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7. llDATED SINGULAIUTIEE OF R.(z) 

In the last section we have considered the Laurent expansion of the 

resolvent operator R(z) in an annulus contained in the resolvent set 

p(T) of T € BL(X) We now specialize to the case when the inner 

circle of such an annulus degenerates to a point A; i.e., when a 

punched disk {z € ~ : 0 < lz-AI < o} lies in p(T) . Let f be any 

curve in p(T) such that a(T) n Int f c {A} . Since the operators 

Sf(T,A) and Df(T,A) do not depend on f , we denote them 

simply by PA . ~ and ~ . respectively. The operators SX and DA 

have special features. By the first resolvent identity (5.5), we have 

Thus, we see that 

(7.1) 

1 I~ ~ = 21ri r w - A dw 

=lim ~1 ~dw 
z~ 21Tl r w- z 

lim ~I R{z) + R{w) - R{z) dw 
z~ 21Tl r w - z 

= lim ~ [R(z)J ...!!!:__ + l (w-z)R(z)R(w) dw] 
z~ 21Tl r w - z r w - z 

= !.: [R(z) + R(z)(-P)] . 

~ = lim R(z)(I-P) . 
z~ 

Next, it follows by Proposition 6.4 and (5.1) that 

(7.2) a(~) c {0} U {1/(~-A) : ~ € a(T) , ~ ¢ A} , 

where the inclusion is proper if and only if A f a(T) . Hence 

(7.3) 

Again, Proposition 6.4 implies that 

(7 .4) a(~) = {0} and ra(~) = 0 . 
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For this reason, the operator ~ will be called the quasi

nilpotent operator associated with T and 1\ . We thus have the 

representation 

where D)\ is quasi-nilpotent. 

For 0 < iz-'A I < dist(/\,a(T)'\{1\}) we have the Laurent expansion 

k 
00 00 D. 

(7. I 8k+1 I A 

A 
- z-1\ - (z-1\)k+l k=O k=l 

To have a feeling for the operators PI\ and SA , we give a 

simple example. Let T be represented by the diagona 1 matrix 

diag(J\, ... , ... ) ' 

where 1\ does not belong to the closure of {Aj j 1,2, ... } . Then 

PI\= diag(l, ... ,l,O,O, ... ) 

SA= diag(O, ... ,0,1/(1\1-/\) , 1/(1\2-/\), ... ) 

Let us consider another typical example. Let X = L2 ([a, ) and 

let V denote the Volterra integration operator defined by 

Vx(s) = J: x(t)dt , x € X , s € [a,b] . 
a 

Then it is well-known ([L], p.151) that 

a(V) = {0} , 

i.e., V is quasi-nilpotent. Also, Vx = 0 implies x = 0 

r x(t)dt 
0 

0 for almost all s E [a,b] implies that x(t) 

since 

0 for 

almost all t € [a,b] Thus, 0 is not an eigenvalue of V . Hence 

V is not nilpotent. 
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Considering the isolated spectral point A = 0 of V , we easily 

see that 

P0 I , D0 = (V-OI}P0 = V and 

s0 = lim R(z)(I-P0 ) = 0 . 
z-J() 

This confirms with the first Neumann expansion (5.8) 

00 

R(z) I vk z 
k:::O 

00 vk I I - k+l ' z k=l z 

for 0 # z E IC , wh:i.ch is also the Laurent expansion (6. 

of R(z) 

about 0 

It can be readi seen by induction that for each k ~ 1 , 

~ . (s-t} . . Js k-1 

Y x(s} = (k-l)! x( t)dt , x EX , s E [a,b] . 
a 

Hence, if we let for 0 # z E [; , 

r ~ 1 [s-·t]k-l 
J L fk-l)'! z x(t)dt , 
-a k=l ~ 

x EX , s E [a,b] , 

then 

where U(z) 

R(z) 2 - I/z - U(z)/z , 

is again a Volterra operator with kernel e 
{s-t)/z 

The above remarks and the infinite representation of R(z) hold 

for any quasi-nilpotent operator which is not nilpotent. 

In the above exan:rple A :::: 0 is a.J:1 isolated essentiaL singuLarity 

of R(z) , since the Laurent e~~sion (7.6) D~s infinitely terms with 

negative powers of (z-A) . 
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The other extreme case arises when )\ is a removabLe singuLarity 

of R(z) , so that there are no terms with negative powers of (z-A) 

in .6). Clearly, this happens H and only if 

a(T) (Proposition 6. ) . In this case, SA 

the Taylor eA~ansion (5.7) of R(z) around )\ 

00 

R(z) L R(J\)k+l(z-A)k 
k=O 

0 , Le., A It 

and we recover 

Let us now consider the important case where "A is a pole of 

It can be readily seen from (7. that A is a pole of order 

e , 1 ~ E < oo if and only if 

(7.7) D~-l # 0 , 

In this case (7. reduces to 

(7.8) 

with the notation D~ P)\ . Notice that -P)\ is 

the residue of R(z) at )\ and that D)\ is niLpotent .. 

In order to illustrate the calculation of the coefficients in the 

expansion (7.8) of R(z) , we consider a simple example. Let X= ~2 

and fix t E ~ , Let 

T(t)x - [ 
0 

- 4t 

t/161 fx(l)l 

2 J lx(2) 

for x t 2 [x(l),x(2)] E ~ . Then for z € ~ , 

det(T(t)-zi) 

Let 

X(t) 

2 -z(2-z) - t /4 . 

2-~ 
2 
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where j4+t2 denotes the principle value of the square root of 4+t2 

Then every z 'It: {1\(t), t)} lies in p(T( } , and R(T{t),z) is 

given by the matrix 

(T(t)-zi)-l ~ [ ::: 

-t/'16 l 
" I 

J 
/ [z-1\(t)][z-p(t}] . 

-z 

Note that R(T(t), has simple poles at z = t) and z = p(t) if 

t # ±2i , and if t = ±2i , then it has a double pole at z = 1 . Let 

r denote the circle = 2 + 
t 0 S: t ~ 21f . Since for 

It I < 2 , we hav~ and we see 

that /\(t) lies xnside f and p( lies outside r . Using Cauchy's 

integral fonnula (Theorem 4.5(b)), we see th.at for lti < 2 , 

If R(T(t),z)dz 
cr 

:ii.s given by the matrix 

r 1\(t)-2 

! 
t/16 

(1\(t)-p(t)) . 

t 4t /\(t} 

It can be readily checked that for it! ( 2, 

Also, ~(t) lim 
z~( 

R(T( ,z)(I·-PI\(t)) is given by the matrix 

r -/\{ t 1 
' I 
l 4t 

Now we prove a result which allows us to characterize the order of 

a pole of R(z) . 
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~ 7.1 Let A be an isolated point of a(T) . 

(a) For k = if and 

if and only if 

(b) Let 1 ~ I! < oo • Then A is a pole of R(z) of order f if 

and only if 12 is the smallest positive integer such that one {and 

hence each) of the following conditions holds: 

(i) = R((T-AI)2) 

(ii) = Z((T-AI)2} 

In that case, 

Proof (a) Let k = 1,2,... . We have already noted in Section 6 

{just before the definition of a spectral projection) that 

(7.9) 

Similarly, it follows (cf. Problem 6.2) that 

(7. 

Also, since (T-XI) and PA commute, we have 

Hence part (a) follows. 

(b) It is clear from part (a) that ~-l ¢ 0 and D.e = 0 if and 

only if (i) or (ii) holds and 12 is the smallest such positive integer. 

In that case, 
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Remark 7.2 Consider the following two chains of inclusions involving 

the null spaces and the range spaces of powers of an operator A : 

{0} c c 

A pecuHar property of each of these chains is that if equality holds at 

any inclusion then it persists at all later inclusions. This can be 

y E R(Ak+l) 

k A X E 

Ax € Z(Ak+l) = Z(Ak) , or 

Similarly, let R(Ak) = R(Ak+l} 

then y = for some x E X ; but 

) i.e., 

then 

0 Thus, 

If 

for some 

Thus We shall make use of this property 

frequently. See Theorem 2 of Appendix I for a characterization of a 

pole of 

Here is an iterative procedure for finding Z(Ak): Let 

(7 .11) 

and 21.;: k 2,3, .... 

Then it is easy to see by induction on k that 

for all k i.e., Zk consists of the generalized eigenvectors of A of 

grade k corresponding to 0 . In particular, 7K = 0 if and only if 

PROPOSITION 7"3 Let A be a pole of R(z} . Then A is an isolated 

eigenvalue of 1t ! and the associated spectral subspace 

coincides with the generalized eigenspace of T corresponding to 1\ . 

In fact, the order of the pole of R(z) at A is 13 if at1d only if !! 
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is the smallest positive integer such that there are no generalized 

eigenvectors of T of grade f + 1 corresponding to A , and in that 

is the dis,joint union of and the sets of generalized 

eigenvectors of T of grade k corresponding to A. k 

Since /\ is a pole of we have = 0 , but ¢ 0 

fo:r some positive integer e . . Then there is w:!.th 

0 . 

Thus, :is an 'eigenvector of T corresponding to the eigenvalue 

A. • By (ii) of Lemma 7 .l(b) and by (7. , we have 

R(P ) /1, 

= {x € X : 

Letting A = T - A.I in 

and hence 

where zi n zj = 0 if 

0 for some k 

.11), we have 

R(P,) 
" 

:i. ¢ j Also, for k ~ 

only if Z( Z((T-J\I)k+l) and th:i.s 

1 

is 

Thus, A is a pole of order 

is the smallest positive integer with 

the 

I! 

2k+1 = 0 if and 

case if amd only 

if and only if 

f/ 

When A is a pole of R(z) , we wish to investigate how much 

larger the generalized eigenspace is as compared to the 

I! 

eigenspace Z(T-7\I) . For this purpose we prove the following result. 

if 

It will also allow us to obtain necessary and suff:i.cient conditions for 

the spectral projection PJ\ to be of finite rank. 
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LEMMA 7.4 Let A be a linear operator on X. Then for k = 1,2, ... , 

(7.12) 

(7.13) 

dim Z(Ak) ~ dim Z(A) + dim Z(Ak-1) 

~ k dim Z(A) 

dim Z(A) + k - 1 ~ dim Z(Ak) 

k-1 let us extend a basis of Z(A ) to a 

basis of Z(Ak) by adding a set W to it. Let x1 , ... ,xn € W. Then 

k-1 k-1 A x1 , ... ,A xn € Z(A) , and they form a linearly independent set. 

This can be seen as follows. Let 

and since x1, ... ,xn belong to W we must have c1 = ... =en= 0 

Thus, n ~ dim Z(A) . This shows that 

dim Z(Ak) ~ dim Z(A) + dim Z(Ak-1) 

Applying this result repeatedly for k = 2,3, ... , we obtain (7.12). 

Next, assume that Z(Ak-1) ¢ Z(Ak) . Then by Remark 7.2, each 

inclusion in the chain 

is proper. Hence 

dim Z(A) + 1 + ... + 1 ~dim Z(Ak) , 

where the 1's occur {k-1) times. This proves (7.13). // 
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Let A be a of R(z) of order ~ . If m is 

the rank of P[>_ , and g is the dimension o:f the eigenspace of T 

corresponding to )\ , then 

m S 
(7 .14) 

2 ~ e + g ~ m + 1 . 

In particular, 

m = 1 if and if 12 1 "' g 

.15) g 1 if and only .,. 
lY m !! 

e 1 if aJ.1d only if m - g 

For an isolated point A of we have rank (oo if 

and if A is a pole of R(z) and dim Z(T-AI) < 00 

ll"r!I>O:Il' (a} .By Lemma 7. 1 fb) , we have Z(('f-AI Hence 

letting A = T - A.I in we see that 

Proposition 7.3 shows that A :ils &"'!.eigenvalue of T . Hence g 2: 1 . 

Since I! z 1 h 2 ( n A D£-l 0 we ave · _ "' + g . gain, since ;t , but 

we l::;ave Hence by (7 .13), 

g + 2 - 1 dim Z{T-A.I) + !! - 1 $; dim Z( = m . 

This proves (7. The relations in (7.15) are J.mmediate. 

Assume that rank = m < oo As we have seen in (7.4), 

is quasi-nilpotent. Since Y = PA (X) is of dimension m we see by 

Proposition 5.6 that (DA = 0 . Also DAIZ = 0 , where 

Hence showing that is a pole of R(z) 
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Since Z(T-AI} C PA(X} , it follows that 

g = dim Z(T-AI} ~ m < ro . 

Conversely, let A be a pole of R(z} of order i and let 

g = dim Z(T-AI} < ro . Then by ·(7 .14} we see that rank PA < ro . // 

Let A be an isolated point of a(T} . The dimension of the 

associated spectr~l subspace PA(X} is called the algebraic 

multiplicity of A , and the dimension of the corresponding eigenspace 

Z(T-AI} is called the geometric multiplicity of A . 

If the algebraic multiplicity of A is 1 then A is called a 

simple eigenvalue of T . If A is a pole of R(z} of order 1 , 

(i.e., ~ = 0} , then A is said to be a semisimple eigenvalue of 

T. 

Note that an isolated point A of a(T} is a semisimple 

eigenvalue of T if and only if PA(X} = Z(T-AI} (by Lemma 7.1(b}), 

i.e., the corresponding spectral subspace coincides with the 

eigenspace. 

PROPOSITION 7.6 Let A be a pole of R(z} . (This condition is 

satisfied if A is an eigenvalue of T of finite algebraic 

mul tip! ici ty.} 

(a} A is a semisimple eigenvalue of T if and only if (T-AI}x 

is not an eigenvector of T corresponding to A for any x € X . 

(b) A is simple if and only if there is a unique (up to scalar 

multiples} eigenvector ~ of T corresponding to A , and there is no 

x € X such that (T-A}x = ~ 

Proof Let i be the order of the pole of R(z} at A . Then by (ii) 

of Lennna 7 .1(b}, 
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Proposition 7.3, we see that .£ 1 H and only if 

Z( (T-/d:}2} 

this if and only if there is no X €X with 

(T-1\I)x t!. 0 but (T-Al} [(T-AI)x] = 0 , Le., is not a.n 

eigenvector of T corresponding to A for any x € X 

By . 15), A is simple if and only J! = 1 and the geometric 

multiplicity g of A is 1 . Hence the desired result follows hy part 

When the geometric multiplicity of A is greater than 1 , it is 

possible that for a basis .p1 , ... <pg of the eigenspace Z(T-1\I) , each 

of the equations (T-1\I)x "' 'Pi , i = 1, ... ,g , has no solution in X , 

but (T-1\I)x = <P does have a solution fo:r some 0 # <p € Let 

X= ~3 , and T[x(l) ,x(3)]t = [1\x(l l\x(2), l\x(3)]t Then 

t 
and '1'2 

none of equations 

t ,0,-1] constitute a basis of Z(T-1\I) 

= 'Pi , i = 1,2 , has a solution in X 

but 

However, if we let t 
'P"' [1,0,0] ' then the equation (T-1\I)x = p has 

[x(l) ,1 ,x(3)]t as a solution for all x{l) and in ~ . (In 

particular, 1\ is not a semisimple eigenvalue of T .) 

Remark 7.7 The term 'geometric multiplicity' is self-eJ."Planatory, 

since it is the dimension of the corresponding eigenspace. To explain 

the term 'algebraic rnul tiplici ty' we proceed as follows. 

Let the algebraic multiplicity of 1\ be m ( oo • Then 1\ is a 

pole of R(z) . Let E be order of this pole. Since D/\ is quasi-

nilpotent, and since P)\(X) .has dimension m < 00 we see by 

Proposition 5.6 that is, in fact, nilpotent, and is the 

smallest positive integer such that (~~P)\(X) 

representation (7.5) 

0 . Considering the 



99 

we see that is represented, with respect to a suitable basis 

in the Jordan canonical form (cf. (5. ) the m x m 

rnatrix 

r A 
02 

0 
1 
I 

M I 6 I 
I 0 

m 

.I 
A 

l 

w·here each 5. is either 0 or 1 , 2 ~ j ~ m 
J 

Thus, A is a root 

of order m of the characteristic polynomial of M: , and hence the 

algebraic multiplicity of "A is said to be m . 

By looking at the " ' u.s 
J 

in the above representation, one can also 

determine the geometric mul ty of "A and the order of the 

pole at /1, • x = [x(l), ... ,x(m)]t € if!' Then. 

Thus, x is an eigenvector corresponding to A if a.nd only if 

j) = 0 for each j = 2, ... ,m. 

vector, and if 6. = 0 for some j 
J 

Hence 
t 

[1,0, .... ,OJ is an eigen.--

then [0, ... ,0, 1,0, ... ,O]t i_s 

also ai1:. eigenvector, whex·e 1 occurs in the j-th place; these vectors 

form a basis of the eigenspace corresponding to A . Thus, the 

geometric multiplicity g of J\ equals one plus the nuniber of zeros 

among o2 , ... ,om. Also, it can he seen that if k is the maximum 

number of consecutive l's among 

of the matrix 

r 0 

I 
I 0 

l 

02 

... Jj 

0 

0 m 
0 

m 
then the (k+l}-st power 



J\00 

equals the zero ll'!llatrix, and no smaller power does so. Thus, the order 

2 of the pole at A equals one plus the maximum number of consecutive 

Notice that :in the notation used in the 

description of the Jordan canonical form of a nilpotent operator in 

Section 5, we have g :::: while m and 1!. have the same mean:Ings 

as used in this section. 

We give some simple examples to illustrate the above 

consideratio:r:u:L Let m "" 4 and let TIP be represented by one of the 
A 

:following Jordan canonical forms: 

A 0 0 0 A 1 0 0 A 1 0 0 

0 A 0 0 0 A 0 0 0 A 0 0 

Ml 0 0 A 0 M2 0 0 A 0 M3 0 0 A 1 

0 0 0 A '0 0 0 ~ 0 0 0 A l\ 1 

A 1 0 0 

1 r ~ 
1 0 0 .I 

0 A ll 0 A. 1 0 

M4 "" M5 :::: 
0 0 A 0 

J 

. 
io 0 A 1 

0 0 0 A l 0 0 0 0 

For Ml g = 4 and i! 1 ; for g = 3 and I! = 2 for 

l\1:3 . g = 2 and J! = 2 ; for g 2 and !! = 3 and for .M5 

g = 1 and e 4 Note tl.1at these are the only possibiLities for the 

case m = 4 

We say that A. is a discrete spectral val!!_~ of T if A is an 

isolated point of a(T) and the corresponding spectral projection 

has finite :rank, i.e., A is an eigenvalue of T of finite algebraic 

multiplicity. The set of all discrete spectral values of T 

constitutes the discrete spectrum ad(T) of T . The discrete 

spectral values of T form by far the most tractable part of a(T) 

as we shall see in the later sections. See Corollary 3 of Appendix I 

for a characterization of ad(T) . 
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In order to tell when the spectral projection Pr associated with 

a curve r in .p(T) has finite rank, we prove a preliminary result. 

I...EIIIIA 7.8 Let a curve r in p(T) enclose only a finite number of 

(isolated) points x1 •... ,Xn of a(T) . If P. denotes the spectral 
J 

projection associated with Xj , 1 ~ j ~ n , and P = Pr . 

p = p1 + 

plk = 0 • 

+ p 
n 

j -F- k 

R(P) = R(P1) ~ ~ R(P ) • 
n 

n 
TP = I (X.P.+D.) • 

j=1 J J J 

where Dj is the quasinilpotent operator (T-Xji}Pj 

Proof For each j , 

rj c Int r nExt rk • 

let r. be a curve such that 
J 

k -F- j . 

Figure 7.1 

Then by Cauchy's theorem (Theorem 4.3(a)}. 

l R(z)dz- l R(z)dz- ... - l R(z)dz = 0, 
r r 1 rn 

then 

and 

so that P = P1 + ... + Pn Also, if j -F. k , then by (4.17). 
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But, for all w € fj and z € fk , we have 

since W· € Ext f k and Z € Ext f j Hence for all j ¢ k . we have 

plk = 0 . so 

R(P) = .R(P 1) Ill 

{0} . This shows that 

TP = TP1 + ... + TPn 

n 
I (AjPj+Dj) // 

j=1 

THEOREM 7.9 Let r be a curve in p(T) . Then the associated 

we have 

spectral projection Pr is of finite rank if and only if a(T) n Int f 

consists of a finite number of discrete spectral values of T , and in 

that case, the rank of Pr equals the sum of the algebraic 

multiplicities of the eigenvalues of T inside f . 

Proof Let Y = Pr(X) and dim Y < oo Then Ty is a finite 

dimensional operator and hence a(Ty) consists of a finite number of 

(isolated) eigenvalues A1, ... ,An of TIY. But by (6.10) (the 

spectral decomposition theorem), 

a(Ty) = a(T) n Int f . 

Hence A1 , ... ,An are isolated points of a{T) . If P. denotes the 
J 

spectral projection associated with Aj , then by Lemma 7.8, 
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Hence each Pj has finite rank, i.e., Aj € ad(T) 

Conversely, let 

where each Then again by Lemma 7.8, 

n 
dim Pr = I dim P. < oo • 

j=1 J 

Note that dim Pj is the algebraic multiplicity of Aj // 

We now describe some general situations where discrete spectral 

values are always encountered. 

(i) Let X be finite dimensional, and T € BL(X) . Then 

a(T) = ad(T) = {A1, ... ,An} , say. If f C p(T) encloses all the 

spectral values of T, then Pr =I= P1 + ... + Pn, and by Lemma 

7.8, we have 

(7.16) 

where each D. 
J 

is nilpotent. Let We have 

seen earlier that in a suitable basis for R(Pj) , Tj is represented 

by the matrix 

A. 6 0 0 
J 

0 6 0 
Jj = 

6 

0 0 A. 
J 

where 6 denotes either 0 or 1 Thus, we obtain a block diagonal 

matrix representation 



of T lmown as a .Jordan canonical form. It is immediate from the 

above representation that 

m. 
det(J-zi) 

n 
rr 

j=1 
(A.-z) J 

J 

(7 .17) 

.tr(T) 
n 

tr(J) - L mlj 
j=1 

where mj is the algebraic multiplicity of Aj 

In this case, the range of the spectral projection Pj associated 

with T and Aj is the generalized eigenspace 
m. 

{x EX : (T-A.I) J = 0} 
J 

of T corresponding to Aj , and its null space is the direct sum of 

the remaining generalized eigenspaces of T 

(7 .18) o}. 

(ii) Let T E BL(X) be a compact operator, i.e., let the closure 

of the set {Tx : x E X , llxll ~ 1} be compact in X . Then one shows 

that T- I is one to one if and only if it is onto. ([LJ, 18.4(b)). 

This implies that every nonzero spectral value of T is, in fact, an 

eigenvalue of T . The compactness of T then implies that the set of 

eigenvalues of T is countable, and has no limit point except possibly 

the number 0 ([L], 18.2). Thus, every nonzero A in a(T) is an 

isolated point of a(T) . Let f C p(T) separate A from the rest of 

a(T) and aLso from zero. Then 
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-~I R(z)dz 
2n r 

rl ~! 
- + R(z} !dz 

Lz J 

1 !. [I + zR(z} 
21ri z 

(7.19) Jr 1 - TR(z)dz 
z 

by .4). Now, since T is compact, so is TR(z}/z for every z E f . 

Hence Pr is compact, being the limit (in BL(X)) of the Riemann-

Stieltjes sums (4.5) of compact operators. But a compact projection 

must have finite rank by Corollary 3.9, so that the rank of PA is 

finite. 

Thus, every nonzero spectral value of a compact operator is an 

eigenvalue of finite algebraic multiplicity, :i.e., it is a discrete 

spectral value. H 0 E od(T) also, then a(T) will consist of a 

finite number of discrete spectral values, and Lerrma 7.8 will imply that 

X is finite dimensional. Hence whenever X is infinite dimensional 

ar1d T is compact , we have 

Let, now, 

of T . Let 

associated with 

act(T) = a(T) \_ {0} . 

,A2 , ... denote the nonzero (isolated) spectral values 

denote the spectral project:i.on (of fin:i. te rank) 

Aj , j = 1.2, .... If we let 

n Jl,2, ... ' 

then we have as in Lemma 7.8, 

where each D. is nilpotent. However, T need not have the infinite 
J 

representation 
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00 

I (7\.iPJ.+ DJ.) , 
j=l " 

as the example of the Volterra integration operator V shows. In this 

case, we have a(V} = {0} , so that there is no nonzero spectral point 

of V , but at the same time V ~ 0 . In the next section we shall 

consider compact normal operators on a Hilbert space fo:r which the 

above infinite expansion is vaU.d. 

(i) Let X = 22 , and let T € BL(X) be 

diagonal infinite matrix 

( 1 1. 1 diag 1, 2. . 1 
1, 4' .. 0 ) • 

by the 

Then for 1 3, ... , the resolvent operator R(z) 

represented by the matrix 

diag( 1_1,_, ' 122 -z - z ' . . . ) . 

The eigenvalue )\ = 1 has infin:i. te geometric. and. algebraic 

is 

multiplicities since each e2n+l , n = 0,1,2, ... , is an eigenvector of 

T corresponding to )\ = 1 the associated spectral projection P1 Js 

given by termwise integration of R(z) over 

0 ~ t ~ 2~ , 0 < r < 1/2 , it is represented by 

diag(l, 0, 1, 0, ... ) . 

Hence it follows that 

it 
t) = 1 + re , 

Thus, l! = 1 , i.e., 'A is a semi simple (but not a simple) eigenvalue 

of T In this case, s 1 = lim R(z)(I-P1) is represented by 
z-wl 
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JJ..-Z 

z""'>1 
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1: 2z , ... )diag(O, 1, 0, 1, 

-3 -4 = diag (0, -2, 0, 2 , 0, 3 

(ii) Let X = e2 (:l} , the space of all square su:mr;able doubly 

infinite sequences. Let T E BL(X) be given by the matrix 

I 
1/3 

1/2 
~ ~ ~ Q 

1 1 
1 1/2 

l 1 1/3 

1 

where all the •·enraining entries are equal to zero. It can be verified 

([L], Problem 18(ii)) that 

a(T) U {1./n n = 1,2, ... } 

that A= 1 has geometric multiplicty 1 , but infinite algebaic 

multiplicty; :i.t is, in fact, an essential singularity of R(z) . 

(iii} Let X 2 = L ([0, 1]) and 

Tx(s} = t k(s, t)dt X EX s € [0, 
0 

r s/2 0 s s ( t 

't) t (2t-s)/2 t 5; "' < 1 

Then it can be checked that Tx = y , x € X if and only if y' is 

absolutely continuous on [0,1] y EX and 

-y'' = x y(O) = 0 , y +y'(1)=0. 

The eigenvalues of the compact operator T are 1/[(2j-l)r.]2 , 

j = 1,2, .... We car! verify that corresponding to the eigenvalue 



108 

A= t COS ITt 

is a generalized etgenvector. In fact, in this case g = 1 m"' 2 

E . Thus, A is not a semisimple eigenvalue. 

( Let 2 X=L([-1 and 

Tx(s} -- J'l t)dt . x eX . s e [-1.1] , 
-1 

r l+t-s)/2 18 (-1-t+s)/2 , _1 ~ t < s 

~e- + 

e-1 1 
e (-1+t-s)/2 +, 1-t+s)/2 

. s 5; t < 1 

Then Tx "" y , x € X if and only if v' is absolutely continuous on 

, 1] , y'' e X • and 

y(-1) = 1) . y'(-1) = y'(l) . 

The eigenvalues of T are 2 2 41(47r n +1) , n = 0,1,2, ... Corresponding 

to the eigenvalue A 4 we have only one linearly independent 

eigenfunction t) ::: 1 But corresponding to the eigenvalue 

n = 1,2, ... , we have the e:i.genfunctions 

sin mrt and x 2{t) = cos mrt 
n, 

in fact, in this case 

2 !! = 1 

The nonzero eigenvalues of many operators which describe 

various physical situations are simple. We now quote some general 

results regarding the 'simplicity' of eigenvalues. 

Let X be finite dimensional and T € BL(X) be representd by a 

matrix K = (k .. ) . Perron's theorem states that if k .. > 0 for 
l,J l,J 

all i,j , then T has a positive simple eigenvalue which exceeds the 

moduli of all other eigenvalues. Frobenius' generaLization of this 

theorem says that if . ) 0 for aH i, j and K is irreducible 
,J -
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(i.e.' there is no permutation rr.atrix p such that 

~\:p [ Kl.l K., 2 1 1" = j ' 
where Kl, 1 and 1<2 are square matrices of 

0 K2,2 
,2 

order less than the order of K ) , then all the eigenvalues of T of 

largest modulus are simple. ([G] dJ.53). Another fundamental result 

states that if '> 0 for all i and j , (b} all the minors 
,j "" 

of K have nonnegative determinants, {c) . ) 0 whenever li-jl ~ 
'J 

1 , and (d) det K > 0 then all the eigenvalues of T are positive 

Here are some infinite dimensional analogues of some of the above 

? 
results. Let X -· !!.£.., and a compact normal operator T be 

represented by the infinite matrix .) 
'J 

If k. . :?: 0 for all i, j 
l,J 

and . > 0 whenever i i- j I S: 1 
'J 

then liTH is a simple eigenvalue 

of T ([KR] Prop. (!3"), S:ec.3), Similarly, let X= L2 ([a,b]} and 

let T be a compact nonnal integral operator 

Tx(s) -· f k(s,t)x(t)dt , x EX , s E [a,b] , 
Ja 

where the kernel k is continuous on [a,b]x[a,b] , k(s,t) :;:: 0 for all 

s,t , and k(t,t) 0 for all t Them I!Til is a simple eigenvalue 

of T ([KR], Prop,(~'), Sec.3). 

Problem5 

7,1 Let X 

T[ {.l) (2 ' (3} -t [ ( 2) x(3J x(4) ]t , X , X j , X ~ . ~ " J = X 1 · n 2 ~ 3 ~ ~ ~ • ~ 

Then T is quasi-nilpotent but not :nilpotent. R(z) r..as an essential 

singularity at 0 . 
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7.2 Let I\ be an isolated point of a(T) . If x E and 

00 

z € p(T) , then R(z)x ~ - I 
k=O 

/ (z-"'A)k+l . Also, 

7.3 Let dim P:.\(X) = 3 and assume that there are two linearly 

independent eigenvectors corresponding to A , but no more. Then 

TP # )\ but 

7. 4 Let ), be an isolated. point of Then the :function z 1"1 

(I-P:A) has a removable singularity at ·A . If f C p(T) and 

Int r contains only a finite number of points of a(T) , then the 

function z ~ R(z)(I-Pr) has only removable singularities in Int f . 

Then for n = 1,2, ... , 

and it is a closed subspace of X . 

7.6 Let A be a pole of R(z) of order 2 Then every nonzero 

element of ) is an eigenvector of T corresponding to A 

(Note: n° 
A 

7.7 Let A , B € BL(X) . Then ad(AB) ' 

0 #A € ad{AB) have algebraic (resp., geometric) multiplicity m 

(resp., g), and let A be a pole of order e of R(AB,z) Then the 

same holds if we replace AB by BA (Cf. Problem 5.1.) In fact, 

APA (BA) = PA (AB)A . If X is finite dimensionaL then 0 is an 

eigenvalue of the same algebraic multiplicity of AB and of BA , ru1d 

it is a pole of the same order of R(AB,z) and R(BA,z) , but the 

dimensions of Z(AB) and Z{BA} may not be equal. 
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7.8 Let E A complex number X is 8.!."1 isolated point of a(T) 

if and only if 1/(X-z0 ) is a.n isolated point of a(R.(z0 )) in that 

case, the associated spectral projections a:re the same and Z(T-XI) 

7(R(~ ''-T;·'f'A-7' ) ' ~, "'o 1 - t ~oj" · Moreover, the order of the pole of R(T, at A 

is the same as the order of the pole of 

(5. and Problem 4.8) 

7.9 Let .. A be an isolated point of a(T) For 7' E p(T} we have 

[sx I ]-:t I (I-P~) - z-'A "" -
• 1\. 

Then 1-lV. is an isolated point of a(T) if and only if 1./(f-1-)\) 

an isolated point of a(S;) ; in that case, the associated spectral 

projections are the sa.me, m'l.d -I/(p:-X)} . 

7.10 Let X be a pole of of order I! A = T - XI and 

s = Then A and s satisfy SAS = s 

(i.e.' is the Drazin inverse of T - ?\I) If ?\ is semisimple, 

is 

then SAS s ASA -- A SA = AS (i.e.' is the group inverse of 

T - /\I) . Let X be a Hilbert space and t\ semisimple. Then the 

projection P)\ is if and only if (i.e.' is 

the Moore-Eenrose inverse of T - ?\I see the Penrose conditions on 

page 403). 

7 11 L " ~ 2.[ ]) . et A = L l -'IT,'If , and for x € X , 

Tx(s} k(s,t)x(t)dt , s E [-!T,'IT] , 

r sin -12(s-t) + (cot 'IT'f2) 

k(s,t) 1 J 

= 2,[21 sin .J2( t-s) + (cot v·.f2) 

The eigenvalues of T are 2 
1/(2-n ) 

cos .f2(s-t) 

cos -.!2( t-s) 

n = 0, 1, ... 

eigenvalue 1 is semisimple but not simple. 

-'IT s t s s :;; 

-r. s s s t s; 

The dominant 

1T 

'IT. 


