## 7. ISOLATED SINGULARITIES OF $\mathbb{R}(z)$

In the last section we have considered the Laurent expansion of the resolvent operator $R(z)$ in an annulus contained in the resolvent set $\rho(T)$ of $T \in B L(X)$. We now specialize to the case when the inner circle of such an annulus degenerates to a point $\lambda$; i.e., when a punched disk $\{z \in \mathbb{C}: 0<|z-\lambda|<\delta\}$ lies in $\rho(T)$. Let $\Gamma$ be any curve in $\rho(\mathrm{T})$ such that $\sigma(\mathrm{T}) \cap$ Int $\Gamma \subset\{\lambda\}$. Since the operators $\mathrm{P}_{\Gamma}(\mathrm{T}), \mathrm{S}_{\Gamma}(\mathrm{T}, \lambda)$ and $\mathrm{D}_{\Gamma}(\mathrm{T}, \lambda)$ do not depend on $\Gamma$, we denote them simply by $P_{\lambda}, S_{\lambda}$ and $D_{\lambda}$. respectively. The operators $S_{\lambda}$ and $D_{\lambda}$ have special features. By the first resolvent identity (5.5), we have

$$
\begin{aligned}
S_{\lambda} & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{R(w)}{w-\lambda} d w \\
& =\lim _{z \rightarrow \lambda} \frac{1}{2 \pi i} \int_{\Gamma} \frac{R(w)}{w-z} d w \\
& =\lim _{z \rightarrow \lambda} \frac{1}{2 \pi i} \int_{\Gamma} \frac{R(z)+R(w)-R(z)}{w-z} d w \\
& =\lim _{z \rightarrow \lambda} \frac{1}{2 \pi i}\left[R(z) \int_{\Gamma} \frac{d w}{w-z}+\int_{\Gamma} \frac{(w-z) R(z) R(w)}{w-z} d w\right] \\
& =\lim _{z \rightarrow \lambda}[R(z)+R(z)(-P)] .
\end{aligned}
$$

Thus, we see that

$$
\begin{equation*}
S_{\lambda}=\lim _{z \rightarrow \lambda} R(z)(I-P) \tag{7.1}
\end{equation*}
$$

Next, it follows by Proposition 6.4 and (5.1) that

$$
\begin{equation*}
\sigma\left(\mathrm{S}_{\lambda}\right) \subset\{0\} \cup\{1 /(\mu-\lambda): \mu \in \sigma(\mathrm{T}), \mu \neq \lambda\} \tag{7.2}
\end{equation*}
$$

where the inclusion is proper if and only if $\lambda \mathbb{\&} \sigma(T)$. Hence

$$
\begin{equation*}
r_{\sigma}\left(S_{\lambda}\right)=\frac{1}{\operatorname{dist}(\lambda, \sigma(T) \backslash\{\lambda\})} . \tag{7.3}
\end{equation*}
$$

Again, Proposition 6.4 implies that

$$
\begin{equation*}
\sigma\left(D_{\lambda}\right)=\{0\} \quad \text { and } \quad r_{\sigma}\left(D_{\lambda}\right)=0 \tag{7.4}
\end{equation*}
$$

For this reason, the operator $D_{\lambda}$ will be called the quasinilpotent operator associated with $T$ and $\lambda$. We thus have the representation

$$
\begin{equation*}
\left.T\right|_{P_{\lambda}(X)}=\left.\lambda I\right|_{P_{\lambda}(X)}+\left.D_{\lambda}\right|_{P_{\lambda}(X)} \tag{7.5}
\end{equation*}
$$

where $D_{\lambda}$ is quasi-nilpotent.
For $0<|z-\lambda|<\operatorname{dist}(\lambda, \sigma(T) \backslash\{\lambda\})$, we have the Laurent expansion

$$
\begin{equation*}
R(z)=\sum_{k=0}^{\infty} s_{\lambda}^{k+1}(z-\lambda)^{k}-\frac{P_{\lambda}}{z-\lambda}-\sum_{k=1}^{\infty} \frac{D_{\lambda}^{k}}{(z-\lambda)^{k+1}} \tag{7.6}
\end{equation*}
$$

To have a feeling for the operators $P_{\lambda}$ and $S_{\lambda}$, we give a simple example. Let $T$ be represented by the diagona' matrix

$$
\operatorname{diag}\left(\lambda, \ldots, \lambda, \lambda_{1}, \lambda_{2}, \ldots\right)
$$

where $\lambda$ does not belong to the closure of $\left\{\lambda_{j}: j=1,2, \ldots\right\}$. Then

$$
\begin{aligned}
& P_{\lambda}=\operatorname{diag}(1, \ldots, 1,0,0, \ldots), \\
& S_{\lambda}=\operatorname{diag}\left(0, \ldots, 0,1 /\left(\lambda_{1}-\lambda\right), 1 /\left(\lambda_{2}-\lambda\right), \ldots\right)
\end{aligned}
$$

Let us consider another typical example. Let $X=L^{2}([a, b])$ and let $V$ denote the Volterra integration operator defined by

$$
V x(s)=\int_{a}^{s} x(t) d t, x \in X, s \in[a, b]
$$

Then it is well-known ([L], p.151) that

$$
\sigma(\mathrm{V})=\{0\}
$$

i.e., $V$ is quasi-nilpotent. Also, $V x=0$ implies $x=0$, since $\int_{0}^{s} x(t) d t=0$ for almost all $s \in[a, b]$ implies that $x(t)=0$ for almost all $t \in[a, b]$. Thus, 0 is not an eigenvalue of $V$. Hence $V$ is not nilpotent.

Considering the isolated spectral point $\lambda=0$ of $V$, we easily see that

$$
\begin{aligned}
& P_{0}=I, D_{0}=(V-O I) P_{0}=V \text { and } \\
& S_{0}=\lim _{z \rightarrow 0} R(z)\left(I-P_{0}\right)=0 .
\end{aligned}
$$

This confirms with the first Neumann expansion (5.8)

$$
\begin{aligned}
R(z) & =-\sum_{k=0}^{\infty} V^{k} z^{-(k+1)} \\
& =-\frac{I}{z}-\sum_{k=1}^{\infty} \frac{V^{k}}{z^{k+1}},
\end{aligned}
$$

for $0 \not \equiv \mathbb{Z} \in \mathbb{C}$, which is also the Laurent expansion (6.22) about 0 of $\mathbb{R}(z)$.

It can be readily seen by induction that for each $k \geq 1$,

$$
V^{k} x(s)=\int_{a}^{s} \frac{(s-t)^{k-1}}{(k-1)!} x(t) d t \quad, \quad x \in X, s \in[a, b]
$$

Hence, if we let for $0 \neq \mathbb{Z} \in \mathbb{C}$,

$$
\begin{aligned}
U(z) x(s) & =\int_{a}^{s} \sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left[\frac{s-t}{z}\right]^{k-1} x(t) d t \\
& =\int_{a}^{s} e^{(s-t) / z} x(t) d t, \quad x \in X, s \in[a, b],
\end{aligned}
$$

then

$$
R(z)=-I / z-U(z) / z^{2}
$$

where $U(z)$ is again a Volterra operator with kernel $e^{(s-t) / z}$.
The above remarks and the infinite representation of $R(z)$ hold for any quasi-nilpotent operator which is not nilpotent.

In the above example $\lambda=0$ is an isolated essential singularity of $R(z)$, since the Laurent expansion (7.6) has infinitely terms with negative powers of $(z-\lambda)$.

The other extreme case arises when $\lambda$ is a removable singularity of $R(z)$, so that there are no terms with negative powers of ( $z-\lambda$ ) in (7.6). Clearly, this happens if and only if $P_{\lambda}=0$, i.e., $\lambda \&$ $\sigma(\mathrm{T})$ (Proposition 6.4(a)). In this case, $S_{\lambda}=R(\lambda)$ and we recover the Taylor expansion (5.7) of $R(z)$ around $\lambda$ :

$$
R(z)=\sum_{k=0}^{\infty} R(\lambda)^{k+1}(z-\lambda)^{k}
$$

Let us now consider the important case where $\lambda$ is a pole of $R(z)$. It can be readily seen from (7.6) that $\lambda$ is a pole of order $\ell, 1 \leq \ell<\infty$, if and only if

$$
\begin{equation*}
D_{\lambda}^{\ell-1} \neq 0, \text { but } D_{\lambda}^{\mathbb{L}}=0 \tag{7.7}
\end{equation*}
$$

In this case (7.6) reduces to

$$
\begin{equation*}
R(z)=\sum_{k=0}^{\infty} S_{\lambda}^{k+1}(z-\lambda)^{k}-\frac{P_{\lambda}}{z-\lambda}-\sum_{k=1}^{\ell-1} \frac{D_{\lambda}^{k}}{(z-\lambda)^{k+1}}, \tag{7.8}
\end{equation*}
$$

where $D_{\lambda}^{\ell-1} \neq 0$, with the notation $D_{\lambda}^{0}=P_{\lambda}$. Notice that $-P_{\lambda}$ is the residue of $R(z)$ at $\lambda$ and that $D_{\lambda}$ is nilpotent..

In order to illustrate the calculation of the coefficients in the expansion (7.8) of $R(z)$, we consider a simple example. Let $X=\mathbb{C}^{2}$ and fix $t \in \mathbb{C}$. Let

$$
T(t) x=\left[\begin{array}{cc}
0 & t / 16 \\
4 t & 2
\end{array}\right]\left[\begin{array}{l}
x(1) \\
x(2)
\end{array}\right]
$$

for $x=[x(1), x(2)]^{t} \in \mathbb{C}^{2}$. Then for $z \in \mathbb{C}$,

$$
\operatorname{det}(T(t)-z I)=-z(2-z)-t^{2} / 4 .
$$

Let

$$
\lambda(t)=\frac{2+\sqrt{4+t^{2}}}{2}, \mu(t)=\frac{2-\sqrt{4+t^{2}}}{2} .
$$

where $\sqrt{4+t^{2}}$ denotes the principle value of the square root of $4+t^{2}$. Then every $z \&\{\lambda(t), \mu(t)\}$ lies in $\rho(T(t))$, and $R(T(t), z)$ is given by the matrix

$$
(\mathrm{T}(\mathrm{t})-\mathrm{zI})^{-1}=\left[\begin{array}{cc}
2-z & -t / 16 \\
-4 t & -z
\end{array}\right] /[z-\lambda(t)][z-\mu(t)]
$$

Note that $R(T(t), z)$ has simple poles at $z=\lambda(t)$ and $z=\mu(t)$ if $t \neq \pm 2 i$, and if $t= \pm 2 i$, then it has a double pole at $z=1$. Let $\Gamma$ denote the circle $\Gamma(t)=2+e^{i t}, 0 \leq t \leq 2 \pi$. Since for $|t|<2$. we have $\left|1-\sqrt{1+t^{2} / 4}\right|<1$ and $\left|1+\sqrt{1+t^{2} / 4}\right|>1$. we see that $\lambda(\mathrm{t})$ lies inside $\Gamma$ and $\mu(\mathrm{t})$ lies outside $\Gamma$. Using Cauchy's integral formula (Theorem 4.5(b)), we see that for $|t|<2$,

$$
P_{\lambda(t)}=P_{\Gamma}(T(t))=-\frac{1}{2 \pi i} \int_{\Gamma} R(T(t), z) d z
$$

is given by the matrix

$$
\left[\begin{array}{cc}
\lambda(t)-2 & t / 16 \\
4 t & \lambda(t)
\end{array}\right] /(\lambda(t)-\mu(t))
$$

It can be readily checked that for $|t|<2$,

$$
D_{\lambda(t)}=(T(t)-\lambda(t) I) P_{\lambda(t)}=0
$$

Also, $\quad S_{\lambda(t)}=\lim _{z \rightarrow \lambda(t)} R(T(t), z)\left(I-P_{\lambda(t)}\right)$ is given by the matrix

$$
\left[\begin{array}{cc}
-\lambda(t) & t / 16 \\
4 t & \mu(t)
\end{array}\right] /\left(4+t^{2}\right)
$$

Now we prove a result which allows us to characterize the order of a pole of $R(z)$.

LIEMMA 7.1 Let $\lambda$ be an isolated point of $\sigma(\mathrm{T})$.
(a) For $k=1,2, \ldots, D_{\lambda}^{k}=0$ if and only if $Z\left(P_{\lambda}\right)=R\left((T-\lambda I)^{k}\right)$ if and only if $R\left(P_{\lambda}\right)=Z\left((T-\lambda I)^{k}\right)$.
(b) Let $1 \leq \ell<\infty$. Then $\lambda$ is a pole of $R(z)$ of order $\ell$ if and only if $\ell$ is the smallest positive integer such that one (and hence each) of the following conditions holds:
(i) $Z\left(P_{\lambda}\right)=R\left((T-\lambda I)^{\ell}\right)$
(ii) $R\left(P_{\lambda}\right)=\mathbb{Z}\left((T-\lambda I)^{\ell}\right)$

In that case,

$$
X=Z\left((T-\lambda I)^{\ell}\right) \oplus R\left((T-\lambda I)^{\ell}\right) \text {. }
$$

Proof (a) Let $k=1,2, \ldots$. We have already noted in Section 6 (just before the definition of a spectral projection) that

$$
\begin{equation*}
Z\left((T-\lambda I)^{k}\right) \subset R\left(P_{\lambda}\right) \tag{7.9}
\end{equation*}
$$

Similarly, it follows (cf. Problem 6.2) that

$$
\begin{equation*}
R\left((T-\lambda I)^{k}\right) \supset Z\left(P_{\lambda}\right) \tag{7.10}
\end{equation*}
$$

Also, since $(T-\lambda I)$ and $P_{\lambda}$ commute, we have

$$
D_{\lambda}^{k}=(T-\lambda I)^{k} P_{\lambda}=P_{\lambda}(T-\lambda I)^{k}
$$

Hence part (a) follows.
(b) It is clear from part (a) that $D_{\lambda}^{\ell-1} \neq 0$ and $D^{\ell}=0$ if and only if (i) or (ii) holds and $\ell$ is the smallest such positive integer. In that case,

$$
X=R\left(P_{\lambda}\right) \oplus Z\left(P_{\lambda}\right)=Z\left((T-\lambda I)^{\ell}\right) \oplus R\left((T-\lambda I)^{\ell}\right)
$$

Remark 7.2 Consider the following two chains of inclusions involving the null spaces and the range spaces of powers of an operator $A$ :

$$
\begin{aligned}
& \{0\} \subset Z(A) \subset Z\left(A^{2}\right) \subset \ldots \\
& X \supset R(A) \supset R\left(A^{2}\right) \supset \ldots
\end{aligned}
$$

A peculiar property of each of these chains is that if equality holds at any inclusion then it persists at all later inclusions. This can be seen as follows. Let $Z\left(A^{k}\right)=Z\left(A^{k+1}\right)$. If $x \in Z\left(A^{k+2}\right)$, then $A^{k+1}(A x)=0$, i.e., $A x \in Z\left(A^{k+1}\right)=Z\left(A^{k}\right)$, or $A^{k+1} x=0$. Thus, $Z\left(A^{k+1}\right)=Z\left(A^{k+2}\right)$. Similarly, let $R\left(A^{k}\right)=R\left(A^{k+1}\right)$. If $y \in R\left(A^{k+1}\right)$, then $y=A\left(A^{k} x\right)$ for some $x \in X$; but $A^{k} x \in R\left(A^{k}\right)=R\left(A^{k+1}\right)$, i.e. $A^{k} x=A^{k+1} x_{0}$ or $y=A^{k+2} x_{0}$ for some $x_{0} \in X$. Thus $R\left(A^{k+1}\right)=R\left(A^{k+2}\right)$. We shall make use of this property frequently. See Theorem 2 of Appendix I for a characterization of a pole of $R(z)$.

Here is an iterative procedure for finding $Z\left(A^{k}\right)$ : Let

$$
\begin{gather*}
\mathrm{Z}_{0}=\{0\}, \mathrm{Z}_{1}=\mathrm{Z}(\mathrm{~A}) \backslash \mathrm{Z}_{0},  \tag{7.11}\\
\text { and } \mathrm{Z}_{\mathrm{k}}=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{Ax} \in \mathrm{Z}_{\mathrm{k}-1}\right\}, \mathrm{k}=2,3, \ldots
\end{gather*}
$$

Then it is easy to see by induction on $k$ that

$$
Z_{k}=Z\left(A^{k}\right) \backslash Z\left(A^{k-1}\right)
$$

for all $k$, i.e., $Z_{k}$ consists of the generalized eigenvectors of $A$ of grade k corresponding to 0 . In particular, $\mathrm{Z}_{\mathrm{k}}=\varnothing$ if and only if $Z\left(A^{k-1}\right)=Z\left(A^{k}\right)$. We have the disjoint union $Z\left(A^{k}\right)=Z_{0} U \ldots U Z_{k}$.

PROPOSITION 7.3 Let $\lambda$ be a pole of $R(z)$. Then $\lambda$ is an isolated eigenvalue of $T$, and the associated spectral subspace $R\left(P_{\lambda}\right)$ coincides with the generalized eigenspace of $T$ corresponding to $\lambda$. In fact, the order of the pole of $R(z)$ at $\lambda$ is $\ell$ if and only if $\ell$
is the smallest positive integer such that there are no generalized eigenvectors of $T$ of grade $\ell+1$ corresponding to $\lambda$, and in that case $R\left(P_{\lambda}\right)$ is the disjoint union of $\{0\}$ and the sets of generalized eigenvectors of $T$ of grade $k$ corresponding to $\lambda, k=1, \ldots, \ell$.

Proof Since $\lambda$ is a pole of $R(z)$, we have $D_{\lambda}^{\ell}=0$, but $D_{\lambda}^{\ell-1} \neq 0$ for some positive integer $\ell$.. Then there is $D_{\lambda}^{\ell-1} x \neq 0$ with

$$
(T-\lambda I) D_{\lambda}^{\ell-1} x=D_{\lambda}^{2} x=0
$$

Thus, $D_{\lambda}^{\ell-1} \mathrm{X}$ is an eigenvector of $T$ corresponding to the eigenvalue $\lambda$. By (ii) of Lemma 7.1 (b) and by (7.9), we have

$$
\begin{aligned}
\mathbb{R}\left(P_{\lambda}\right) & =\mathbb{Z}\left((T-\lambda I)^{\ell}\right) \\
& =\left\{\mathrm{X} \in \mathrm{X}:(\mathrm{T}-\lambda I)^{\left.\mathrm{k}_{\mathrm{X}}=0 \quad \text { for some } \mathrm{k}=1,2, \ldots\right\}}\right.
\end{aligned}
$$

Letting $A=T-\lambda I$ in (7.11), we have

$$
\mathrm{Z}_{\mathrm{k}}=\mathrm{Z}\left((\mathrm{~T}-\lambda I)^{\mathrm{k}}\right) \backslash \mathrm{Z}\left((\mathrm{~T}-\lambda \mathrm{I})^{\mathrm{k}-1}\right)
$$

and hence

$$
R\left(P_{\lambda}\right)=Z_{0} \cup \ldots \cup Z_{\ell}
$$

where $Z_{i} \cap Z_{j}=\emptyset$ if $i \neq j$. Also, for $k \geq 1, Z_{k+1}=\emptyset$ if and only if $Z\left((T-\lambda I)^{k}\right)=Z\left((T-\lambda I)^{k+1}\right)$, and this is the case if and only if $R\left(P_{\lambda}\right)=Z\left((T-\lambda I)^{k}\right)$. Thus, $\lambda$ is a pole of order $\ell$ if and only if $\ell$ is the smallest positive integer with $Z_{\ell+1}=\varnothing$. //

When $\lambda$ is a pole of $R(z)$, we wish to investigate how much larger the generalized eigenspace $P_{\lambda}(X)$ is as compared to the eigenspace $Z(T-\lambda I)$. For this purpose we prove the following result. It will also allow us to obtain necessary and sufficient conditions for the spectral projection $P_{\lambda}$ to be of finite rank.

LIEMMA 7.4 Let $A$ be a linear operator on $X$. Then for $k=1,2, \ldots$,

$$
\begin{align*}
\operatorname{dim} Z\left(A^{k}\right) & \leq \operatorname{dim} Z(A)+\operatorname{dim} Z\left(A^{k-1}\right)  \tag{7.12}\\
& \leq k \operatorname{dim} Z(A)
\end{align*}
$$

If $Z\left(A^{k}\right) \backslash Z\left(A^{k-1}\right)=Z_{k} \neq \varnothing$, then

$$
\begin{equation*}
\operatorname{dim} Z(A)+k-1 \leq \operatorname{dim} Z\left(A^{k}\right) \tag{7.13}
\end{equation*}
$$

Proof Since $Z\left(A^{k-1}\right) \subset Z\left(A^{k}\right)$, let us extend a basis of $Z\left(A^{k-1}\right)$ to a basis of $Z\left(A^{k}\right)$ by adding a set $W$ to it. Let $x_{1}, \ldots, x_{n} \in W$. Then $A^{k-1} x_{1}, \ldots, A^{k-1} x_{n} \in Z(A)$, and they form a linearly independent set. This can be seen as follows. Let

$$
0=c_{1} A^{k-1} x_{1}+\ldots+c_{n} A^{k-1} x_{n}=A^{k-1}\left(c_{1} x_{1}+\ldots+c_{n} x_{n}\right)
$$

for some $c_{1}, \ldots, c_{n}$ in $\mathbb{C}$. Then $x=c_{1} x_{1}+\ldots+c_{n} x_{n} \in Z\left(A^{k-1}\right)$, and since $x_{1}, \ldots x_{n}$ belong to $W$, we must have $c_{1}=\ldots=c_{n}=0$. Thus, $n \leq \operatorname{dim} \mathbb{Z}(A)$. This shows that

$$
\operatorname{dim} Z\left(A^{k}\right) \leq \operatorname{dim} Z(A)+\operatorname{dim} Z\left(A^{k-1}\right)
$$

Applying this result repeatedly for $k=2,3, \ldots$, we obtain (7.12). Next, assume that $Z\left(A^{k-1}\right) \neq \mathbb{Z}\left(A^{k}\right)$. Then by Remark 7.2, each inclusion in the chain

$$
Z(A) \subset Z\left(A^{2}\right) \ldots \subset Z\left(A^{k-1}\right) \subset Z\left(A^{k}\right)
$$

is proper. Hence

$$
\operatorname{dim} Z(A)+1+\ldots+1 \leq \operatorname{dim} Z\left(A^{k}\right)
$$

where the 1's occur ( $k-1$ ) times. This proves (7.13).

THEOREM 7.5 (a) Let $\lambda$ be a pole of $R(z)$ of order $\ell$. If $m$ is the rank of $P_{\lambda}$, and $g$ is the dimension of the eigenspace of $T$ corresponding to $\lambda$, then

$$
\begin{gather*}
m \leq \ell g \\
2 \leq \ell+g \leq m+1 \tag{7.14}
\end{gather*}
$$

In particular,

$$
\begin{array}{ll}
m=1 & \text { if and only if } \ell=1=g \\
g=1 & \text { if and only if } m=\ell  \tag{7.15}\\
\ell=1 & \text { if and only if } m=g
\end{array}
$$

(b) For an isolated point $\lambda$ of $\sigma(T)$, we have rank $P_{\lambda}<\infty$ if and only if $\lambda$ is a pole of $\mathbb{R}(z)$ and $\operatorname{dim} Z(T-\lambda I)<\infty$.

Proof (a) By Lemma 7.1(b), we have $R\left(P_{\lambda}\right)=Z\left((T-\lambda I)^{\ell}\right)$. Hence letting $A=T-\lambda I$ in (7.12) we see that

$$
m=\operatorname{dim} R\left(P_{\lambda}\right) \leq \ell \operatorname{dim} Z(T-\lambda I)=\ell g .
$$

Proposition 7.3 shows that $\lambda$ is an eigenvalue of $T$. Hence $g \geq 1$. Since $\ell \geq 1$, we have $2 \leq \ell+g$. Again, since $\mathrm{D}^{\ell-1} \neq 0$, but $D^{\ell}=0$. we have $Z\left((T-\lambda I)^{\ell-1}\right) \neq \mathrm{Z}\left((T-\lambda I)^{\ell}\right)$. Hence by (7.13),

$$
g+\ell-1=\operatorname{dim} Z(T-\lambda I)+\ell-1 \leq \operatorname{dim} Z\left((T-\lambda I)^{\ell}\right)=m
$$

This proves (7.14). The relations in (7.15) are immediate.
(b) Assume that rank $P_{\lambda}=m<\infty$. As we have seen in (7.4), $D_{\lambda}$ is quasi-nilpotent. Since $Y=P_{\lambda}(X)$ is of dimension $m$, we see by Proposition 5.6 that $\left(\left.D_{\lambda}\right|_{Y}\right)^{m}=0$. Also $\left.D_{\lambda}\right|_{Z}=0$, where $Z=Z\left(P_{\lambda}\right)$. Hence $D_{\lambda}^{m}=0$, showing that $\lambda$ is a pole of $R(z)$.

Since $Z(T-\lambda I) \subset P_{\lambda}(X)$, it follows that

$$
\mathrm{g}=\operatorname{dim} \mathrm{Z}(\mathrm{~T}-\lambda \mathrm{I}) \leq \mathrm{m}<\infty .
$$

Conversely, let $\lambda$ be a pole of $R(z)$ of order $\ell$ and let $g=\operatorname{dim} Z(T-\lambda I)<\infty$. Then by (7.14) we see that $\operatorname{rank} P_{\lambda}<\infty . \quad / /$

Let $\lambda$ be an isolated point of $\sigma(T)$. The dimension of the associated spectral subspace $P_{\lambda}(X)$ is called the algebraic multiplicity of $\lambda$, and the dimension of the corresponding eigenspace $\mathrm{Z}(\mathrm{T}-\lambda \mathrm{I})$ is called the geometric multiplicity of $\lambda$.

If the algebraic multiplicity of $\lambda$ is 1, then $\lambda$ is called a simple eigenvalue of $T$. If $\lambda$ is a pole of $R(z)$ of order 1 , (i.e., $D_{\lambda}=0$ ), then $\lambda$ is said to be a semisimple eigenvalue of T.

Note that an isolated point $\lambda$ of $\sigma(T)$ is a semisimple eigenvalue of $T$ if and only if $P_{\lambda}(X)=Z(T-\lambda I)$ (by Lemma 7.1(b)), i.e., the corresponding spectral subspace coincides with the eigenspace.

PROPOSITION 7.6 Let $\lambda$ be a pole of $R(z)$. (This condition is satisfied if $\lambda$ is an eigenvalue of $T$ of finite algebraic multiplicity.)
(a) $\lambda$ is a semisimple eigenvalue of $T$ if and only if ( $T-\lambda I$ ) $x$ is not an eigenvector of $T$ corresponding to $\lambda$ for any $x \in X$.
(b) $\lambda$ is simple if and only if there is a unique (up to scalar multiples) eigenvector $\varphi$ of $T$ corresponding to $\lambda$, and there is no $\mathrm{x} \in \mathrm{X}$ such that $(\mathrm{T}-\lambda) \mathrm{x}=\varphi$.

Proof Let $\ell$ be the order of the pole of $R(z)$ at $\lambda$. Then by (ii) of Lemma 7.1(b),

$$
R\left(P_{\lambda}\right)=Z\left((T-\lambda I)^{2}\right)
$$

(a) By Proposition 7.3; we see that $\ell=1$ if and only if

$$
Z\left((T-\lambda I)^{2}\right)=Z(T-\lambda I)
$$

Clearly, this happens if and only if there is no $\mathrm{x} \in \mathrm{X}$ with $(T-\lambda I) x \neq 0$, but (T- TI ) $[(T-\lambda I) x]=0$, i.e.. ( $T-\lambda I) x$ is not an eigenvector of $T$ corresponding to $\lambda$ for any $x \in X$.
(b) By (7.15), $\lambda$ is simple if and only $\ell=1$ and the geometric multiplicity $g$ of $\lambda$ is 1 . Hence the desired result follows by part (a).

When the geometric multiplicity of $\lambda$ is greater than 1 , it is possible that for a basis $\varphi_{1} \ldots \varphi_{g}$ of the eigenspace $Z(T-\lambda I)$, each of the equations $(T-\lambda I) x=\varphi_{i}, i=1, \ldots, g$, has no solution in $X$, but $(T-\lambda I) \mathrm{x}=\varphi$ does have a solution for some $0 \neq \varphi \in \mathbb{Z}(T-\lambda I)$ : Let $X=\mathbb{C}^{3}$, and $T[x(1), x(2), x(3)]^{t}=[\lambda x(1)+x(2), \lambda x(2), \lambda x(3)]^{t}$. Then $\varphi_{1}=[1,0,1]^{\mathrm{t}}$ and $\varphi_{2}=[1,0,-1]^{\mathrm{t}}$ constitute a basis of $\mathrm{Z}(\mathrm{T}-\lambda I)$, but none of equations $(T-\lambda I) x=\varphi_{i}, i=1.2$, has a solution in $X$. However, if we let $\varphi=[1,0,0]^{\mathrm{t}}$, then the equation ( $\mathrm{T}-\lambda \mathrm{I}$ ) $\mathrm{x}=\varphi$ has $[x(1), 1, x(3)]^{t}$ as a solution for all $x(1)$ and $x(3)$ in $\mathbb{C}$. (In particular, $\lambda$ is not a semisimple eigenvalue of $T$.)

Remark 7.7 The term 'geometric multiplicity' is self-explanatory, since it is the dimension of the corresponding eigenspace. To explain the term "algebraic multiplicity" we proceed as follows.

Let the algebraic multiplicity of $\lambda$ be $m<\infty$. Then $\lambda$ is a pole of $R(z)$. Let $\ell$ be order of this pole. Since $D_{\lambda}$ is quasinilpotent, and since $P_{\lambda}(X)$ has dimension $m<\infty$, we see by Proposition 5.6 that $\left.D_{\lambda}\right|_{P_{\lambda}}(X)$ is, in fact, nilpotent, and $\ell$ is the smallest positive integer such that $\left(\left.D_{\lambda}\right|_{P_{\lambda}(X)}\right)^{\ell}=0$. Considering the representation (7.5)

$$
\left.T\right|_{P_{\lambda}(X)}=\left.\lambda I\right|_{P_{\lambda}}(X)+\left.D_{\lambda}\right|_{P_{\lambda}}(X)
$$

we see that $\left.T\right|_{P_{\lambda}}(X)$ is represented, with respect to a suitable basis of $P_{\lambda}(X)$, in the Jordan canonical form (cf. (5.14)) by the $m \times m$ matrix

$$
\mathbb{M}=\left[\begin{array}{cccc}
\lambda & \delta_{2} & & \\
& \ddots & \ddots & \\
& \ddots & \delta_{m} \\
& 0 & & \lambda
\end{array}\right]
$$

where each $\delta_{j}$ is either 0 or $1,2 \leq j \leq m$. Thus, $\lambda$ is a root of order $m$ of the characteristic polynomial of $M$, and hence the algebraic multiplicity of $\lambda$ is said to be $m$.

By looking at the $\delta_{j}$ 's in the above representation, one can also determine the geometric multiplicity $g$ of $\lambda$ and the order $\ell$ of the pole at $\lambda$. Let $x=[x(1), \ldots, x(m)]^{t} \in \mathbb{C}^{m}$. Then

$$
\mathrm{Mx}=\lambda \mathrm{x}+\left[\delta_{2} \mathrm{x}(2), \ldots, \delta_{\mathrm{m}} \mathrm{x}(\mathrm{~m}), 0\right]^{\mathrm{t}}
$$

Thus, $x$ is an eigenvector corresponding to $\lambda$ if and only if $\delta_{j} x(j)=0$ for each $j=2, \ldots, m$. Hence $[1,0, \ldots, 0]^{t}$ is an eigenvector, and if $\delta_{j}=0$ for some $j$, then $[0, \ldots, 0,1,0, \ldots, 0]^{t}$ is also an eigenvector, where 1 occurs in the $j$-th place; these vectors form a basis of the eigenspace corresponding to $\lambda$. Thus, the geometric multiplicity $g$ of $\lambda$ equals one plus the number of zeros among $\delta_{2}, \ldots, \delta_{m}$. Also, it can be seen that if $k$ is the maximum number of consecutive 1 's among $\delta_{2}, \ldots, \delta_{m}$, then the $(k+1)$-st power of the matrix

$$
\left[\begin{array}{cccc}
0 & \delta_{2} & & \\
& & \ddots & 0 \\
& \ddots & \ddots & \\
& 0 & & \delta_{m} \\
& & & 0
\end{array}\right]
$$

equals the zero matrix, and no smaller power does so. Thus, the order $\ell$ of the pole at $\lambda$ equals one plus the maximum number of consecutive 1's among $\delta_{2} \ldots, \delta_{m}$. Notice that in the notation used in the description of the Jordan canonical form of a nilpotent operator in Section 5, we have $g=p_{\ell}$, while $m$ and $\ell$ have the same meanings as used in this section.

We give some simple examples to illustrate the above considerations. Let $m=4$ and let $\left.T\right|_{P_{\lambda}}$ be represented by one of the following Jordan canonical forms:

$$
\begin{gathered}
\mathbb{M}_{1}=\left[\begin{array}{llll}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right], \quad \mathbb{M}_{2}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right], \quad \mathbb{M}_{3}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right] \\
\mathbb{M}_{4}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right], \quad \mathbb{M}_{5}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

For $M_{1}, g=4$ and $\ell=1$; for $M_{2}, g=3$ and $\ell=2$; for $M_{3}, g=2$ and $\ell=2 ;$ for $M_{4}, g=2$ and $\ell=3$ and for $M_{5}$, $g=1$ and $\ell=4$. Note that these are the only possibilities for the case $\mathrm{m}=4$.

We say that $\lambda$ is a discrete spectral value of $T$ if $\lambda$ is an isolated point of $\sigma(T)$ and the corresponding spectral projection $P_{\lambda}$ has finite rank, i.e., $\lambda$ is an eigenvalue of $T$ of finite algebraic multiplicity. The set of all discrete spectral values of $T$ constitutes the discrete spectrum $\sigma_{d}(T)$ of $T$. The discrete spectral values of $T$ form by far the most tractable part of $\sigma(T)$. as we shall see in the later sections. See Corollary 3 of Appendix I for a characterization of $\sigma_{d}(T)$.

In order to tell when the spectral projection $P_{\Gamma}$ associated with a curve $\Gamma$ in $\rho(\mathrm{T})$ has finite rank, we prove a preliminary result.

LEMHA 7.8 Let a curve $\Gamma$ in $\rho(\mathrm{T})$ enclose only a finite number of (isolated) points $\lambda_{1}, \ldots, \lambda_{n}$ of $\sigma(T)$. If $P_{j}$ denotes the spectral projection associated with $\lambda_{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$, and $P=P_{\Gamma}$, then

$$
\begin{aligned}
P & =P_{1}+\ldots+P_{n} \\
P_{j} P_{k} & =0, \quad j \neq k \\
R(P) & =R\left(P_{1}\right) \oplus \ldots \oplus R\left(P_{n}\right) \\
T P & =\sum_{j=1}^{n}\left(\lambda_{j} P_{j}+D_{j}\right)
\end{aligned}
$$

where $D_{j}$ is the quasinilpotent operator $\left(T-\lambda_{j} I\right) P_{j}$.
Proof For each $j$, let $\Gamma_{j}$ be a curve such that $\lambda_{j} \in \operatorname{Int} \Gamma_{j}$ and $\Gamma_{\mathrm{j}} \subset$ Int $\Gamma \cap \operatorname{Ext} \Gamma_{\mathrm{k}}, \mathrm{k} \neq \mathrm{j}$.


Figure 7.1

Then by Cauchy's theorem (Theorem 4.3(a)),

$$
\int_{\Gamma} \mathrm{R}(\mathrm{z}) \mathrm{d} \mathrm{z}-\int_{\Gamma_{1}} \mathrm{R}(\mathrm{z}) \mathrm{d} \mathrm{z}-\ldots-\int_{\Gamma_{\mathrm{n}}} \mathrm{R}(\mathrm{z}) \mathrm{d} \mathrm{z}=0
$$

so that $P=P_{1}+\ldots+P_{n}$. Also, if $j \neq k$, then by (4.17),

$$
\begin{aligned}
P_{j} P_{k} & =\frac{-1}{2 \pi i} \int_{\Gamma_{k}} P_{j} R(z) d z \\
& =\frac{-1}{2 \pi i} \int_{\Gamma_{k}}\left[\frac{-1}{2 \pi i} \int_{\Gamma_{j}} R(w) R(z) d w\right] d z \\
& =\left[\frac{-1}{2 \pi i}\right]^{2} \int_{\Gamma_{k}}\left[\int_{\Gamma_{j}} \frac{R(w)-R(z)}{w-z} d w\right] d z
\end{aligned}
$$

But, for all w $\in \Gamma_{j}$ and $z \in \Gamma_{k}$, we have

$$
\int_{\Gamma_{k}} \frac{d z}{w-z}=\int_{\Gamma_{j}} \frac{d w}{w-z}=0
$$

since $w . \in \operatorname{Ext} \Gamma_{k}$ and $z \in \operatorname{Ext} \Gamma_{j}$. Hence for all $j \neq \mathrm{k}$, we have $P_{j} P_{k}=0$, so that $R\left(P_{j}\right) \cap R\left(P_{k}\right)=\{0\}$. This shows that $R(P)=R\left(P_{1}\right) \oplus \ldots \oplus R\left(P_{n}\right)$. Finally, since $D_{j}=T P_{j}-\lambda_{j} P_{j}$, we have

$$
\begin{aligned}
T P & =T P_{1}+\ldots+T P_{n} \\
& =\sum_{j=1}^{n}\left(\lambda_{j} P_{j}+D_{j}\right)
\end{aligned}
$$

THEORIT 7.9 Let $\Gamma$ be a curve in $\rho(\mathrm{T})$. Then the associated spectral projection $P_{\Gamma}$ is of finite rank if and only if $\sigma(T) \cap$ Int $\Gamma$ consists of a finite number of discrete spectral values of $T$, and in that case, the rank of $P_{\Gamma}$ equals the sum of the algebraic multiplicities of the eigenvalues of $T$ inside $\Gamma$.

Proof Let $Y=P_{\Gamma}(X)$ and $\operatorname{dim} Y<\infty$. Then $T_{Y}$ is a finite dimensional operator and hence $\sigma\left(T_{Y}\right)$ consists of a finite number of (isolated) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $\left.T\right|_{Y}$. But by (6.10) (the spectral decomposition theorem),

$$
\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)=\sigma(\mathrm{T}) \cap \operatorname{Int} \Gamma
$$

Hence $\lambda_{1}, \ldots, \lambda_{n}$ are isolated points of $\sigma(T)$. If $P_{j}$ denotes the spectral projection associated with $\lambda_{j}$, then by Lemma 7.8,

$$
R\left(P_{\Gamma}\right)=R\left(P_{1}\right) \oplus \ldots \oplus R\left(P_{n}\right)
$$

Hence each $P_{j}$ has finite rank, i.e. $\lambda_{j} \in \sigma_{d}(T)$.
Conversely, let

$$
\sigma(T) \cap \operatorname{Int} \Gamma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}
$$

where each $\lambda_{j} \in \sigma_{d}(T)$. Then again by Lemma 7.8,

$$
\operatorname{dim} P_{\Gamma}=\sum_{j=1}^{n} \operatorname{dim} P_{j}<\infty
$$

Note that $\operatorname{dim}_{P_{j}}$ is the algebraic multiplicity of $\lambda_{j}$.

We now describe some general situations where discrete spectral values are always encountered.
(i) Let $X$ be finite dimensional, and $T \in B L(X)$. Then $\sigma(T)=\sigma_{d}(T)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, say. If $\Gamma \subset \rho(T)$ encloses all the spectral values of $T$, then $P_{\Gamma}=I=P_{1}+\ldots+P_{n}$, and by Lemma 7.8, we have

$$
\begin{equation*}
T=\sum_{j=1}^{n}\left(\lambda_{j} P_{j}+D_{j}\right) \tag{7.16}
\end{equation*}
$$

where each $D_{j}$ is nilpotent. Let $T_{j}=\left.\left(\lambda_{j} P_{j}+D_{j}\right)\right|_{R\left(P_{j}\right)}$. We have seen earlier that in a suitable basis for $R\left(P_{j}\right), T_{j}$ is represented by the matrix

$$
J_{j}=\left[\begin{array}{ccccc}
\lambda_{j} & \delta & & 0 & \cdots
\end{array}\right) \quad 0
$$

where $\delta$ denotes either 0 or 1 . Thus, we obtain a block diagonal matrix representation

$$
J=\left[\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \\
0 & & & \vdots \\
\vdots & \ddots & \\
0 & \ldots & 0 & J_{n}
\end{array}\right]
$$

of $T$, known as a Jordan canonical form. It is immediate from the above representation that

$$
\begin{align*}
& \operatorname{det}(J-z I)=\prod_{j=1}^{n}\left(\lambda_{j}-z\right)^{m_{j}}  \tag{7.17}\\
& \operatorname{tr}(T)=\operatorname{tr}(J)=\sum_{j=1}^{n} m_{j} \lambda_{j},
\end{align*}
$$

where $m_{j}$ is the algebraic multiplicity of $\lambda_{j}$.

In this case, the range of the spectral projection $P_{j}$ associated with $T$ and $\lambda_{j}$ is the generalized eigenspace $\left\{x \in X:\left(T-\lambda_{j} I\right)^{m_{j}}=0\right\}$ of $T$ corresponding to $\lambda_{j}$, and its null space is the direct sum of the remaining generalized eigenspaces of $T$ :

$$
\begin{align*}
& Z\left(P_{j}\right)=Z\left[I-\sum_{i=1, i \neq j}^{n} P_{i}\right]=R\left[\sum_{i=1, i \neq j}^{n} P_{i}\right] \\
& =\stackrel{n}{i=1, i \neq j} R\left(P_{i}\right)=\stackrel{n}{\oplus}{ }_{i=1, i \neq j}\left\{x \in X:\left(T-\lambda_{i} I\right)^{m_{i}}=0\right\} . \tag{7.18}
\end{align*}
$$

(ii) Let $T \in B L(X)$ be a compact operator, i.e., let the closure of the set $\{T x: x \in X,\|x\| \leq 1\}$ be compact in $X$. Then one shows that T - I is one to one if and only if it is onto. ([L], 18.4(b)). This implies that every nonzero spectral value of $T$ is, in fact, an eigenvalue of $T$. The compactness of $T$ then implies that the set of eigenvalues of $T$ is countable, and has no limit point except possibly the number 0 ([L], 18.2). Thus, every nonzero $\lambda$ in $\sigma(\mathrm{T})$ is an isolated point of $\sigma(T)$. Let $\Gamma \subset \rho(T)$ separate $\lambda$ from the rest of $\sigma(\mathrm{T})$ and also from zero. Then

$$
\begin{align*}
P_{\lambda}=P_{\Gamma} & =-\frac{1}{2 \pi i} \int_{\Gamma} \mathrm{R}(\mathrm{z}) \mathrm{d} z \\
& =-\frac{1}{2 \pi i} \int_{\Gamma}\left[\frac{I}{z}+\mathrm{R}(\mathrm{z})\right] \mathrm{d} z \\
& =-\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{z}[I+z R(z)] \mathrm{d} z \\
& =-\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{z} \operatorname{TR}(z) \mathrm{d} z \tag{7.19}
\end{align*}
$$

by (5.4). Now, since $T$ is compact, so is $\operatorname{TR}(z) / z$ for every $z \in \Gamma$. Hence $\mathrm{P}_{\Gamma}$ is compact, being the limit (in $\mathrm{BL}(\mathrm{X})$ ) of the RiemannStieltjes sums (4.5) of compact operators. But a compact projection must have finite rank by Corollary 3.9, so that the rank of $P_{\lambda}$ is finite.

Thus, every nonzero spectral value of a compact operator is an eigenvalue of finite algebraic multiplicity, i.e., it is a discrete spectral value. If $0 \in \sigma_{d}(T)$ also, then $\sigma(T)$ will consist of a finite number of discrete spectral values, and Lemma 7.8 will imply that $X$ is finite dimensional. Hence whenever $X$ is infinite dimensional and $T$ is compact, we have

$$
\sigma_{d}(\mathrm{~T})=\sigma(\mathrm{T}) \backslash\{0\}
$$

Let, now, $\lambda_{1}, \lambda_{2}, \ldots$ denote the nonzero (isolated) spectral values of $T$. Let $P_{j}$ denote the spectral projection (of finite rank) associated with $\lambda_{j}, j=1,2, \ldots$. If we let

$$
Q_{n}=P_{1}+\ldots+P_{n}, \quad n=1,2, \ldots
$$

then we have as in Lemma 7.8,

$$
T Q_{n}=\sum_{j=1}^{n}\left(\lambda_{j} P_{j}+D_{j}\right)
$$

where each $D_{j}$ is nilpotent. However, $T$ need not have the infinite representation

$$
\sum_{j=1}^{\infty}\left(\lambda_{j} P_{j}+D_{j}\right)
$$

as the example of the Volterra integration operator $V$ shows. In this case, we have $\sigma(\mathrm{V})=\{0\}$, so that there is no nonzero spectral point of $V$, but at the same time $V \neq 0$. In the next section we shall consider compact normal operators on a Hilbert space for which the above infinite expansion is valid.

Examples of isolated spectral values.
(i) Let $X=\ell^{2}$, and let $T \in B L(X)$ be represented by the diagonal infinite matrix

$$
\operatorname{diag}\left(1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \ldots\right)
$$

Then for $z \neq 0,1, \frac{1}{2}, \frac{1}{3}, \ldots$, the resolvent operator $R(z)$ is represented by the matrix

$$
\operatorname{diag}\left(\frac{1}{1-z}, \frac{2}{1-2 z}, \frac{1}{1-z}, \frac{3}{1-3 z}, \cdots\right)
$$

The eigenvalue $\lambda=1$ has infinite geometric and algebraic multiplicities since each $e_{2 n+1}, n=0,1,2, \ldots$ is an eigenvector of $T$ corresponding to $\lambda=1$; the associated spectral projection $P_{1}$ is given by termwise integration of $R(z)$ over $\Gamma(t)=1+r e^{i t}$, $0 \leq t \leq 2 \pi, 0<r<1 / 2$, it is represented by

$$
\operatorname{diag}(1,0,1,0, \ldots)
$$

Hence it follows that

$$
\mathrm{D}_{1}=(\mathrm{T}-\mathrm{I}) \mathrm{P}_{1}=0
$$

Thus, $\ell=1$, i.e., $\lambda$ is a semisimple (but not a simple) eigenvalue of $T$. In this case, $S_{1}=\lim _{z \rightarrow 1} R(z)\left(I-P_{1}\right)$ is represented by

$$
\begin{array}{r}
\lim _{z \rightarrow 1} \operatorname{diag}\left(\frac{1}{1-z}, \frac{2}{1-2 z}, \ldots\right) \operatorname{diag}(0,1,0,1, \ldots) \\
\quad=\operatorname{diag}\left(0,-2,0, \frac{-3}{2}, 0, \frac{-4}{3}, \ldots\right) .
\end{array}
$$

(ii) Let $X=\ell^{2}(\mathbb{Z})$, the space of all square summable doubly infinite complex sequences. Let $T \in B L(X)$ be given by the matrix
where all the remaining entries are equal to zero. It can be verified ([L], Problem 18(ii)) that

$$
\sigma(T)=\{0\} \cup\{1 / n: n=1,2, \ldots\}
$$

that $\lambda=1$ has geometric multiplicty 1 , but infinite algebaic multiplicty; it is, in fact, an essential singularity of $R(z)$.

$$
\begin{align*}
& \text { Let } X=L^{2}([0,1]) \text { and }  \tag{iii}\\
& \qquad \begin{aligned}
T x(s) & =\int_{0}^{1} k(s, t) x(t) d t, \\
& k \in X, s \in[0,1], \\
& k(s)=\left\{\begin{array}{cc}
s / 2, & 0 \leq s<t \\
(2 t-s) / 2, & t \leq s<1
\end{array}\right.
\end{aligned}
\end{align*}
$$

Then it can be checked that $T x=y, x \in X$ if and only if $y^{\prime}$ is absolutely continuous on $[0,1], y^{\prime \prime} \in X$ and

$$
-y^{\prime \prime}=x, y(0)=0, y^{\prime}(0)+y^{\prime}(1)=0 .
$$

The eigenvalues of the compact operator $T$ are $1 /[(2 j-1) \pi]^{2}$, $j=1,2, \ldots$. We can verify that corresponding to the eigenvalue
$\lambda=1 / \pi^{2}, \quad x_{1}(t)=\sin \pi t$ is an eigenvector, while $x_{2}(t)=t \cos \pi t$ is a generalized eigenvector. In fact, in this case $\mathrm{g}=1, \mathrm{~m}=2=$ $\ell$. Thus, $\lambda$ is not a semisimple eigenvalue.
(iv) Let $X=L^{2}([-1,1])$ and

$$
\begin{gathered}
T x(s)=\int_{-1}^{1} k(s, t) x(t) d t, x \in X, s \in[-1,1], \\
k(s, t)=\frac{\sqrt{e}}{e-1}\left\{\begin{array}{l}
e^{(1+t-s) / 2}+e^{(-1-t+s) / 2},-1 \leq t<s \\
e^{(-1+t-s) / 2}+e^{(1-t+s) / 2}, s \leq t<1
\end{array}\right.
\end{gathered}
$$

Then $T x=y, x \in X$ if and only if $y^{\prime}$ is absolutely continuous on $[-1,1], y^{\prime \prime} \in X$, and

$$
-y^{\prime \prime}+\frac{1}{4} y=x, y(-1)=y(1), y^{\prime}(-1)=y^{\prime}(1)
$$

The eigenvalues of $T$ are $4 /\left(4 \pi^{2} n^{2}+1\right), n=0,1,2, \ldots$. Corresponding to the eigenvalue $\lambda=4$, we have only one linearly independent eigenfunction $x_{0}(t)=1$. But corresponding to the eigenvalue $\lambda_{n}=4 /\left(4 \pi^{2} n^{2}+1\right), n=1,2, \ldots$ we have the eigenfunctions $x_{n, 1}(t)=\sin n \pi t$ and $x_{n, 2}(t)=\cos n \pi t$; in fact, in this case $\mathrm{g}=\mathrm{m}=2, \quad \ell=1$.
(v) The nonzero eigenvalues of many operators which describe various physical situations are simple. We now quote some general results regarding the 'simplicity' of eigenvalues.

Let $X$ be finite dimensional and $T \in B L(X)$ be representd by a matrix $K=\left(k_{i, j}\right)$. Perron's theorem states that if $k_{i, j}>0$ for all $i, j$, then $T$ has a positive simple eigenvalue which exceeds the moduli of all other eigenvalues. Frobenius' generalization of this theorem says that if $k_{i, j} \geq 0$ for all $i, j$ and $K$ is irreducible
(i.e., there is no permutation matrix $P$ such that $\mathrm{P}^{\mathrm{H}} \mathrm{KP}=\left[\begin{array}{cc}\mathrm{K}_{1,1} & \mathrm{~K}_{1,2} \\ 0 & \mathrm{~K}_{2,2}\end{array}\right]$, where $\mathrm{K}_{1,1}$ and $\mathrm{K}_{2,2}$ are square matrices of order less than the order of $K$ ), then all the eigenvalues of $T$ of largest modulus are simple. ([G],p.53). Another fundamental result states that if (a) $k_{i, j} \geq 0$ for all $i$ and $j$, (b) all the minors of $K$ have nonnegative determinants, (c) $k_{i, j}>0$ whenever $|i-j| \leq$ 1 , and (d) det $K>0$, then all the eigenvalues of $T$ are positive and simple. ([G], p.105).

Here are some infinite dimensional analogues of some of the above results. Let $X=\ell^{2}$, and a compact normal operator $T$ be represented by the infinite matrix $\left(k_{i, j}\right)$. If $k_{i, j} \geq 0$ for all $i, j$ and $k_{i, j}>0$ whenever $|i-j| \leq 1$, then $\|T\|$ is a simple eigenvalue of $T\left([K R]\right.$, Prop. $\left(\beta^{\prime \prime}\right)$, Sec.3). Similarly, let $X=L^{2}([a, b])$ and let $T$ be a compact normal integral operator

$$
T x(s)=\int_{a}^{b} k(s, t) x(t) d t, x \in X, s \in[a, b]
$$

where the kernel $k$ is continuous on $[a, b] \times[a, b], k(s, t) \geq 0$ for all $s, t$, and $k(t, t)>0$ for all $t$. Then $\|T\|$ is a simple eigenvalue of $T$ ([KR], Prop. $\left(\beta^{\prime}\right)$, Sec.3).

## Problems

7.1 Let $X=e^{2}$ and

$$
T[x(1), x(2), x(3), \ldots]^{t}=\left[x(2), \frac{x(3)}{2}, \frac{x(4)}{3}, \ldots\right]^{t} .
$$

Then $T$ is quasi-nilpotent but not nilpotent. $R(z)$ has an essential singularity at 0 .
7.2 Let $\lambda$ be an isolated point of $\sigma(T)$. If $x \in R\left(P_{\lambda}\right)$ and $z \in \rho(T)$, then $R(z) x=-\sum_{k=0}^{\infty}(T-\lambda I)^{k} x /(z-\lambda)^{k+1}$. Also,

$$
R\left(P_{\lambda}\right)=\left\{x \in X:\left\|(T-\lambda I)^{n} x\right\|^{1 / n} \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

7.3 Let $\operatorname{dim} P_{\lambda}(X)=3$ and assume that there are two linearly independent eigenvectors corresponding to $\lambda$, but no more. Then $T P_{\lambda} \neq \lambda P_{\lambda}$, but $T^{2} P_{\lambda}=\lambda P_{\lambda}(2 T-\lambda I)$.
7.4 Let $\lambda$ be an isolated point of $\sigma(T)$. Then the function $z H$ $R(z)\left(I-P_{\lambda}\right)$ has a removable singularity at $\lambda$. If $\Gamma \subset \rho(T)$ and Int $\Gamma$ contains only a finite number of points of $\sigma(T)$, then the function $z \leftrightarrow R(z)\left(I-P_{\Gamma}\right)$ has only removable singularities in Int $T$.
7.5 Let $\lambda \in \sigma_{d}(T)$ and $Y=R(P)$. Then for $n=1,2, \ldots$.

$$
R\left((T-\lambda I)^{n}\right)=\left\{y \in X: P_{\lambda} y \in R\left(\left(T_{Y}-\lambda I_{Y}\right)^{n}\right)\right\}
$$

and it is a closed subspace of $X$.
7.6 Let $\lambda$ be a pole of $R(z)$ of order $\ell$. Then every nonzero element of $R\left(D_{\lambda}^{\ell-1}\right)$ is an eigenvector of $T$ corresponding to $\lambda$ (Note: $D_{\lambda}^{0}=P_{\lambda}$ ).
7.7 Let $A, B \in B L(X)$. Then $\sigma_{d}(A B) \backslash\{0\}=\sigma_{d}(B A) \backslash\{0\}$. Let $0 \neq \lambda \in \sigma_{d}(A B)$ have algebraic (resp., geometric) multiplicity m (resp., g), and let $\lambda$ be a pole of order $\ell$ of $R(A B, z)$. Then the same holds if we replace $A B$ by $B A$. (Cf. Problem 5.1.) In fact, $A P_{\lambda}(B A)=P_{\lambda}(A B) A$. If $X$ is finite dimensional, then 0 is an eigenvalue of the same algebraic multiplicity of $A B$ and of $B A$, and it is a pole of the same order of $R(A B, z)$ and $R(B A, z)$, but the dimensions of $Z(A B)$ and $Z(B A)$ may not be equal.
7.8 Let $z_{0} \in \rho(T)$. A complex number $\lambda$ is an isolated point of $\sigma(T)$ if and only if $1 /\left(\lambda-z_{0}\right)$ is an isolated point of $\sigma\left(R\left(z_{0}\right)\right)$; in that case, the associated spectral projections are the same and $Z(T-\lambda I)=$ $Z\left(R\left(z_{0}\right)-I /\left(\lambda-z_{0}\right)\right)$. Moreover, the order of the pole of $R(T, z)$ at $\lambda$ is the same as the order of the pole of $R\left(R\left(z_{0}\right), z\right)$ at $1 /\left(\lambda-z_{0}\right)$. (Hint: (5.2) and Problem 4.8)
7.9 Let $\lambda$ be an isolated point of $\sigma(T)$. For $z \in \rho(T)$, we have

$$
\left[S_{\lambda}-\frac{I}{z-\lambda}\right]^{-1}=-(z-\lambda) I-(z-\lambda)^{2} R(z)\left(I-P_{\lambda}\right)
$$

Then $\mu(\neq \lambda)$ is an isolated point of $\sigma(\mathrm{T})$ if and only if $1 /(\mu-\lambda)$ is an isolated point of $\sigma\left(\mathrm{S}_{\lambda}\right)$; in that case, the associated spectral projections are the same, and $Z(T-\mu I)=Z\left(S_{\lambda}-I /(\mu-\lambda)\right)$.
7.10 Let $\lambda$ be a pole of $R(z)$ of order $\ell, A=T-\lambda I$ and $S=S_{\lambda}$. Then $A$ and $S$ satisfy $S A S=S, A^{\ell} S A=A^{\ell}, S A=A S$ (i.e., $S_{\lambda}$ is the Drazin inverse of $T-\lambda I$ ). If $\lambda$ is semisimple, then $S A S=S, A S A=A, S A=A S$ (i.e., $S_{\lambda}$ is the group inverse of $T-\lambda I)$ Let $X$ be a Hilbert space and $\lambda$ semisimple. Then the projection $P_{\lambda}$ is orthogonal if and only if $S A=A^{*} S^{*}$ (i.e., $S$ is the Moore-Penrose inverse of $T-\lambda I$; see the Penrose conditions on page 403).
7.11 Let $X=L^{2}([-\pi, \pi])$, and for $x \in X$,

$$
\begin{gathered}
\operatorname{Tx}(s)=\int_{-\pi}^{\pi} k(s, t) x(t) d t, s \in[-\pi, \pi], \\
k(s, t)=\frac{1}{2 \sqrt{2}}\left\{\begin{array}{l}
\sin \sqrt{2}(s-t)+(\cot \pi \sqrt{2}) \cos \sqrt{2}(s-t),-\pi \leq t \leq s \leq \pi \\
\sin \sqrt{2}(t-s)+(\cot \pi \sqrt{2}) \cos \sqrt{2}(t-s),-\pi \leq s \leq t \leq \pi .
\end{array}\right.
\end{gathered}
$$

The eigenvalues of $T$ are $1 /\left(2-n^{2}\right), n=0,1, \ldots$. The dominant eigenvalue 1 is semisimple but not simple.

