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Let be a simple eigenvalue of E and be a 

corresponding eigenvector. For € BL(X) consider the family of 

operators T(t) = For suitable values of t we 

develop an iterative procedure of obtaining an eigenvalue of 

T( and a corresponding eigenvector •p( starting with the initial 

terms 7\0 and '~'o . We give conditions on t for which this procedure 

is guara.nteed to converge. We also discuss the question of the 

simplicity of A( and of its isolation from the rest of a(T{t)) 

The theory of linear perturbation developed i.n the last section will be 

heavi relied on. 

Since is a simpte eigenvalue of T0 with a corresponding 

eigenvector 'flo it follows from TI1eorem 8.3 that there is an 

eigenvector 

* ,<Po> = 1 

of T~ corresponding to the eigenvalue 5\0 such that 

and that the spectral projection P0 associated with 

and A0 is given 

(10.1) 

The reduced resolvent s0 associated with T0 and A0 satisfies 

(10.2) 

Let T be a curve in p(T0 ) which isolates AO from the rest of 

a(T0 ) . Then Corollary 9.9 shows that for all t in the disk 

(10.3) it! < 1/max r0 (V0R0(z))} , 
z€T 

the operator T{t) has only one spectral value A(t) inside T , it 

is a simple eigenvalue of T(t) , and t ~ A(t) is an analytic 
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function on af . Let the Taylor e~~sion of A(t) around 0 be 

given by 

(10.4) A(t) 

Also, for all t with It! sufficiently small, 

(10.5) t) 

is an eigenvector of t) corresponding to t} and it satisfies 

(10.6} t), 1 ' 

where P(t) is the spectral projection associated with T(t) and f . 

Since <p(t} is analyt:Ic on a neighbourhood of 0 , we can consider its 

Taylor expansion around 0 : 

{10. 7) 
ro 

•P(t) = 'Po+ I <P(k)tk 
k:::l 

t near 0 . 

we have <.p(O) ='Po .) 

The series (10.4) and (10.7} are known as the Rayleigh-Schrodinger 

series for T( with initial terms AO and <Po , :respectively. 

We :remark that instead of considering an eigenvector <Po of T0 

corresponding to AO and the e:i.genvector * * <Po of T0 corresponding to 

~O which satisfies (<.p0 ,<p~) = 1 , we can consider any x0 E X , 

* * * x0 € X with <P0x0 ,x0> # 0 and the Taylor expansion of the analytic 

function 

(10.8) x(t) 

in a neighbourhood 0 . Although this flexibility in the choice of 
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* * x0 EX and x0 € X can be useful, we restrict ourselves to the case 

and leave the general case to Problem 10.1. 

PROF'OSITIOO 10.1 The coefficients in the RayleJ.gh-Schrodinger serJ.es 

(10. and (10.7) are iteratively given by 

(10.9) 

for k = 1,2, ... , where ~(O) = ~O · 

In case X is a H:ilbert space, T0 and v0 are self-adjoint, and 

k = 2,3, .... 

Further, each A(k) is a real number. 

Proof Since for all t near 0 , ?\(t) is an eigenvalue of T(t) and 

~(t) is a corresponding eigenvector, we bave 

T(t)<p(t) = ?\(t)<P(t) , i.e., 

(To+tVo) [jo <f'(k) tk] = [jo \k) tk] [jo 'P(k) tk] 
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with ~(O) =Po and X(O) = x0 , by (10.4) and (10.7}. Since and 

v0 are continuous operators, we have 

Let us compare the coefficients of tk on both sides. For k = 0 , we 

simply get 

This is the lmmm fact that 1\0 and '~'o are eigenelements of T0 . 

For k = 1,2, ... , we have 

(10.11) 

Now, by (10.6), we see that 

1 + 

for all t near 0 . Hence 

{10.12) 

Taking scalar products with * ~O on both sides of {10.11) and using 

( 10. 12), we obtain 

* * -since 'Po is &~ eigenvector of T0 corresponding to 1\0 . Thus, 

Next, applying s0 on both sides of (10.11), and noting that 
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we have 

Let, now, T0 and 

space X , and l!.p0 i! = 1 

be self-adjoint operators on a Hilbert 

* Then <Po = 

k = 3,4,... and m = 1, ... ,k-2 . 

We claim that for 

i)' 

This relation can be proved for each fixed k by induction on m if we 

use (10.9) and the self-adjointness of T0 The proof 

simply consists of a long calculation. and we omit it. {CL [S], Problem 

14 on p.296.) Changing k to 2k+l and to 2k • and putting m = k , 

we obtain (10.10). 

Since T0 is self-adjoint, its eigenvalue /\0 is reaL Let a 

circle I' with centre /\0 separate /\0 from the rest of a(T0 ) . 

ro 

Then by Corol 9.9, /\(t) = /\0 + I /\'k)tk is the only spectral 
k::::O l 

value of T(t) = T0 + tV0 inside f for all t € af Since t) is 

a simple eigenvalue of T(t) , and the conjugate curve f coincides 
ro 

with r ' it follows by Corollary 8.2(c) that /\(t) = ~0 + I A(k) tk 
k=l 

is cne only spectral value of * [T(t)] = + tV0 inside f for all 

ro 

t E ar But 1\(t) = ~o + I -k is the only spectral value of /\(k) t 
k=l 

T(t) = To + tV0 inside r for all t e ar Thus, /\(t) = 1\(t) for 

This shows that ~(k) = \k) for all k , i.e., \k} 

is real. // 
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We note that the coefficients in the two Rayleigh-Schrodinger 

series with initial terms 1\0 and 'Po can be calculated iteratively in 

the following order: 

In case T 
0 

and are self-'adjoint, then we can, in fact, find 

in this order. 

The calculation of the 

while the calculation of the 

Tf E X _, is such that 0 

inverse of (T0-1\0I) I(I-P0 ) 

of X such that 

For t € [; and j 

(t) 

~.p ~(t} 
.] 

s involves only the scalar products, 

s involves finding x = s011 , where 

11 is the (1·-P 0 )X 

we see that x is the unique element 

1,2, .. , let 

j 

+ I 
k=l 

j 

+ I 
k=l 

I\ (k) 

0 . 

and are given (10.9}. Thus, and <p.(t) J - I' 

can be calculated in aE iterative manner, an.d for It I sufficiently 

small, they converge to eigex1elernents I\{ a_nd of T(t) 

as j ~co 

It is of particular interest to know specific values of the 

parameter t for which (t) and (t) will approximate 

eigenelements of T(t} ; a larger absolute value of such t implies 

the possibi H ty of allowing bigger perturbations. We note that the 
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Rayleigh~Schri:idinger series (10.4) for t) converges, i.e., 

(t) ~ for aU t E or . It 111rill then be advisable to choose a 

suitable curve f around so that ar is as as possible; it 

would also be helpful if we know some lower bounds for the radius of 

such The Rayleigh~Schrodinger series (10.7) for however, 

is knmm to converge only in some neighbourhood of 0 . This is because 

the denominator <P( of <P( may lmve z, zero at some 

a.nd then, unless the numerator P(t)<p0 also has a zero of 

the same order at t 0 , we will have a of at Thus, 

it is useful to know the values of t E 8f fo:r which the denominator 

does not vanish, and more generally, even if it vanishes, does not cause 

a singularity of 

Before we address ourselves to the above questions, we remark that 

if :r is the radius of convergence of the seri.es (10. for t) 

then for every t with !tl < r , the series (10. and hence the 

series (10. (since A(k) ) ' 
comrerge to, say, iii( and 

A(t) Then we must have 

= t)ili(t) , 1 , for aU I t ! < r 

This is because the analytic functions 

f(t) t)!P(t) - t)~(t) and g{t) 

are equal to 0 and 1 , respectively, on a neighbourhood of 0 , and 

hence must equal 0 and 1 , respectively, in any domain in which they 

are analytic and which contains 0 . This is an immediate consequence 

of the identity theorem. (See Problem 4.2.) The above argument also 

shows that if both the functions t} and 'f'( have ana.lytic 

continuations to a domain D , which n~y be larger than the disk of 

convergence of (10. , then the continuations represent eigenelements of 
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* , and the scalar product of the eigenvector with ~O is equal to 

1 . This is often possible if one knows the singularities of the limit 

fu_nction on the circle of convergence. 

repeatedly shifting the origin to points where t) and <P( t) 

are analytic, we obtain Taylor e:>..'J)allsions for A(t) and \!i(t) such as 

00 

A( t) 

where Ak and \!ik can be calculated in terms of and <P (k) . 

These series converge very rapidly near the new origin t 0 . 

We now consider simple examples to get an idea of what is involved 

in finding the disk and in calculatir,g the coefficients A(k) and 

'~'(k) by the formulae (10. 

numer:i.cally in Section 19. 

(i) Let X = ~2 

T 
0 

Other examples will be treated 

ol = r~o4 J and v0 
2 

Let Ao 2 and = [~] = ~~ If z ;t 0~ 2 then 

[-:/z 0 1 
R0 (z} = 

1/(2-z)j 

Since 

AO = 2 and radius c < 2 . 

so that 

r 0 
1/16{2-z) l 

V0R0 (z) = 
l -4/z 0 j 

we see that 

Let f denote the circle with centre 
c 

Then for z € f 
E. 

we :have lz-21 = c. , 



158 

> u2m. 

max ra(V0R0(z)) 1/2~t(2~c) 
zET 

c 

z-plane 

Figure 10.1 

t-plane 

Thus, a[' = {t € i[; : It I < 2~} . We find tr:tat the :radius of ar 
c c 

the radius of ar then equals 2 
t 

We have 

P0 = [: :] and S0 = - 0 :] . 

t) and ~(t) for t = 0 in the example which illustrates 

(7 .8).) Now, 

-- - [1/2 0] [1/16]- [1/32] 
~(1) - 8ovo~o - -

0 0 0 0 

A(2) = <V0~( 1 ).~~> = [0,1] [1~8] = 1/8 , 

•(2 ) = S0 (A(I)-VO)'(l) = [': :] [l~Bl = [: l 
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fl/2 
- t/s I 

b 0 
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1] 

[1/5121 
0 j 

0 
- 1/128 . 

In two more steps, we would obtain 0 ' 

. _ rl/4096] 
<p(5) - l 0 ' 1/1024 Thus, we have 

4 
-· t /128 

+ rt~4096l 
l 0 

ft/32 

l 1 

If we calculate r!lal'1Y terms of the above series, rrre can see 

that the series for is: none other than the Taylor series for 

where denotes the branch of the square root of 4+t2 , 

Simi <p(t) has 1 as the second component while the first 

component is given by the 

where p(t) 

t) 

series for 

Thus 

- p(t)/4t 

t)/4t]· 

1 
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It is easy to check that these results agree with the direct calculation 

of the eigenvalues t) and t) of 

0 
T( 

and the eigenvector corresponding to A(t) satisfying 

t), 1 . (Cf. the example which illustrates (7. .) 

It carl. be seen that both the seri•es for A( and <f.l( converge 

for It I < 2 and hence represent of T( Moreover, 

they have :analytic continuations across every point on the circle of 

convergence ltl = 2 , except for the points t = ±2i , and will 

continue to represent eigenelements there. 

(ii) Suppose that the operator T0 is diagonalizable, i.e., T0 

can be represented by a diagonal matrix 

.... ) . 

with respect to a Schaude:r basis ~O, x1 , x2 , ... for X .Further 

assume that there is a Schauder basis of ·which is 

• • adjoint to ~O'xl,.,., i.e., (xi ,x/ = Oi, j , (<pO, = 0 = (xi ,pO) 

* * and <p0 ,p0> = 1 . With respect to this basis T0 is represented by 

the diagonal matrix 

diag(~O' ~1' ~2' ... ) 

Suppose that dist(A0 ,{~1 .~2 .... }) > 0, i.e., AO is a simple 

eigenvalue of 

diag(l, 0, 0, ... ) 

Then P0 

and diag(o. 

and 

1 
~1-Xo' 

are represented by the matrices 

~A , ... ] , respectively. Also, 
~2 0 
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\1) 
* <Vo'Po·<Po> 

00 

I 1 * <P(l) -sovo"'o - 1\0 <Vo'Po·~>~ · and 
k:::l l-1c 

The above formulae are often found in textbooks on quantum mechanics 

where X is assumed to be a Hilbert space and T0 is"a (usually 

unbounded) self-adjoint operator, so that we have * <Po = 
* XJc=XJc k 1,2, ... [SJ, p.247.) Note that 

and ]\2 1\o + 1) + ]\(2) give the first order and the 

approximations to the eigenvalue A of T == T0 + V0 

noticed that in the expressions for and 

and 

7\1 = 1\o + 7\(1) 

second order 

It should be 

the terms for 

which 1~-/\0 ! is small dominate; these come from the eigenvalues of 

which are closest to x0 . In practice, only these terms are 

considered to obtain approximations of and 

We return to the consideration of the values of t € or for which 

the function is analytic. The first result 

in this regard gives conditions on t under which the denominator does 

not vanish. See [N], Theorem 2.3.1 for a similar result. We :introduce 

the following notations: Fo:r a curve f in p(T0 ) , let 

(10.13) 

max II(V0R0 (z) )2 11 
zEf 

b0 max IIV0R0 (z)ll , 
zEf 

c 0 = E(r}IIV0<,c0 il ii<P~Il / 271[dist(/\0 ,f)]2 

where i?(r) is the length of f . Note that the constants a 0 , b0 

and c0 depend on the curve f . 
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{10.14) 

Then for all t with I t I S: 1 , we have t € ar and 

<P( so that the two Rayleigh-Schrodinger series (10.4) 

and (10. converge to eigenelements of T( 

Proof Since 

max 
z€T 

} ~ maxii[V0R0(z) 
z€T 

it follows that t € ar for all t with It! ~ 1 . Consider the 

Kato-Rellich perturbation series (9.15) 

Now, P0<p0 = 

so that 

ro 

P(t) = P0 + I P(k) 
k=l 

and for k = 1,2, ... , we have by (9.16), 

k-1 
(-l)k+l J Ro(z)[VORO(z)], Vo'Po dz 

2vi r A0 - z 

Also, for x E X , 

dz . 



163 

Putting k = 1 , we see that 

k-1 = c max II[V R (z)] II 
0 zEf 0 0 

Thus, 

l :!. -

We show that for It! ~ 1 

00 

ltl maxll[tV0R0 (z)]k-lll < 1 
zEf 

* to conclude <P(t)<p0 ,,o0> # 0 Since 

00 

I maxi![ tV 0R0 (z)]k-ll! :;; [! t lmax!IV0R.0 (z) H + ! t !2maxli[V0 R.0 (z)]2 11] 
k=2 zEf zEf zEf 

we see that for ltl ~ 1 

2 , 
1- itl a0 

which is less than 1 by assumption. This completes the proof. /I 
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We shall later show that in many practical situations the 

hypothesis a0 + (a0+b0)c0 < 1 is, in fact, satisfied. (See Remark 

14.10.) 

(10.15) 

then the conclusions of Proposi ticm 10.2 hold. 

Proof Since we see that 

Hence the result follows in the first case; as for the second, note that 

1 , then b0 < 1 and 

We remark that the conditions given in (10.15) are, in general, 

less stringent than the condition 

stated on p.143 of [C], since 1 ~ dist(l\0 ,f) max liR0 (z)!l and 
zET 

1 . See Problem 10.2 for a 

concrete illustration. 

In order to estimate the domain of analyticity of the function 

A(t) , we wish to find a lower bound for the radius of of , at least 

for some particular curve f . As far as the function ~(t) = P(t)~0 / 

* <P{t)~0 .~0> is concerned, both the numerator and the denominator are 

analytic on ar However, ~(t) would have a pole at t 0 if the 
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denominator has a zero of a higher order tha111 the order of the zero of 

the numerator. We do not lmow whether, in fact, <p(t) can have a pole 

We shall, therefore, content ourselves by finding a disk (with 

centre 0 ) in or which is pole-free. Our results are in terms of 

the following quantities: 

(10.16) 

Let r (t) 
t 

t :t t + ~e where 0 ( e ( 1 . Since 

.3), we see that the circle f Hes in 
c 

and separates A0 

from the rest of the spectrum of We note that the quantities 

given in (10.16) do not depend on the curve f 
e 

LEi!m'A 10.4 Let 0 < e ( 1 . 

(a} If 

{z E [; 

For 0 ( 

then 

~ 1/2s } C 
0 

t E a 
f 

E. 

(X) then 

we have by .8}, 

since is simple, so that R0 (z) has a simple pole at z /,0 . 
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IIV0s0 il IIV0P01is0 
liV0R0(z)ll ~ ~ + __;;_E..;;___;;_ 

= [ca0+(1-c)~0p0s0]/e{l-c) 

But as well as 

Since af = {t E iC: ltl < 1/w.ax ra(V0R.0(z))}, we see that ltl < 
'"' zET 

c(l-E.)/~0 implies t € ar 
E. 

E. 

Then z lies inside 

the circle with centre at and radius 1/s0 . Now, with 

This shows that z E p(T0 lz ) . To show z E p((I-·P 0 )T( t) 
0 

then enough to prove that r (A(z)) < 1 , where a 

(See Theorem 9.1.) As T(t) = T0 + tV0 , we have 

Hence by (5.11) and (5.12), 

r (A(z)) 
(J 

ltlra((I-P0}V0R0(z)(I-P0)) 

= ltlra(V0R0(z)(I-P0)) . 

But the expression for R0{z) given in the proof of (a), 

it is 
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for all z € [; with lzl\0 I S: 1/2s0 , so that 

Thus, r 0 (A(z)) S !tl2a0 < 1 , and the proof is complete. // 

THEO~ 10.5 (Cf. [LR], TI1eorem 2.3.) The disk 

is contained in a and the function <P( 
rl/2 

analytic on D . For It! < 1/470 , the two Rayleigh-Schrodinger 

series (10.4) and (:10. 7) converge respectively to a simple eigenvalue 

is 

and a corresponding eigenvector <P( 

* 
of which satisfies 

<<P(t),<p0> = 1 . Further, 

(10.17) 

and is the onl.y spectral value of T(t} in the disk 

(10.18) 

Proof Letting e = 1/2 in Lemma lOA( a), we see that It I ( 1/4,.0 

implies Thus, 

analytic on D we argue as follows. Let 

is analytic on a 
fl/2 

To show that t) is 

ED Since 

we :have 

for t near t 0 , where the function t fo!, x(t} is analytic on a 
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neighbourhood N of t 0 and does not vanish there" Since, 

the only possible singularity of at t t 0 is a pole, and this 

happens only if 

t)<Po/{t-to)k 

* t 0 ), '~'o> = o " Also, for t € N 
' t # to x(t) 

is 

eigenvalue 

we have 

P( 

i ~ e ~ ~ x( ;!. 0 

eigenvalue :.\( 

we see that 

an eigenvector of T(t) corresponding 

But by the continuHy of t) and 

lim t)x( = lim x(t) 
t->t0 

to the 

at 

is an eigenvector of to) corresponding to 

Let * ·'Po> 0 Since € Z(P0 ) 

€ {I-Po)T(to) lz } But since :.\(to) lies 
0 

t 

the 

= zo 

inside 

rl/2 ' we have to)-:.\0! < l/2so , and since ltol < 1/4~0 < 1/2ao , 

Lemma 10.4(b) shows that :.\(t0) € p((I-P0)T( This 

contradiction allows us to conclude the analyticity of t) at 

t = t 0 . Hence fo:r It I ( 1/4'1"0 , the functions :.\(t) and <P(t) are 

analytic, and as such have convergent Taylor expans:i.ons around 0 

That :.\(t) is a simple eigenvalue of T(t) , :.\(t) lies inside 

i.e. , I:.\( t )-1\0 I < 1/2s0 and it is the only spectral value of T( 

inside r 1/ 2 follows directly from Corollary 9.9. But we now give 

better estimates" 

Fo:r 0 < c < 1 we see that It! < c(l-c)/~0 if and only if 

where 

1 - ~l-4lth0 " ____ 2 __ _ 
and 
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Lemma 10.4(a) now shows that t € ar for every c with 
c 

Again by Corollary 9.9, we note that {i) A{t) 

lies inside rc. i.e., IA(t)-A0 1 < cls0 and {ii) it is the only 

spectral point of T{t) inside r 
c 

in {i) and 

c ~ r 2 (t) in {ii) we see that IA{t)-A0 1 s r 1{t)/s0 . and that A(t) 

is the only spectral point of T{t) in {z € C : lz-A0 1 < r 2(t)/s0} . 

Thus, (10.17) and (10.18) hold. // 

We illustrate Theorem 10.5 schematically as follows 

z-plane t-plane 

Figure 10.2 

Note that for ltl < 1/~0 , we have 

r 1(t) ~ 0 and r 2 (t) j 1 as It I~ 0 , while r 1(t) j 1/2 and 

r 2 (t) ~ 1/2 as ltl ~ 1/4~0 . As ltl becomes smaller, we get a 

better estimate for IA(t)-A0 1 and a larger region of isolation for 

A(t) . 
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I!S0 1! IIP0 11 , the above theorem shows that if the 

norms of the spectral projection and the reduced resolvent s0 

associated with and a:re small, then we c:an ail ow a large 

perturbation and obtain eigenelements )\ and of T = + 

as long as we have !IV0 il IIP0 11 IIS0 1l < 1/4 . We now consider a special 

[LR] , Theorem 3. 5 .. ) Let be a normal operator on 

a Hilbert space v A, let be a simple eigenvalue of 

then t} = T0 + tV0 has a simple '1\(t) such that 

~ It I , 

and t) is the only spectral value of T(t) lying in the disk 

It!} . 

Also, the Rayleigh-Schrodinger series (lOA) and (10. 7) converge to 

eigenelements of T( 

Proof Since T0 is normal, we have fo:r z E p(T0 ) , 

by (8.13) and (8.14). Let 0 < c < 1 

0 ~ t ~ 2v . Then 

max r 0 (V0R0 (z)) ~ IIV0 11 
zEf 

c 

1iV0 11 

and r ( 
c 

max I!R0 (z) II 
zEf 

c 
1 

max dist(z,a(T0 )) zEf 
c 
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Thus, implies that t € ar 
·e. 

so th..a t T ( t) 

has a eigenvalue A.(t) inside f 6 and it is the only spectral 

value of T(t) inside r 
E. 

Now for 0 < e. ( 1 we note that 

where 

Letting e. -) r 1 (t) and 6 _, t) w·e obtain the statements regarding 

By Lerrana l0.4(b), we conclude that t 0 ) E p((I-P0 )T(t0 ) iz ) . The 
0 

proof of Theorem 10.5 now shows that <P(t) = P(t)<r0/<P(t}<p0 ,<p~) cannot 

have a singularity at t = Thus, the Rayleigh-Schrodinger series 

(10.4) and (10.7) converge for itl < d0/211V0 il . // 

We see from the above result that if the sinnple eigenvalue of 

a normal operator T0 is well separated from the rest of the spectrum 

if d 
0 

is large, then even for a large perturbation 

we ca'1. obtain eigenelements of T0 + by the Rayleigh-

Schrodinger procedure. 

Remark 11.0,'1 We conclude this section by reiT'arking that Theorems 10.5 

&""l.d 10.6 would prove to be useful for finding eigenelements of T0 + 

only if is small: < 1/4 or < 1/2 ~ If this were 

not so, one :t>..as to look for sharper estimates of ra{V0R0 (z)) for z 

such as 
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Theorem 10.5 holds if we replace by ·.UC 
0 

where 

T (s 
(10. 

sup{ k 1,2, 0 •• } (S 

We leave the proof of this :result to Problem 10.4. See also [LR], 

Theorem 2.3. 

Theorems 10.5, 10.6 and the above resuJt say that if the 

is small in. some sense ( L/4) , then not 

only the Rayleigh-Schri:idinger serh•:s with initial terms as the 

eigenelements <flo) of T0 converge to eigenelements (A.,<p) o:f 

T ""T0 + v0 , but the eigenvalue 1\ is simple, and it is the unique 

spectral po:i.nt of T whtch is nearest to If no conditJ.ons on 

are put, then the Rayleigh-Schrodinger series with initial term may 

neither converge to a simple eigenvalue of T , nor to the nearest 

eigenvalue of T Problems 10.6 aJld 10.7.} 

Proble:ms 

10.1 Let x(t) be given by (10.8). Then :fnr It I 

ro 

x( xo + I x(k} 
k::::l 

00 

1\(t) + I tk 
' 

k=l 

where * xo = Poxo/<Poxo,xo> is an eigenvector of To 

"o ' and for k 1 ,2, 0 •• 

k-1 
(I-QO)SO[-VOx(k-1) + i~l 

* <TOx{k)+VOx(k-1)' xo> 

small, 

corresponding to 
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and the projection OQ is given by If 

s0 = (I-Q0)s0 • then s0 1Qo(X) 

of (I-Qo)(TO-AOI)I(I-QQ)(X) 

k-1 

is the inverse 

+ i~1 A(i)x(k-i) . Then is the unique solution of 

(I-Q0)(T0-A0I)x = ~(k) . 

10.2 Let X = r? with the p-nnm, I ~ p ~ • • T0 = [~ :J , 
v0 = [: :J . o < 6 < IA0-A11({3-1)/2. r = {z: lz-A0 1 

Then in Corollary 10.3, b0 = c0 = 2c/IA0-A1 1 Also, 

max IIR0 (z)ll = 2/IA0-A1 I 
z€T 

10.3 Let To and T* 
0 be diagonable as in Example (ii). Then 

[J1 

* * 
* * ] 00 <Vo~o.xm><Yoxm·~> <Vo~o·~o><Yo~o·~> 

~{3) I (J.ic-Ao)(f.Lm-AO) CJ.ic -Ao)2 ~ k=1 

10.4 ([LR], Theorems 2.1 and 2.3.) Let TO and o0 be defined by 

(10.19). Then Lemma 10.4 can be improved as follows: (a) If 

ltl < c(1-c)/~. then t € aT . (b) If ltl < 1/2~. then 
c 

{z € C: lz-A0 1 ~ 1/2s0} c p((I-P0)T(t)lz) . Hence Theorem 10.5 holds 
0 

if we replace -r0 by ~ . 

10.5 ([N]) If X * is 2-dimensional, then <P(t)~0 .~0> ¢ 0 for every 

t € aT . If X is finite dimensional, then for t € aT we have 

* <P(t)~0 .~0> ¢ 0 if and only if A(t) is an eigenvalue of 

(I-Po)T(t)I<I-Po)(X) . 
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T0 = [: :] , a ¢ b , and Ao = a . If Y0 = i [
b-a 0 l 
0 a-b 

10.6 Let 

then a+ b 1 
A = AO + A(l} = - 2- is a double eigenvalue of T = T0 + Y0 = 2 

o l . If Yo = [b-a o l 
a+b 0 a-b 

[: :] 
then is an 

eigenvalue of but it is not the nearest 

eigenvalue of T to a . 

10.7 If a curve r which separates the simple eigenvalue AO from the 

rest of afT0 ) is a circLe with centre AO , and if 

max r (Y0R0 (z)) < 1 , then the Rayleigh-Schrodinger series with initial 
z€f a 

term AO converges to a simple eigenvalue A of T = T0 + Y0 , which 

is the nearest spectral point of T to AO . 


