{0}^{*}\right\|, \quad s_{0}=\left\|S_{0}\right\|, \\
\alpha_{0}=\left\|V_{0} s_{0}\right\|, & \gamma_{0}=\max \left\{\eta_{0} p_{0} s_{0},\right. \tag{10.16}\\
\left.\alpha_{0}\right\}
\end{array}
$$

Let $\Gamma_{\epsilon}(\mathrm{t})=\lambda_{0}+\frac{\epsilon}{s_{0}} \mathrm{e}^{\mathrm{it}}, 0 \leq \mathrm{t} \leq 2 \pi$, where $0<\epsilon<1$. Since

$$
\mathrm{r}_{\sigma}\left(\mathrm{S}_{0}\right)=\frac{1}{\operatorname{dist}\left(\lambda_{0}, \sigma\left(\mathrm{~T}_{0}\right) \backslash\left\{\lambda_{0}\right\}\right)} \leq\left\|\mathrm{S}_{0}\right\|=\mathrm{s}_{0}
$$

by (7.3), we see that the circle Γ_{ϵ} lies in $\rho\left(T_{0}\right)$ and separates λ_{0} from the rest of the spectrum of T_{0}. We note that the quantities given in (10.16) do not depend on the curve Γ_{ϵ}.

LEMMA 10.4 Let $0<\epsilon<1$.
(a) If $|t|<\epsilon(1-\epsilon) / \gamma_{0}$, then $t \in \partial_{\Gamma_{\epsilon}}$.
(b) If $|t|<1 / 2 \alpha_{0}$, and we let $Z_{0}=\left(I-P_{0}\right)(X)$ then

$$
\left\{z \in \mathbb{C}:\left|z-\lambda_{0}\right| \leq 1 / 2 s_{0}\right\} \subset \rho\left(\left.\left(I-P_{0}\right) T(t)\right|_{Z_{0}}\right)
$$

Proof (a) For $0<\left|z-\lambda_{0}\right|<\operatorname{dist}\left(\lambda_{0}, \sigma\left(T_{0}\right) \backslash\left\{\lambda_{0}\right\}\right)$, we have by (7.8),

$$
R_{0}(z)=\sum_{k=0}^{\infty} s_{0}^{k+1}\left(z-\lambda_{0}\right)^{k}-\frac{P_{0}}{z-\lambda_{0}} .
$$

since λ_{0} is simple, so that $R_{0}(z)$ has a simple pole at $z=\lambda_{0}$. Hence if $\left|z-\lambda_{0}\right|=\epsilon / s_{0}$, we have

$$
\begin{aligned}
\left\|V_{0} R_{0}(z)\right\| & \leq \frac{\left\|V_{0} s_{0}\right\|}{1-\epsilon}+\frac{\left\|V_{0} P_{0}\right\| s_{0}}{\epsilon} \\
& =\left[\epsilon \alpha_{0}+(1-\epsilon) \eta_{0} P_{0} s_{0}\right] / \epsilon(1-\epsilon)
\end{aligned}
$$

since $\left\|V_{0} P_{0}\right\|=\left\|V_{0} \varphi_{0}\right\|\left\|\varphi_{0}^{*}\right\|=\eta_{0} p_{0}$. But $\alpha_{0} \leq \gamma_{0}$ as well as $\eta_{0} p_{0} s_{0} \leq \gamma_{0}$, by the definition of γ_{0}, so that

$$
\max _{z \in \Gamma_{\epsilon}} r_{\sigma}\left(V_{0} R_{0}(z)\right) \leq \max _{z \in \Gamma_{\epsilon}}\left\|V_{0} R_{0}(z)\right\| \leq r_{0} / \epsilon(1-\epsilon)
$$

Since $\partial_{\Gamma_{\epsilon}}=\left\{t \in \mathbb{C}:|t|<1 / \max _{z \in \Gamma_{\epsilon}} r_{\sigma}\left(V_{0} R_{0}(z)\right)\right\}$, we see that $|t|<$ $\epsilon(1-\epsilon) / \gamma_{0}$ implies $t \in \partial_{\Gamma_{\epsilon}}$.
(b) Let $|t|<1 / 2 \alpha_{0}$ and $\left|z-\lambda_{0}\right| \leq 1 / 2 s_{0}$. Then z lies inside the circle Γ_{1} with centre at λ_{0} and radius $1 / s_{0}$. Now, with $Z_{0}=\left(I-P_{0}\right) X$.

$$
\sigma\left(\mathrm{T}_{0} \mid \mathrm{Z}_{0}\right)=\sigma\left(\mathrm{T}_{0}\right) \cap \operatorname{Ext} \Gamma_{1}
$$

This shows that $z \in \rho\left(\left.T_{0}\right|_{Z_{0}}\right)$. To show $z \in \rho\left(\left.\left(I-P_{0}\right) T(t)\right|_{Z_{0}}\right)$, it is then enough to prove that $\mathrm{r}_{\sigma}(\mathrm{A}(\mathrm{z}))<1$, where

$$
A(z)=\left[\left.T_{0}\right|_{Z_{0}}-\left.\left(I-P_{0}\right) T(t)\right|_{Z_{0}}\right]\left[\left.\left.T_{0}\right|_{Z_{0}} ^{-z I}\right|_{Z_{0}}\right]^{-1}
$$

(See Theorem 9.1.) As $T(t)=T_{0}+\mathrm{tV}_{0}$, we have

$$
A(z)=-t\left(I-P_{0}\right) V_{0}\left[T_{0}\left|z_{0}-z I\right|_{Z_{0}}\right]^{-1}=-\left.t\left(I-P_{0}\right) V_{0} R_{0}(z)\right|_{Z_{0}}
$$

Hence by (5.11) and (5.12),

$$
\begin{aligned}
\mathrm{r}_{\sigma}(\mathrm{A}(\mathrm{z})) & =|t| \mathrm{r}_{\sigma}\left(\left(I-\mathrm{P}_{0}\right) \mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\left(\mathrm{I}-\mathrm{P}_{0}\right)\right) \\
& =|\mathrm{t}| \mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\left(\mathrm{I}-\mathrm{P}_{0}\right)\right)
\end{aligned}
$$

But by the expression for $R_{0}(z)$ given in the proof of (a),

$$
V_{0} R_{0}(z)\left(I-P_{0}\right)=\sum_{k=0}^{\infty} V_{0} s_{0}^{k+1}\left(z-\lambda_{0}\right)^{k}
$$

for all $z \in \mathbb{C}$ with $\left|z \lambda_{0}\right| \leq 1 / 2 s_{0}$, so that

$$
\left\|V_{0} R_{0}(z)\left(I-P_{0}\right)\right\| \leq\left\|V_{0} S_{0}\right\| /(1-1 / 2)=2 \alpha_{0} .
$$

Thus, $r_{\sigma}(A(z)) \leq|t| 2 \alpha_{0}<1$, and the proof is complete.

THEORIPM 10.5 (Cf. [LR], Theorem 2.3.) The disk

$$
D=\left\{t \in \mathbb{C}:|t|<1 / 4 \gamma_{0}\right\}
$$

is contained in $\partial_{\Gamma_{1 / 2}}$ and the function $\varphi(\mathrm{t})=\mathrm{P}(\mathrm{t}) \varphi_{0} /\left\langle\mathrm{P}(\mathrm{t}) \varphi_{0}, \varphi_{0}^{*}\right\rangle$ is analytic on D. For $|t|<1 / 4 \gamma_{0}$, the two Rayleigh-Schrödinger series (10.4) and (10.7) converge respectively to a simple eigenvalue $\lambda(t)$ and a corresponding eigenvector $\varphi(t)$ of $T(t)$ which satisfies $\left\langle\varphi(t), \varphi_{0}^{*}\right\rangle=1$. Further ,

$$
\begin{equation*}
\left|\lambda(t)-\lambda_{0}\right| \leq \frac{1-\sqrt{1-4|t| \gamma_{0}}}{2 s_{0}} \tag{10.17}
\end{equation*}
$$

and $\lambda(t)$ is the only spectral value of $T(t)$ in the disk

$$
\begin{equation*}
\left\{z \in \mathbb{C}:\left|z-\lambda_{0}\right|<\frac{1+\sqrt{1-4 / t / \gamma_{0}}}{2 s_{0}}\right\} . \tag{10.18}
\end{equation*}
$$

Proof Letting $\epsilon=1 / 2$ in Lemma 10.4(a), we see that $|t|<1 / 4 \gamma_{0}$ implies $t \in \partial_{\Gamma_{1 / 2}}$. Thus, $D \subset \partial_{\Gamma_{1 / 2}}$. To show that $\varphi(\mathrm{t})$ is analytic on D we argue as follows. Let $t_{0} \in D$. Since $t \mapsto P(t) \varphi_{0} \in X$ is analytic on $\partial_{\Gamma_{1 / 2}}$, we have

$$
P(t) \varphi_{0}=\left(t-t_{0}\right)^{k_{x}(t)}
$$

for t near t_{0}, where the function $t \mapsto x(t)$ is analytic on a
neighbourhood N of t_{0} and does not vanish there. Since,

$$
\left\langle P(t) \varphi_{0}, \varphi_{0}^{*}\right\rangle=\left(t-t_{0}\right)^{k}\left\langle x(t), \varphi_{0}^{*}\right\rangle, t \in N, t \neq t_{0},
$$

the only possible singularity of $\varphi(\mathrm{t})$ at $\mathrm{t}=\mathrm{t}_{0}$ is a pole, and this happens only if $\left\langle x\left(t_{0}\right), \varphi_{0}^{*}\right\rangle=0$. Also, for $t \in \mathbb{N}, t \neq t_{0}, x(t)=$ $P(t) \varphi_{0} /\left(t-t_{0}\right)^{k}$ is an eigenvector of $T(t)$ corresponding to the eigenvalue $\lambda(t)$. But by the continuity of $P(t)$ and $x(t)$ at $t=$ ${ }^{t_{0}}$. we have

$$
P\left(t_{0}\right) x\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} P(t) x(t)=\lim _{t \rightarrow t_{0}} x(t)=x\left(t_{0}\right)
$$

i.e. $x\left(t_{0}\right) \neq 0$ is an eigenvector of $T\left(t_{0}\right)$ corresponding to the eigenvalue $\lambda\left(t_{0}\right)$. Let $\left\langle x\left(t_{0}\right), \varphi_{0}^{*}\right\rangle=0$. Since $x\left(t_{0}\right) \in \mathbb{Z}\left(P_{0}\right)=Z_{0}$, we see that $\lambda\left(\mathrm{t}_{0}\right) \in \sigma\left(\left.\left(I-\mathrm{P}_{0}\right) \mathrm{T}\left(\mathrm{t}_{0}\right)\right|_{\mathrm{Z}_{0}}\right)$. But since $\lambda\left(\mathrm{t}_{0}\right)$ lies inside $\Gamma_{1 / 2}$, we have $\left|\lambda\left(t_{0}\right)-\lambda_{0}\right|<1 / 2 s_{0}$, and since $\left|t_{0}\right|<1 / 4 \gamma_{0}<1 / 2 \alpha_{0}$, Lemma $10.4(\mathrm{~b})$ shows that $\lambda\left(\mathrm{t}_{0}\right) \in p\left(\left.\left(I-\mathrm{P}_{0}\right) T\left(\mathrm{t}_{0}\right)\right|_{\mathrm{Z}_{0}}\right)$. This contradiction allows us to conclude the analyticity of $\varphi(\mathrm{t})$ at $\mathrm{t}=\mathrm{t}_{0}$. Hence for $|\mathrm{t}|<1 / 4 \gamma_{0}$, the functions $\lambda(\mathrm{t})$ and $\varphi(\mathrm{t})$ are analytic, and as such have convergent Taylor expansions around 0. That $\lambda(\mathrm{t})$ is a simple eigenvalue of $\mathrm{T}(\mathrm{t}), \lambda(\mathrm{t})$ lies inside $\Gamma_{1 / 2}$, i.e., $\left|\lambda(t)-\lambda_{0}\right|<1 / 2 s_{0}$ and it is the only spectral value of $T(t)$ inside $\Gamma_{1 / 2}$ follows directly from Corollary 9.9. But we now give better estimates.

For $0<\epsilon<1$. we see that $|t|<\epsilon(1-\epsilon) / \gamma_{0}$ if and only if $r_{1}(t)<\epsilon<r_{2}(t)$, where

$$
r_{1}(t)=\frac{1-\sqrt{1-4 / t / \gamma_{0}}}{2} \text { and } r_{2}(t)=\frac{1+\sqrt{1-4 / t / \gamma_{0}}}{2}
$$

Lemma 10.4(a) now shows that $t \in \partial_{\epsilon}$ for every ϵ with $r_{1}(t)<\epsilon<r_{2}(t)$. Again by Corollary 9.9, we note that (i) $\lambda(t)$ lies inside Γ_{ϵ}, i.e., $\left|\lambda(t)-\lambda_{0}\right|<\epsilon / s_{0}$ and (ii) it is the only spectral point of $T(t)$ inside Γ_{ϵ}. Letting $\epsilon \rightarrow r_{1}(t)$ in (i) and $\epsilon \rightarrow r_{2}(t)$ in (ii) we see that $\left|\lambda(t)-\lambda_{0}\right| \leq r_{1}(t) / s_{0}$, and that $\lambda(t)$ is the only spectral point of $T(t)$ in $\left\{z \in \mathbb{C}:\left|z-\lambda_{0}\right|<r_{2}(t) / s_{0}\right\}$. Thus, (10.17) and (10.18) hold. //

We illustrate Theorem 10.5 schematically as follows

Figure 10.2

Note that for $|t|<1 / 4 \gamma_{0}$, we have

$$
0 \leq r_{1}(t) \leq 1 / 2 \leq r_{2}(t) \leq 1 ;
$$

$r_{1}(t) \downarrow 0$ and $r_{2}(t) \uparrow 1$ as $|t| \rightarrow 0$, while $r_{1}(t) \uparrow 1 / 2$ and $r_{2}(t) \downarrow 1 / 2$ as $|t| \rightarrow 1 / 4 \gamma_{0}$. As $|t|$ becomes smaller, we get a better estimate for $\left|\lambda(t)-\lambda_{0}\right|$ and a larger region of isolation for $\lambda(t)$.

Since $\gamma_{0} \leq\left\|V_{0}\right\|\left\|S_{0}\right\|\left\|P_{0}\right\|$, the above theorem shows that if the norms of the spectral projection P_{0} and the reduced resolvent S_{0} associated with T_{0} and λ_{0} are small, then we can allow a large perturbation V_{0} and obtain eigenelements λ and φ of $T=T_{0}+V_{0}$, as long as we have $\left\|V_{0}\right\|\left\|P_{0}\right\|\left\|S_{0}\right\|<1 / 4$. We now consider a special case where $\left\|P_{0}\right\|=1$ (the smallest possible value) and $\left\|S_{0}\right\|=\operatorname{dist}\left(\lambda_{0}, \sigma\left(T_{0}\right) \backslash\left\{\lambda_{0}\right\}\right)$.

THEOREM 10.6 (Cf. [LR], Theorem 3.5.) Let T_{0} be a normal operator on a Hilbert space X, let λ_{0} be a simple eigenvalue of T_{0} and let $d_{0}=\operatorname{dist}\left(\lambda_{0}, \sigma\left(T_{0}\right) \backslash\left\{\lambda_{0}\right\}\right)$. If $0 \neq V_{0} \in \operatorname{BL}(X)$ and $|t|<d_{0} / 2\left\|V_{0}\right\|$, then $T(t)=T_{0}+t V_{0}$ has a simple eigenvalue $\lambda(t)$ such that

$$
\left|\lambda(t)-\lambda_{0}\right| \leq\left\|V_{0}\right\||t|
$$

and $\lambda(t)$ is the only spectral value of $T(t)$ lying in the disk

$$
\left\{z \in \mathbb{C}:\left|z-\lambda_{0}\right|<d_{0}-\left\|V_{0}\right\||t|\right\}
$$

Also, the Rayleigh-Schrödinger series (10.4) and (10.7) converge to eigenelements of $T(t)$ for $|t|<d_{0} / 2\left\|V_{0}\right\|$.

Proof Since T_{0} is normal, we have for $z \in \rho\left(T_{0}\right)$,

$$
\left\|R_{0}(z)\right\|=1 / \operatorname{dist}\left(z, \sigma\left(T_{0}\right)\right) \quad \text { and } \quad\left\|S_{0}\right\|=1 / d_{0}
$$

by (8.13) and (8.14). Let $0<\epsilon<1$, and $\Gamma_{\epsilon}(t)=\lambda_{0}+\epsilon d_{0} e^{i t}$, $0 \leq t \leq 2 \pi$. Then

$$
\begin{aligned}
\max _{z \in \Gamma} r_{\sigma}\left(V_{0} R_{0}(z)\right) & \leq\left\|V_{0}\right\| \max _{z \in \Gamma}\left\|R_{0}(z)\right\| \\
& =\left\|V_{0}\right\| \max _{z \in \Gamma} \frac{1}{\operatorname{dist}\left(z, \sigma\left(T_{0}\right)\right)} \\
& =\left\|V_{0}\right\| / d_{0} \min \{\epsilon, 1-\epsilon\} .
\end{aligned}
$$

Thus, $|t|<d_{0} \min \{\epsilon, 1-\epsilon\} /\left\|V_{0}\right\|$ implies that $t \in \partial_{\Gamma_{\epsilon}}$, so that $T(t)$ has a simple eigenvalue $\lambda(t)$ inside Γ_{ϵ} and it is the only spectral value of $T(t)$ inside Γ_{ϵ}. Now for $0<\epsilon<1$, we note that $|t|<d_{0} \min \{\epsilon, 1-\epsilon\} /\left\|V_{0}\right\|$ if and only if $r_{1}(t)<\epsilon<r_{2}(t)$, where

$$
r_{1}(t)=\left\|V_{0}\right\||t| / d_{0} \text { and } r_{2}(t)=1-\left\|V_{0}\right\||t| / d_{0}
$$

Letting $\epsilon \rightarrow r_{1}(t)$ and $\epsilon \rightarrow r_{2}(t)$ we obtain the statements regarding $\lambda(t)$.

Finally, if $\left|t_{0}\right|<d_{0} / 2\left\|V_{0}\right\|$, then since $d_{0}=1 /\left\|S_{0}\right\|$, we have

$$
\left|t_{0}\right|<1 / 2\left\|V_{0} S_{0}\right\|=1 / 2 \alpha_{0}
$$

By Lemma $10.4(\mathrm{~b})$, we conclude that $\lambda\left(\mathrm{t}_{0}\right) \in \rho\left(\left.\left(\mathrm{I}-\mathrm{P}_{0}\right) \mathrm{T}\left(\mathrm{t}_{0}\right)\right|_{\mathrm{Z}_{0}}\right)$. The proof of Theorem 10.5 now shows that $\varphi(\mathrm{t})=\mathrm{P}(\mathrm{t}) \varphi_{0} /\left\langle\mathrm{P}(\mathrm{t}) \varphi_{0}, \varphi_{0}^{*}\right\rangle$ cannot have a singularity at $t=t_{0}$. Thus, the Rayleigh-Schrödinger series (10.4) and (10.7) converge for $|t|<d_{0} / 2\left\|V_{0}\right\|$. //

We see from the above result that if the simple eigenvalue λ_{0} of a normal operator T_{0} is well separated from the rest of the spectrum of T_{0}, i.e., if d_{0} is large, then even for a large perturbation V_{0}, we can obtain eigenelements of $\mathrm{T}_{0}+\mathrm{V}_{0}$ by the RayleighSchro̊dinger procedure.

Remark 10.7 We conclude this section by remarking that Theorems 10.5 and 10.6 would prove to be useful for finding eigenelements of $T_{0}+V_{0}$ only if $\alpha_{0}=\left\|V_{0} S_{0}\right\|$ is small: $\alpha_{0}<1 / 4$ or $\alpha_{0}<1 / 2$. If this were not so, one has to look for sharper estimates of $r_{\sigma}\left(V_{0} R_{0}(z)\right)$ for z near λ_{0}, such as $\left\|\left(V_{0} R_{0}(z)\right)^{2}\right\|^{1 / 2}$.

Theorem 10.5 holds if we replace γ_{0} by $\sqrt{\delta_{0}}$, where

$$
\delta_{0}=\max \left\{\eta_{0} p_{0} s_{0}^{\gamma} 0^{\prime}, \tau_{0}\right\} \quad\left(\leq \gamma_{0}^{2}\right)
$$

$$
\begin{equation*}
\tau_{0}=\sup \left\{\left\|V_{0} s_{0}^{k} V_{0} S_{0}\right\| / s_{0}^{k-1}: k=1,2, \ldots\right\} \quad\left(\leq \alpha_{0}^{2}\right) \tag{10.19}
\end{equation*}
$$

We leave the proof of this result to Problem 10.4. See also [LR], Theorem 2.3.

Theorems $10.5,10.6$ and the above result say that if the perturbation V_{0} is small in some sense (e.g., $\sqrt{\delta_{0}}<1 / 4$), then not only the Rayleigh-Schrödinger series with initial terms as the eigenelements $\left(\lambda_{0}, \varphi_{0}\right)$ of T_{0} converge to eigenelements (λ, φ) of $T=T_{0}+V_{0}$, but the eigenvalue λ is simple, and it is the unique spectral point of T which is nearest to λ_{0}. If no conditions on V_{0} are put, then the Rayleigh-Schrödinger series with initial term λ_{0} may neither converge to a simple eigenvalue of T, nor to the nearest eigenvalue of T. (See Problems 10.6 and 10.7.)

Problems

10.1 Let $x(t)$ be given by (10.8). Then for $|t|$ small,

$$
\begin{aligned}
& x(t)=\tilde{x}_{0}+\sum_{k=1}^{\infty} x_{(k)} t^{k} \\
& \lambda(t)=\lambda_{0}+\sum_{k=1}^{\infty} \lambda_{(k)} t^{t^{k}}
\end{aligned}
$$

where $\tilde{x}_{0}=P_{0} x_{0} /\left\langle\mathrm{P}_{0} x_{0},{ }^{*} \mathrm{x}_{0}\right\rangle$ is an eigenvector of T_{0} corresponding to λ_{0}, and for $k=1,2, \ldots$,

$$
\begin{aligned}
& x_{(k)}=\left(I-Q_{0}\right) S_{0}\left[-V_{0} x_{(k-1)}+\sum_{i=1}^{k-1} \lambda_{(i)} x_{(k-i)}\right], \\
& \lambda_{(k)}=\left\langle T_{0} x_{(k)}+V_{0} x_{(k-1)}, x_{0}^{*}\right\rangle
\end{aligned}
$$

and the projection Q_{0} is given by $Q_{0} x=\left\langle x, x_{0}^{*}\right\rangle \tilde{x}_{0}, x \in X$. If $\widetilde{\mathrm{S}}_{0}=\left(\mathrm{I}-\mathrm{Q}_{0}\right) \mathrm{S}_{0}$, then $\left.\widetilde{\mathrm{S}}_{0}\right|_{Q_{0}(\mathrm{X})} \equiv 0$ and $\left.\widetilde{\mathrm{S}}_{0}\right|_{\left(\mathrm{I}-\mathrm{Q}_{0}\right)(\mathrm{X})}$ is the inverse of $\left.\left(\mathrm{I}-\mathrm{Q}_{0}\right)\left(\mathrm{T}_{0}-\lambda_{0} \mathrm{I}\right)\right|_{\left(\mathrm{I}-\mathrm{Q}_{0}\right)(\mathrm{X})}$. Let $\tilde{\eta}_{(\mathrm{k})}=-\mathrm{V}_{0} \mathrm{x}(\mathrm{k}-1)+\left\langle\mathrm{V}_{0} \mathrm{x}_{(\mathrm{k}-1)}, \mathrm{x}_{0}^{*}\right\rangle \tilde{\mathrm{x}}_{0}$ $+\sum_{i=1}^{k-1} \lambda_{(i)} x_{(k-i)}$. Then $x_{(k)}$ is the unique solution of $\left(I-Q_{0}\right)\left(T_{0}-\lambda_{0} I\right) x=\tilde{\eta}_{(k)}, \quad\left\langle x, x_{0}^{*}\right\rangle=0$.
10.2 Let $X=\mathbb{C}^{2}$ with the p-norm, $1 \leq p \leq \infty, \quad T_{0}=\left[\begin{array}{ll}\lambda_{0} & 0 \\ 0 & \lambda_{1}\end{array}\right]$, $\mathrm{V}_{0}=\left[\begin{array}{ll}0 & 0 \\ \epsilon & 0\end{array}\right], 0<\epsilon<\left|\lambda_{0}-\lambda_{1}\right|(\sqrt{3}-1) / 2, \Gamma=\left\{z:\left|z-\lambda_{0}\right|=\left|\lambda_{0}-\lambda_{1}\right| / 2\right\}$. Then in Corollary 10.3, $b_{0}=c_{0}=2 \epsilon /\left|\lambda_{0}-\lambda_{1}\right|$. Also, $\max _{z \in \Gamma}\left\|\mathbb{R}_{0}(z)\right\|=2 /\left|\lambda_{0}-\lambda_{1}\right|$.
10.3 Let T_{0} and T_{0}^{*} be diagonable as in Example (ii). Then

$$
\varphi_{(3)}=\sum_{k=1}^{\infty}\left[\sum_{m=1}^{\infty} \frac{\left\langle V_{0} \varphi_{0}, x_{m}^{*}\right\rangle\left\langle V_{0} x_{m}, x_{k}^{*}\right\rangle}{\left(\mu_{k}-\lambda_{0}\right)\left(\mu_{m}-\lambda_{0}\right)}-\frac{\left\langle V_{0} \varphi_{0}, \varphi_{0}^{*}\right\rangle\left\langle V_{0} \varphi_{0}, x_{k}^{*}\right\rangle}{\left(\mu_{k}-\lambda_{0}\right)^{2}}\right] x_{k}
$$

10.4 ([LR], Theorems 2.1 and 2.3.) Let τ_{0} and δ_{0} be defined by (10.19). Then Lemma 10.4 can be improved as follows: (a) If $|t|<\epsilon(1-\epsilon) / \sqrt{\delta_{0}}$, then $t \in \partial_{\Gamma_{\epsilon}}$. (b) If $|t|<1 / 2 \sqrt{T_{0}}$, then $\left\{z \in \mathbb{C}:\left|z-\lambda_{0}\right| \leq 1 / 2 s_{0}\right\} \subset \rho\left(\left.\left(I-P_{0}\right) T(t)\right|_{Z_{0}}\right)$. Hence Theorem 10.5 holds if we replace γ_{0} by $\sqrt{\delta_{0}}$.
$10.5([N])$ If X is 2-dimensional, then $\left\langle P(t) \varphi_{0}, \varphi_{O}^{*}\right\rangle \neq 0$ for every $t \in \partial_{\Gamma}$. If X is finite dimensional, then for $t \in \partial_{\Gamma}$ we have $\left\langle\mathrm{P}(\mathrm{t}) \varphi_{0}, \varphi_{0}^{*}\right\rangle \neq 0$ if and only if $\lambda(\mathrm{t})$ is an eigenvalue of $\left.\left(I-P_{0}\right) T(t)\right|_{\left(I-P_{0}\right)(X)}$.
10.6 Let $T_{0}=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right], a \neq b$, and $\lambda_{0}=a$. If $V_{0}=\frac{1}{2}\left[\begin{array}{cc}b-a & 0 \\ 0 & a-b\end{array}\right]$, then $\lambda=\lambda_{0}+\lambda_{(1)}=\frac{a+b}{2}$ is a double eigenvalue of $T=T_{0}+V_{0}=\frac{1}{2}$ $\left[\begin{array}{cc}a+b & 0 \\ 0 & a+b\end{array}\right]$. If $\quad V_{0}=\left[\begin{array}{cc}b-a & 0 \\ 0 & a-b\end{array}\right]$, then $\lambda=\lambda_{0}+\lambda_{(1)}=b$ is an eigenvalue of $T=T_{0}+V_{0}=\left[\begin{array}{ll}b & 0 \\ 0 & a\end{array}\right]$, but it is not the nearest eigenvalue of T to a.
10.7 If a curve Γ which separates the simple eigenvalue λ_{0} from the rest of $\sigma\left(T_{0}\right)$ is a circle with centre λ_{0}, and if
$\max _{\mathrm{z} \in \Gamma} \mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)<1$, then the Rayleigh-Schrödinger series with initial term λ_{0} converges to a simple eigenvalue λ of $T=T_{0}+V_{0}$, which is the nearest spectral point of T to λ_{0}.

