7. ISOLATED SINGULARITIES OF R(z)

In the last section we have considered the Laurent expansion of the resolvent operator $\mathbb{R}(z)$ in an annulus contained in the resolvent set $\rho(T)$ of $T \in BL(X)$. We now specialize to the case when the inner circle of such an annulus degenerates to a point λ ; i.e., when a punched disk $\{z \in \mathbb{C} : 0 < |z-\lambda| < \delta\}$ lies in $\rho(T)$. Let Γ be any curve in $\rho(T)$ such that $\sigma(T) \cap \operatorname{Int} \Gamma \subset \{\lambda\}$. Since the operators $\mathbb{P}_{\Gamma}(T)$, $\mathbb{S}_{\Gamma}(T,\lambda)$ and $\mathbb{D}_{\Gamma}(T,\lambda)$ do not depend on Γ , we denote them simply by \mathbb{P}_{λ} , \mathbb{S}_{λ} and \mathbb{D}_{λ} , respectively. The operators \mathbb{S}_{λ} and \mathbb{D}_{λ} have special features. By the first resolvent identity (5.5), we have

$$\begin{split} \mathbf{S}_{\lambda} &= \frac{1}{2\pi \mathrm{i}} \int_{\Gamma} \frac{\mathbf{R}(\mathbf{w})}{\mathbf{w} - \lambda} \, \mathrm{d}\mathbf{w} \\ &= \lim_{Z \to \lambda} \frac{1}{2\pi \mathrm{i}} \int_{\Gamma} \frac{\mathbf{R}(\mathbf{w})}{\mathbf{w} - z} \, \mathrm{d}\mathbf{w} \\ &= \lim_{Z \to \lambda} \frac{1}{2\pi \mathrm{i}} \int_{\Gamma} \frac{\mathbf{R}(z) + \mathbf{R}(\mathbf{w}) - \mathbf{R}(z)}{\mathbf{w} - z} \, \mathrm{d}\mathbf{w} \\ &= \lim_{Z \to \lambda} \frac{1}{2\pi \mathrm{i}} \left[\mathbf{R}(z) \int_{\Gamma} \frac{\mathrm{d}\mathbf{w}}{\mathbf{w} - z} + \int_{\Gamma} \frac{(\mathbf{w} - z)\mathbf{R}(z)\mathbf{R}(\mathbf{w})}{\mathbf{w} - z} \, \mathrm{d}\mathbf{w} \right] \\ &= \lim_{Z \to \lambda} \left[\mathbf{R}(z) + \mathbf{R}(z)(-\mathbf{P}) \right] \, . \end{split}$$

Thus, we see that

(7.1)
$$S_{\lambda} = \lim_{z \to \lambda} \mathbb{R}(z)(I-P) .$$

Next, it follows by Proposition 6.4 and (5.1) that

$$(7.2) \sigma(\mathbb{S}_{\lambda}) \subset \{0\} \cup \{1/(\mu - \lambda) : \mu \in \sigma(\mathbb{T}) \ , \ \mu \neq \lambda\}$$

where the inclusion is proper if and only if $\lambda \notin \sigma(T)$. Hence

(7.3)
$$r_{\sigma}(S_{\lambda}) = \frac{1}{\operatorname{dist}(\lambda, \sigma(T) \setminus \{\lambda\})}$$

Again, Proposition 6.4 implies that

(7.4)
$$\sigma(D_{\lambda}) = \{0\} \text{ and } r_{\sigma}(D_{\lambda}) = 0$$
.

For this reason, the operator D_{λ} will be called the <u>quasi-nilpotent operator associated with</u> T and λ . We thus have the representation

(7.5)
$$T|_{P_{\lambda}(X)} = \lambda I|_{P_{\lambda}(X)} + D_{\lambda}|_{P_{\lambda}(X)}$$

where \textbf{D}_{λ} is quasi-nilpotent.

For $0 < |z-\lambda| < dist(\lambda, \sigma(T) \setminus \{\lambda\})$, we have the Laurent expansion

(7.6)
$$R(z) = \sum_{k=0}^{\infty} S_{\lambda}^{k+1} (z-\lambda)^k - \frac{P_{\lambda}}{z-\lambda} - \sum_{k=1}^{\infty} \frac{D_{\lambda}^k}{(z-\lambda)^{k+1}}$$

To have a feeling for the operators P_λ and S_λ , we give a simple example. Let T be represented by the diagona' matrix

$$diag(\lambda, \ldots, \lambda, \lambda_1, \lambda_2, \ldots)$$

where λ does not belong to the closure of $\;\{\lambda_{j}\,:\,j$ = 1,2,... \} . Then

$$\begin{split} & \mathbb{P}_{\lambda} = \operatorname{diag}(1, \dots, 1, 0, 0, \dots) , \\ & \mathrm{S}_{\lambda} = \operatorname{diag}(0, \dots, 0, 1/(\lambda_1 - \lambda) , 1/(\lambda_2 - \lambda), \dots) . \end{split}$$

Let us consider another typical example. Let $X = L^2([a,b])$ and let V denote the <u>Volterra integration operator</u> defined by

$$Vx(s) = \int_{a}^{s} x(t)dt , x \in X , s \in [a,b] .$$

Then it is well-known ([L], p.151) that

 $\sigma(\mathbf{V}) = \{0\} ,$

i.e., V is quasi-nilpotent. Also, Vx = 0 implies x = 0, since $\int_0^S x(t)dt = 0 \text{ for almost all } s \in [a,b] \text{ implies that } x(t) = 0 \text{ for }$ almost all $t \in [a,b]$. Thus, O is not an eigenvalue of V. Hence V is not nilpotent. Considering the isolated spectral point $\lambda=0$ of V , we easily see that

$$P_0 = I$$
, $D_0 = (V-OI)P_0 = V$ and
 $S_0 = \lim_{z \to 0} R(z)(I-P_0) = 0$.

This confirms with the first Neumann expansion (5.8)

$$R(z) = -\sum_{k=0}^{\infty} v^{k} z^{-(k+1)}$$
$$= -\frac{I}{z} - \sum_{k=1}^{\infty} \frac{v^{k}}{z^{k+1}},$$

for $0\neq z\in\mathbb{C}$, which is also the Laurent expansion (6.22) about 0 of R(z) .

It can be readily seen by induction that for each $\;k\geq 1$,

$$V^{k}x(s) = \int_{a}^{s} \frac{(s-t)^{k-1}}{(k-1)!} x(t) dt$$
, $x \in X$, $s \in [a,b]$.

Hence, if we let for $0 \neq z \in \mathbb{C}$,

$$U(z)x(s) = \int_{a}^{s} \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \left[\frac{s-t}{z}\right]^{k-1} x(t)dt ,$$
$$= \int_{a}^{s} e^{(s-t)/z} x(t)dt , \quad x \in X , \quad s \in [a,b] ,$$

then

$$R(z) = -I/z - U(z)/z^2$$

where U(z) is again a Volterra operator with kernel $\;e^{\left(s-t\right)/z}$.

The above remarks and the infinite representation of R(z) hold for any quasi-nilpotent operator which is not nilpotent.

In the above example $\lambda = 0$ is an isolated essential singularity of R(z), since the Laurent expansion (7.6) has infinitely terms with negative powers of $(z-\lambda)$. The other extreme case arises when λ is a removable singularity of R(z), so that there are no terms with negative powers of $(z-\lambda)$ in (7.6). Clearly, this happens if and only if $P_{\lambda} = 0$, i.e., $\lambda \notin \sigma(T)$ (Proposition 6.4(a)). In this case, $S_{\lambda} = R(\lambda)$ and we recover the Taylor expansion (5.7) of R(z) around λ :

$$R(z) = \sum_{k=0}^{\infty} R(\lambda)^{k+1} (z-\lambda)^{k} .$$

Let us now consider the important case where λ is a pole of R(z). It can be readily seen from (7.6) that λ is a <u>pole of order</u> ℓ , $1 \leq \ell < \infty$, if and only if

(7.7)
$$D_{\lambda}^{\ell-1} \neq 0$$
, but $D_{\lambda}^{\ell} = 0$.

In this case (7.6) reduces to

(7.8)
$$R(z) = \sum_{k=0}^{\infty} S_{\lambda}^{k+1} (z-\lambda)^{k} - \frac{P_{\lambda}}{z-\lambda} - \sum_{k=1}^{\ell-1} \frac{D_{\lambda}^{k}}{(z-\lambda)^{k+1}}$$

where $D_{\lambda}^{\ell-1} \neq 0$, with the notation $D_{\lambda}^{0} = P_{\lambda}$. Notice that $-P_{\lambda}$ is the residue of R(z) at λ and that D_{λ} is nilpotent..

٦.,

In order to illustrate the calculation of the coefficients in the expansion (7.8) of R(z), we consider a simple example. Let $X = \mathbb{C}^2$ and fix $t \in \mathbb{C}$. Let

$$T(t)x = \begin{bmatrix} 0 & t/16 \\ 4t & 2 \end{bmatrix} \begin{bmatrix} x(1) \\ x(2) \end{bmatrix}$$

for $x = [x(1), x(2)]^t \in \mathbb{C}^2$. Then for $z \in \mathbb{C}$,

$$det(T(t)-zI) = -z(2-z) - t^2/4$$
.

Let

$$\lambda(t) = \frac{2 + \sqrt{4+t^2}}{2}, \ \mu(t) = \frac{2 - \sqrt{4+t^2}}{2}$$

where $\sqrt{4+t^2}$ denotes the principle value of the square root of $4+t^2$. Then every $z \notin \{\lambda(t), \mu(t)\}$ lies in $\rho(T(t))$, and R(T(t),z) is given by the matrix

$$(T(t)-zI)^{-1} = \begin{bmatrix} 2-z & -t/16 \\ & & \\ -4t & -z \end{bmatrix} / [z-\lambda(t)][z-\mu(t)] .$$

Note that R(T(t),z) has simple poles at $z = \lambda(t)$ and $z = \mu(t)$ if $t \neq \pm 2i$, and if $t = \pm 2i$, then it has a double pole at z = 1. Let Γ denote the circle $\Gamma(t) = 2 + e^{it}$, $0 \leq t \leq 2\pi$. Since for $|t| \leq 2$, we have $|1 - \sqrt{1+t^2/4}| \leq 1$ and $|1 + \sqrt{1+t^2/4}| > 1$, we see that $\lambda(t)$ lies inside Γ and $\mu(t)$ lies outside Γ . Using Cauchy's integral formula (Theorem 4.5(b)), we see that for $|t| \leq 2$,

$$P_{\lambda(t)} = P_{\Gamma}(T(t)) = -\frac{1}{2\pi i} \int_{\Gamma} R(T(t), z) dz$$

is given by the matrix

$$\begin{bmatrix} \lambda(t)-2 & t/16 \\ & & \\ 4t & \lambda(t) \end{bmatrix} / (\lambda(t)-\mu(t)) .$$

It can be readily checked that for |t| < 2 ,

$$D_{\lambda(t)} = (T(t)-\lambda(t)I)P_{\lambda(t)} = 0$$
.

Also, $S_{\lambda(t)} = \lim_{z \to \lambda(t)} R(T(t), z)(I-P_{\lambda(t)})$ is given by the matrix $\begin{bmatrix} -\lambda(t) & t/16 \\ & & \\ 4t & \mu(t) \end{bmatrix} / (4+t^2) .$

Now we prove a result which allows us to characterize the order of a pole of R(z) .

LEMMA 7.1 Let λ be an isolated point of $\sigma(T)$.

(a) For $k = 1, 2, ..., D_{\lambda}^{k} = 0$ if and only if $Z(P_{\lambda}) = R((T - \lambda I)^{k})$ if and only if $R(P_{\lambda}) = Z((T - \lambda I)^{k})$.

(b) Let $1 \leq \ell < \infty$. Then λ is a pole of R(z) of order ℓ if and only if ℓ is the smallest positive integer such that one (and hence each) of the following conditions holds:

(i)
$$Z(P_{\lambda}) = R((T-\lambda I)^{\ell})$$

(ii) $R(P_{\lambda}) = Z((T-\lambda I)^{\ell})$

In that case,

$$X = Z((T-\lambda I)^{\ell}) \oplus R((T-\lambda I)^{\ell})$$
.

Proof (a) Let k = 1, 2, We have already noted in Section 6 (just before the definition of a spectral projection) that

(7.9)
$$Z((T-\lambda I)^k) \subset R(P_{\lambda})$$

Similarly, it follows (cf. Problem 6.2) that

(7.10)
$$R((T-\lambda I)^k) \supset Z(P_{\lambda})$$
.

Also, since (T- λ I) and P_{λ} commute, we have

$$D_{\lambda}^{k} = (T - \lambda I)^{k} P_{\lambda} = P_{\lambda} (T - \lambda I)^{k}$$
.

Hence part (a) follows.

(b) It is clear from part (a) that $D_{\lambda}^{\ell-1} \neq 0$ and $D^{\ell} = 0$ if and only if (i) or (ii) holds and ℓ is the smallest such positive integer. In that case,

$$X = R(P_{\lambda}) \oplus Z(P_{\lambda}) = Z((T-\lambda I)^{\ell}) \oplus R((T-\lambda I)^{\ell}) .$$
 //

Remark 7.2 Consider the following two chains of inclusions involving the null spaces and the range spaces of powers of an operator A:

$$\{0\} \subset Z(A) \subset Z(A^2) \subset \dots$$
$$X \supset R(A) \supset R(A^2) \supset \dots$$

A peculiar property of each of these chains is that if equality holds at any inclusion then it persists at all later inclusions. This can be seen as follows. Let $Z(A^k) = Z(A^{k+1})$. If $x \in Z(A^{k+2})$, then $A^{k+1}(Ax) = 0$, i.e., $Ax \in Z(A^{k+1}) = Z(A^k)$, or $A^{k+1}x = 0$. Thus, $Z(A^{k+1}) = Z(A^{k+2})$. Similarly, let $R(A^k) = R(A^{k+1})$. If $y \in R(A^{k+1})$, then $y = A(A^kx)$ for some $x \in X$; but $A^kx \in R(A^k) = R(A^{k+1})$, i.e., $A^kx = A^{k+1}x_0$ or $y = A^{k+2}x_0$ for some $x_0 \in X$. Thus $R(A^{k+1}) = R(A^{k+2})$. We shall make use of this property frequently. See Theorem 2 of Appendix I for a characterization of a pole of R(z).

Here is an iterative procedure for finding $Z(A^k)$: Let

(7.11)
$$Z_0 = \{0\}, Z_1 = Z(A) \setminus Z_0$$
,
and $Z_k = \{x \in X : Ax \in Z_{k-1}\}, k = 2,3,...$

Then it is easy to see by induction on k that

$$Z_k = Z(A^k) \setminus Z(A^{k-1})$$

for all k , i.e., Z_k consists of the generalized eigenvectors of A of grade k corresponding to 0. In particular, $Z_k=\emptyset$ if and only if $Z(A^{k-1}) = Z(A^k)$. We have the disjoint union $Z(A^k) = Z_0 \cup \ldots \cup Z_k$.

PROPOSITION 7.3 Let λ be a pole of R(z). Then λ is an isolated eigenvalue of T, and the associated spectral subspace $R(P_{\lambda})$ coincides with the generalized eigenspace of T corresponding to λ . In fact, the order of the pole of R(z) at λ is ℓ if and only if ℓ is the smallest positive integer such that there are no generalized eigenvectors of T of grade $\ell + 1$ corresponding to λ , and in that case $R(P_{\lambda})$ is the disjoint union of $\{0\}$ and the sets of generalized eigenvectors of T of grade k corresponding to λ , $k = 1, \ldots, \ell$.

Proof Since λ is a pole of R(z), we have $D_{\lambda}^{\ell} = 0$, but $D_{\lambda}^{\ell-1} \neq 0$ for some positive integer ℓ . Then there is $D_{\lambda}^{\ell-1} x \neq 0$ with

$$(T-\lambda I)D_{\lambda}^{\ell-1}x = D_{\lambda}^{\ell}x = 0$$
.

Thus, $D_{\lambda}^{\ell-1}x$ is an eigenvector of T corresponding to the eigenvalue λ . By (ii) of Lemma 7.1(b) and by (7.9), we have

$$R(P_{\lambda}) = Z((T-\lambda I)^{\ell})$$
$$= \{x \in X : (T-\lambda I)^{k} x = 0 \text{ for some } k = 1, 2, ... \}$$

Letting $A = T - \lambda I$ in (7.11), we have

$$Z_{k} = Z((T-\lambda I)^{k}) \setminus Z((T-\lambda I)^{k-1})$$
,

and hence

$$R(P_{\lambda}) = Z_0 \cup \ldots \cup Z_{\rho} .$$

where $Z_i \cap Z_j = \emptyset$ if $i \neq j$. Also, for $k \geq 1$, $Z_{k+1} = \emptyset$ if and only if $Z((T-\lambda I)^k) = Z((T-\lambda I)^{k+1})$, and this is the case if and only if $R(P_{\lambda}) = Z((T-\lambda I)^k)$. Thus, λ is a pole of order ℓ if and only if ℓ is the smallest positive integer with $Z_{\ell+1} = \emptyset$. //

When λ is a pole of R(z), we wish to investigate how much larger the generalized eigenspace $P_{\lambda}(X)$ is as compared to the eigenspace Z(T- λ I). For this purpose we prove the following result. It will also allow us to obtain necessary and sufficient conditions for the spectral projection P_{λ} to be of finite rank. **LEMMA 7.4** Let A be a linear operator on X. Then for k = 1, 2, ...,

(7.12)
$$\dim Z(\mathbb{A}^k) \leq \dim Z(\mathbb{A}) + \dim Z(\mathbb{A}^{k-1})$$
$$\leq k \dim Z(\mathbb{A}) .$$

If $\mathsf{Z}(\mathsf{A}^k) \,\smallsetminus\, \mathsf{Z}(\mathsf{A}^{k-1}) \,=\, \mathsf{Z}_k \neq \emptyset$, then

(7.13)
$$\dim Z(A) + k - 1 \leq \dim Z(A^{K}) .$$

Proof Since $Z(A^{k-1}) \subset Z(A^k)$, let us extend a basis of $Z(A^{k-1})$ to a basis of $Z(A^k)$ by adding a set W to it. Let $x_1, \ldots, x_n \in W$. Then $A^{k-1}x_1, \ldots, A^{k-1}x_n \in Z(A)$, and they form a linearly independent set. This can be seen as follows. Let

$$0 = c_1 A^{k-1} x_1 + \ldots + c_n A^{k-1} x_n = A^{k-1} (c_1 x_1 + \ldots + c_n x_n)$$

for some c_1, \ldots, c_n in \mathbb{C} . Then $x = c_1 x_1 + \ldots + c_n x_n \in Z(\mathbb{A}^{k-1})$, and since x_1, \ldots, x_n belong to \mathbb{W} , we must have $c_1 = \ldots = c_n = 0$. Thus, $n \leq \dim Z(\mathbb{A})$. This shows that

$$\text{dim } Z(\textbf{A}^k) \, \leq \, \text{dim } Z(\textbf{A}) \, + \, \text{dim } Z(\textbf{A}^{k-1}) \ .$$

Applying this result repeatedly for k = 2, 3, ..., we obtain (7.12).

Next, assume that $Z(\mathbb{A}^{k-1})\neq Z(\mathbb{A}^k)$. Then by Remark 7.2, each inclusion in the chain

$$Z(A) \subset Z(A^2) \ldots \subset Z(A^{k-1}) \subset Z(A^k)$$

is proper. Hence

dim Z(A) + 1 + ... + 1
$$\leq$$
 dim Z(A^K),

where the 1's occur (k-1) times. This proves (7.13). //

THEOREM 7.5 (a) Let λ be a pole of R(z) of order ℓ . If m is the rank of P_{λ}, and g is the dimension of the eigenspace of T corresponding to λ , then

(7.14)
$$m \leq \ell g$$
,
 $2 \leq \ell + g \leq m + 1$.

In particular,

(7.15)
$$m = 1 \quad \text{if and only if} \quad \ell = 1 = g$$
$$\ell = 1 \quad \text{if and only if} \quad m = \ell$$
$$\ell = 1 \quad \text{if and only if} \quad m = g \; .$$

(b) For an isolated point λ of $\sigma(T)$, we have rank $P_{\lambda} < \infty$ if and only if λ is a pole of R(z) and dim $Z(T-\lambda I) < \infty$.

Proof (a) By Lemma 7.1(b), we have $R(P_{\lambda}) = Z((T-\lambda I)^{\ell})$. Hence letting $A = T - \lambda I$ in (7.12) we see that

m = dim $\mathbb{R}(\mathbb{P}_{\lambda}) \leq \ell \text{ dim } \mathbb{Z}(\mathbb{T}-\lambda\mathbb{I}) = \ell g$.

Proposition 7.3 shows that λ is an eigenvalue of T. Hence $g \ge 1$. Since $\ell \ge 1$, we have $2 \le \ell + g$. Again, since $D^{\ell-1} \ne 0$, but $D^{\ell} = 0$, we have $Z((T-\lambda I)^{\ell-1}) \ne Z((T-\lambda I)^{\ell})$. Hence by (7.13),

$$g + \ell - 1 = \dim Z(T - \lambda I) + \ell - 1 \leq \dim Z((T - \lambda I)^{\ell}) = m$$

This proves (7.14). The relations in (7.15) are immediate.

(b) Assume that rank $P_{\lambda} = m < \infty$. As we have seen in (7.4), D_{λ} is quasi-nilpotent. Since $Y = P_{\lambda}(X)$ is of dimension m, we see by Proposition 5.6 that $(D_{\lambda}|_{Y})^{m} = 0$. Also $D_{\lambda}|_{Z} = 0$, where $Z = Z(P_{\lambda})$. Hence $D_{\lambda}^{m} = 0$, showing that λ is a pole of R(z).

Since $Z(T-\lambda I) \subset P_{\lambda}(X)$, it follows that

$$g = \dim Z(T - \lambda I) \leq m < \infty$$
.

Conversely, let λ be a pole of R(z) of order ℓ and let g = dim Z(T- λI) < ∞ . Then by (7.14) we see that rank $P_{\lambda} < \infty$. //

Let λ be an isolated point of $\sigma(T)$. The dimension of the associated spectral subspace $P_{\lambda}(X)$ is called the <u>algebraic</u> <u>multiplicity</u> of λ , and the dimension of the corresponding eigenspace $Z(T-\lambda I)$ is called the <u>geometric multiplicity of</u> λ .

If the algebraic multiplicity of λ is 1, then λ is called a <u>simple</u> eigenvalue of T. If λ is a pole of R(z) of order 1, (i.e., $D_{\lambda} = 0$), then λ is said to be a <u>semisimple</u> eigenvalue of T.

Note that an isolated point λ of $\sigma(T)$ is a semisimple eigenvalue of T if and only if $P_{\lambda}(X) = Z(T-\lambda I)$ (by Lemma 7.1(b)), i.e., the corresponding spectral subspace coincides with the eigenspace.

PROPOSITION 7.6 Let λ be a pole of R(z). (This condition is satisfied if λ is an eigenvalue of T of finite algebraic multiplicity.)

(a) λ is a semisimple eigenvalue of T if and only if $(T-\lambda I)x$ is not an eigenvector of T corresponding to λ for any $x \in X$.

(b) λ is simple if and only if there is a unique (up to scalar multiples) eigenvector φ of T corresponding to λ , and there is no $x \in X$ such that $(T-\lambda)x = \varphi$.

Proof Let ℓ be the order of the pole of R(z) at λ . Then by (ii) of Lemma 7.1(b),

$$R(P_{\lambda}) = Z((T - \lambda I)^{\ell})$$
.

(a) By Proposition 7.3, we see that $\ell = 1$ if and only if

$$Z((T-\lambda I)^2) = Z(T-\lambda I)$$
.

Clearly, this happens if and only if there is no $x \in X$ with $(T-\lambda I)x \neq 0$, but $(T-\lambda I)[(T-\lambda I)x] = 0$, i.e., $(T-\lambda I)x$ is not an eigenvector of T corresponding to λ for any $x \in X$.

(b) By (7.15), λ is simple if and only $\ell = 1$ and the geometric multiplicity g of λ is 1. Hence the desired result follows by part (a). //

When the geometric multiplicity of λ is greater than 1, it is possible that for a basis $\varphi_1, \ldots \varphi_g$ of the eigenspace $Z(T-\lambda I)$, each of the equations $(T-\lambda I)x = \varphi_i$, $i = 1, \ldots, g$, has no solution in X, but $(T-\lambda I)x = \varphi$ does have a solution for some $0 \neq \varphi \in Z(T-\lambda I)$: Let $X = \mathbb{C}^3$, and $T[x(1),x(2),x(3)]^t = [\lambda x(1)+x(2), \lambda x(2), \lambda x(3)]^t$. Then $\varphi_1 = [1,0,1]^t$ and $\varphi_2 = [1,0,-1]^t$ constitute a basis of $Z(T-\lambda I)$, but none of equations $(T-\lambda I)x = \varphi_i$, i = 1,2, has a solution in X. However, if we let $\varphi = [1,0,0]^t$, then the equation $(T-\lambda I)x = \varphi$ has $[x(1),1,x(3)]^t$ as a solution for all x(1) and x(3) in \mathbb{C} . (In particular, λ is not a semisimple eigenvalue of T.)

Remark 7.7 The term 'geometric multiplicity' is self-explanatory, since it is the dimension of the corresponding eigenspace. To explain the term 'algebraic multiplicity' we proceed as follows.

Let the algebraic multiplicity of λ be $m < \infty$. Then λ is a pole of R(z). Let ℓ be order of this pole. Since D_{λ} is quasinilpotent, and since $P_{\lambda}(X)$ has dimension $m < \infty$, we see by Proposition 5.6 that $D_{\lambda}|_{P_{\lambda}(X)}$ is, in fact, nilpotent, and ℓ is the smallest positive integer such that $(D_{\lambda}|_{P_{\lambda}(X)})^{\ell} = 0$. Considering the representation (7.5)

$$T|_{P_{\lambda}(X)} = \lambda I|_{P_{\lambda}(X)} + D_{\lambda}|_{P_{\lambda}(X)}$$

we see that $T|_{P_{\lambda}(X)}$ is represented, with respect to a suitable basis of $P_{\lambda}(X)$, in the Jordan canonical form (cf. (5.14)) by the m × m matrix

$$\mathbb{M} = \begin{bmatrix} \lambda & \delta_2 & & \\ & \ddots & 0 \\ & \ddots & \ddots & \\ & \ddots & \delta_m \\ 0 & & \lambda \end{bmatrix}$$

where each δ_j is either 0 or 1, $2 \leq j \leq m$. Thus, λ is a root of order m of the characteristic polynomial of M , and hence the algebraic multiplicity of λ is said to be m.

By looking at the δ_j 's in the above representation, one can also determine the geometric multiplicity g of λ and the order ℓ of the pole at λ . Let $x = [x(1), \dots, x(m)]^t \in \mathbb{C}^m$. Then

$$Mx = \lambda x + \left[\delta_{2} x(2), \dots, \delta_{m} x(m), 0\right]^{t}$$

Thus, x is an eigenvector corresponding to λ if and only if $\delta_j x(j) = 0$ for each $j = 2, \ldots, m$. Hence $[1, 0, \ldots, 0]^t$ is an eigenvector, and if $\delta_j = 0$ for some j, then $[0, \ldots, 0, 1, 0, \ldots, 0]^t$ is also an eigenvector, where 1 occurs in the j-th place; these vectors form a basis of the eigenspace corresponding to λ . Thus, the geometric multiplicity g of λ equals one plus the number of zeros among $\delta_2, \ldots, \delta_m$. Also, it can be seen that if k is the maximum number of consecutive 1's among $\delta_2, \ldots, \delta_m$, then the (k+1)-st power of the matrix

$$\begin{bmatrix} 0 & \delta_2 & & \\ & \ddots & 0 & \\ & \ddots & \ddots & \\ & & \ddots & \delta_m \\ 0 & & 0 \end{bmatrix}$$

equals the zero matrix, and no smaller power does so. Thus, the order ℓ of the pole at λ equals one plus the maximum number of consecutive 1's among $\delta_2, \ldots, \delta_m$. Notice that in the notation used in the description of the Jordan canonical form of a nilpotent operator in Section 5, we have $g = p_{\ell}$, while m and ℓ have the same meanings as used in this section.

We give some simple examples to illustrate the above considerations. Let m = 4 and let $T|_{P_{\lambda}}$ be represented by one of the following Jordan canonical forms:

$$\begin{split} \mathbb{M}_{1} &= \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, \quad \mathbb{M}_{2} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, \quad \mathbb{M}_{3} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix} \\ \mathbb{M}_{4} &= \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, \quad \mathbb{M}_{5} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}. \end{split}$$

For M_1 , g = 4 and $\ell = 1$; for M_2 , g = 3 and $\ell = 2$; for M_3 , g = 2 and $\ell = 2$; for M_4 , g = 2 and $\ell = 3$ and for M_5 , g = 1 and $\ell = 4$. Note that these are the only possibilities for the case m = 4.

We say that λ is a <u>discrete spectral value</u> of T if λ is an isolated point of $\sigma(T)$ and the corresponding spectral projection P_{λ} has finite rank, i.e., λ is an eigenvalue of T of finite algebraic multiplicity. The set of all discrete spectral values of T constitutes the <u>discrete spectrum</u> $\sigma_{d}(T)$ <u>of</u> T. The discrete spectral values of T form by far the most tractable part of $\sigma(T)$, as we shall see in the later sections. See Corollary 3 of Appendix I for a characterization of $\sigma_{d}(T)$.

In order to tell when the spectral projection P_{Γ} associated with a curve Γ in $\rho(T)$ has finite rank, we prove a preliminary result.

LEMMA 7.8 Let a curve Γ in $\rho(T)$ enclose only a finite number of (isolated) points $\lambda_1, \ldots, \lambda_n$ of $\sigma(T)$. If P_j denotes the spectral projection associated with λ_j , $1 \leq j \leq n$, and $P = P_{\Gamma}$, then

$$P = P_1 + \dots + P_n ,$$

$$P_j P_k = 0 , \qquad j \neq k ,$$

$$R(P) = R(P_1) \oplus \dots \oplus R(P_n)$$

$$TP = \sum_{j=1}^n (\lambda_j P_j + D_j) ,$$

where \textbf{D}_{j} is the quasinilpotent operator $(\textbf{T}\text{-}\lambda_{j}\textbf{I})\textbf{P}_{j}$.

Proof For each j, let Γ_j be a curve such that $\lambda_j \in \text{Int } \Gamma_j$ and $\Gamma_j \subset \text{Int } \Gamma \cap \text{Ext } \Gamma_k$, $k \neq j$.

Figure 7.1

Then by Cauchy's theorem (Theorem 4.3(a)),

$$\int_{\Gamma} \mathbb{R}(z)dz - \int_{\Gamma_1} \mathbb{R}(z)dz - \dots - \int_{\Gamma_n} \mathbb{R}(z)dz = 0 ,$$

so that $P = P_1 + \ldots + P_n$. Also, if $j \neq k$, then by (4.17),

$$\begin{split} P_{j}P_{k} &= \frac{-1}{2\pi i} \int_{\Gamma_{k}} P_{j}R(z)dz \\ &= \frac{-1}{2\pi i} \int_{\Gamma_{k}} \left[\frac{-1}{2\pi i} \int_{\Gamma_{j}} R(w)R(z)dw\right]dz \\ &= \left[\frac{-1}{2\pi i}\right]^{2} \int_{\Gamma_{k}} \left[\int_{\Gamma_{j}} \frac{R(w)-R(z)}{w-z} dw\right]dz \end{split}$$

But, for all $w \in \Gamma_i$ and $z \in \Gamma_k$, we have

$$\int_{\Gamma_{k}} \frac{\mathrm{d}z}{w-z} = \int_{\Gamma_{j}} \frac{\mathrm{d}w}{w-z} = 0 ,$$

since $w \in \text{Ext } \Gamma_k$ and $z \in \text{Ext } \Gamma_j$. Hence for all $j \neq k$, we have $P_j P_k = 0$, so that $R(P_j) \cap R(P_k) = \{0\}$. This shows that $R(P) = R(P_1) \oplus \ldots \oplus R(P_n)$. Finally, since $D_j = TP_j - \lambda_j P_j$, we have

$$TP = TP_1 + \dots + TP_n$$
$$= \sum_{j=1}^n (\lambda_j P_j + D_j) .$$

THEOREM 7.9 Let Γ be a curve in $\rho(T)$. Then the associated spectral projection P_{Γ} is of finite rank if and only if $\sigma(T) \cap \operatorname{Int} \Gamma$ consists of a finite number of discrete spectral values of T, and in that case, the rank of P_{Γ} equals the sum of the algebraic multiplicities of the eigenvalues of T inside Γ .

Proof Let $Y = P_{\Gamma}(X)$ and dim $Y < \infty$. Then T_Y is a finite dimensional operator and hence $\sigma(T_Y)$ consists of a finite number of (isolated) eigenvalues $\lambda_1, \ldots, \lambda_n$ of $T|_Y$. But by (6.10) (the spectral decomposition theorem),

$$\sigma(T_{Y}) = \sigma(T) \cap \operatorname{Int} \Gamma .$$

Hence $\lambda_1, \ldots, \lambda_n$ are isolated points of $\sigma(T)$. If P_j denotes the spectral projection associated with λ_j , then by Lemma 7.8,

$$R(P_{\Gamma}) = R(P_1) \oplus \ldots \oplus R(P_n)$$
.

Hence each P _j has finite rank, i.e., $\lambda_j \in \sigma_d(T)$. Conversely, let

$$\sigma(T) \cap Int \Gamma = \{\lambda_1, \ldots, \lambda_n\}$$
,

where each $\lambda_i \in \sigma_d(T)$. Then again by Lemma 7.8,

$$\dim P_{\Gamma} = \sum_{j=1}^{n} \dim P_{j} < \infty .$$

Note that dim P $_j$ is the algebraic multiplicity of λ_j . //

We now describe some general situations where discrete spectral values are always encountered.

(i) Let X be finite dimensional, and $T \in BL(X)$. Then $\sigma(T) = \sigma_d(T) = \{\lambda_1, \dots, \lambda_n\}$, say. If $\Gamma \subset \rho(T)$ encloses all the spectral values of T, then $P_{\Gamma} = I = P_1 + \dots + P_n$, and by Lemma 7.8, we have

(7.16)
$$T = \sum_{j=1}^{n} (\lambda_{j} P_{j} + D_{j})$$

where each D_j is nilpotent. Let $T_j = (\lambda_j P_j + D_j) |_{R(P_j)}$. We have seen earlier that in a suitable basis for $R(P_j)$, T_j is represented by the matrix

$$J_{j} = \begin{bmatrix} \lambda_{j} & \delta & 0 & \dots & 0 \\ 0 & \ddots & & \ddots & 0 \\ \vdots & & \ddots & & \delta \\ 0 & \dots & 0 & \lambda_{j} \end{bmatrix}$$

where δ denotes either 0 or 1. Thus, we obtain a block diagonal matrix representation

$$J = \begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & & & \vdots \\ \vdots & & & 0 \\ 0 & \dots & 0 & J_n \end{bmatrix}$$

of T, known as a <u>Jordan canonical form</u>. It is immediate from the above representation that

$$det(J-zI) = \prod_{j=1}^{n} (\lambda_j - z)^{m_j}$$

(7.17)

$$tr(T) = tr(J) = \sum_{j=1}^{n} m_{j}\lambda_{j} ,$$

where m_{i} is the algebraic multiplicity of λ_{i} .

In this case, the range of the spectral projection P_j associated with T and λ_j is the generalized eigenspace $\{x \in X : (T-\lambda_j I)^{m_j} = 0\}$ of T corresponding to λ_j , and its null space is the direct sum of the remaining generalized eigenspaces of T:

$$Z(P_{j}) = Z\left[I - \sum_{i=1, i \neq j}^{n} P_{i}\right] = R\left[\sum_{i=1, i \neq j}^{n} P_{i}\right]$$

$$(7.18) = \bigoplus_{i=1, i \neq j}^{n} R(P_{i}) = \bigoplus_{i=1, i \neq j}^{n} \left\{x \in X : (T - \lambda_{i}I)^{m} x = 0\right\}.$$

(ii) Let $T \in BL(X)$ be a compact operator, i.e., let the closure of the set {Tx : $x \in X$, $||x|| \leq 1$ } be compact in X. Then one shows that T - I is one to one if and only if it is onto. ([L], 18.4(b)). This implies that every nonzero spectral value of T is, in fact, an eigenvalue of T. The compactness of T then implies that the set of eigenvalues of T is countable, and has no limit point except possibly the number 0 ([L], 18.2). Thus, every nonzero λ in $\sigma(T)$ is an isolated point of $\sigma(T)$. Let $\Gamma \subset \rho(T)$ separate λ from the rest of $\sigma(T)$ and also from zero. Then

$$P_{\lambda} = P_{\Gamma} = -\frac{1}{2\pi i} \int_{\Gamma} R(z) dz$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} \left[\frac{I}{z} + R(z) \right] dz$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z} \left[I + zR(z) \right] dz$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z} \operatorname{TR}(z) dz$$
(7.19)

by (5.4). Now, since T is compact, so is TR(z)/z for every $z \in \Gamma$. Hence P_{Γ} is compact, being the limit (in BL(X)) of the Riemann-Stieltjes sums (4.5) of compact operators. But a compact projection must have finite rank by Corollary 3.9, so that the rank of P_{λ} is finite.

Thus, every nonzero spectral value of a compact operator is an eigenvalue of finite algebraic multiplicity, i.e., it is a discrete spectral value. If $0 \in \sigma_d(T)$ also, then $\sigma(T)$ will consist of a finite number of discrete spectral values, and Lemma 7.8 will imply that X is finite dimensional. Hence whenever X is infinite dimensional and T is compact, we have

$$\sigma_{d}(T) = \sigma(T) \setminus \{0\}$$

Let, now, $\lambda_1, \lambda_2, \ldots$ denote the nonzero (isolated) spectral values of T. Let P_j denote the spectral projection (of finite rank) associated with λ_j , $j = 1, 2, \ldots$. If we let

$$Q_n = P_1 + \dots + P_n$$
, $n = 1, 2, \dots$,

then we have as in Lemma 7.8,

$$TQ_n = \sum_{j=1}^n (\lambda_j P_j + D_j)$$

where each D_j is nilpotent. However, T need not have the infinite representation

$$\sum_{j=1}^{\infty} (\lambda_j P_j + D_j) ,$$

as the example of the Volterra integration operator V shows. In this case, we have $\sigma(V) = \{0\}$, so that there is no nonzero spectral point of V, but at the same time $V \neq 0$. In the next section we shall consider compact normal operators on a Hilbert space for which the above infinite expansion is valid.

Examples of isolated spectral values.

(i) Let $X = \ell^2$, and let $T \in BL(X)$ be represented by the diagonal infinite matrix

diag
$$(1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \dots)$$
.

Then for $z \neq 0$, 1, $\frac{1}{2}$, $\frac{1}{3}$, ..., the resolvent operator R(z) is represented by the matrix

diag
$$(\frac{1}{1-z}, \frac{2}{1-2z}, \frac{1}{1-z}, \frac{3}{1-3z}, \dots)$$

The eigenvalue $\lambda = 1$ has infinite geometric and algebraic multiplicities since each e_{2n+1} , $n = 0, 1, 2, \ldots$, is an eigenvector of T corresponding to $\lambda = 1$; the associated spectral projection P_1 is given by termwise integration of R(z) over $\Gamma(t) = 1 + re^{it}$, $0 \le t \le 2\pi$, $0 \le r \le 1/2$, it is represented by

Hence it follows that

$$D_1 = (T-I)P_1 = 0$$
.

Thus, $\ell = 1$, i.e., λ is a semisimple (but not a simple) eigenvalue of T. In this case, $S_1 = \lim_{z \to 1} R(z)(I-P_1)$ is represented by

$$\lim_{z \to 1} \operatorname{diag}(\frac{1}{1-z}, \frac{2}{1-2z}, \dots) \operatorname{diag}(0, 1, 0, 1, \dots)$$
$$= \operatorname{diag}(0, -2, 0, \frac{-3}{2}, 0, \frac{-4}{3}, \dots) .$$

(ii) Let $X = \ell^2(\mathbb{Z})$, the space of all square summable doubly infinite complex sequences. Let $T \in BL(X)$ be given by the matrix

where all the remaining entries are equal to zero. It can be verified ([L], Problem 18(ii)) that

$$\sigma(T) = \{0\} \cup \{1/n : n = 1, 2, ...\},\$$

that $\lambda = 1$ has geometric multiplicty 1, but infinite algebaic multiplicty; it is, in fact, an essential singularity of R(z).

(iii) Let $X = L^{2}([0,1])$ and

$$Ix(s) = \int_{0}^{1} k(s,t)x(t)dt , x \in X , s \in [0,1] ,$$
$$k(s,t) = \begin{cases} s/2 , & 0 \le s < t \\ (2t-s)/2 , & t \le s < 1 \end{cases}$$

Then it can be checked that Tx = y, $x \in X$ if and only if y' is absolutely continuous on [0,1], y'' $\in X$ and

$$-y'' = x$$
, $y(0) = 0$, $y'(0) + y'(1) = 0$

The eigenvalues of the compact operator T are $1/[(2j-1)\pi]^2$, j = 1,2,.... We can verify that corresponding to the eigenvalue $\lambda = 1/\pi^2$, $x_1(t) = \sin \pi t$ is an eigenvector, while $x_2(t) = t \cos \pi t$ is a generalized eigenvector. In fact, in this case g = 1, $m = 2 = \ell$. Thus, λ is not a semisimple eigenvalue.

(iv) Let
$$X = L^{2}([-1,1])$$
 and

$$Tx(s) = \int_{-1}^{1} k(s,t)x(t)dt , x \in X , s \in [-1,1] ,$$
$$k(s,t) = \frac{\sqrt{e}}{e^{-1}} \begin{cases} e^{(1+t-s)/2} + e^{(-1-t+s)/2} , -1 \le t \le s \\ e^{(-1+t-s)/2} + e^{(1-t+s)/2} , s \le t \le 1 \end{cases}$$

Then Tx = y , $x \in X$ if and only if y' is absolutely continuous on [-1,1] , $y'' \in X$, and

$$-y'' + \frac{1}{4}y = x$$
, $y(-1) = y(1)$, $y'(-1) = y'(1)$

The eigenvalues of T are $4/(4\pi^2n^2+1)$, n = 0, 1, 2, ... Corresponding to the eigenvalue $\lambda = 4$, we have only one linearly independent eigenfunction $x_0(t) = 1$. But corresponding to the eigenvalue $\lambda_n = 4/(4\pi^2n^2+1)$, n = 1, 2, ..., we have the eigenfunctions $x_{n,1}(t) = \sin n\pi t$ and $x_{n,2}(t) = \cos n\pi t$; in fact, in this case g = m = 2, $\ell = 1$.

(v) The nonzero eigenvalues of many operators which describe various physical situations are simple. We now quote some general results regarding the 'simplicity' of eigenvalues.

Let X be finite dimensional and $T \in BL(X)$ be represented by a matrix $K = (k_{i,j})$. Perron's theorem states that if $k_{i,j} > 0$ for all i,j, then T has a positive simple eigenvalue which exceeds the moduli of all other eigenvalues. Frobenius' generalization of this theorem says that if $k_{i,j} \ge 0$ for all i,j and K is irreducible

(i.e., there is no permutation matrix P such that $P^{H}KP = \begin{bmatrix} K_{1,1} & K_{1,2} \\ 0 & K_{2,2} \end{bmatrix}, \text{ where } K_{1,1} \text{ and } K_{2,2} \text{ are square matrices of } K_{2,2}$ order less than the order of K), then all the eigenvalues of T of largest modulus are simple. ([G],p.53). Another fundamental result states that if (a) $k_{i,j} \ge 0$ for all i and j, (b) all the minors of K have nonnegative determinants, (c) $k_{i,j} \ge 0$ whenever $|i-j| \le 1$, and (d) det K > 0, then all the eigenvalues of T are positive and simple. ([G], p.105).

Here are some infinite dimensional analogues of some of the above results. Let $X = \ell^2$, and a compact normal operator T be represented by the infinite matrix $(k_{i,j})$. If $k_{i,j} \ge 0$ for all i,j and $k_{i,j} \ge 0$ whenever $|i-j| \le 1$, then ||T|| is a simple eigenvalue of T ([KR], Prop. (β "), Sec.3). Similarly, let $X = L^2([a,b])$ and let T be a compact normal integral operator

$$Tx(s) = \int_{a}^{b} k(s,t)x(t)dt , x \in X , s \in [a,b]$$

where the kernel k is continuous on $[a,b]\times[a,b]$, $k(s,t) \ge 0$ for all s,t, and $k(t,t) \ge 0$ for all t. Then ||T|| is a simple eigenvalue of T ([KR], Prop.(β '), Sec.3).

Problems

7.1 Let $X = \ell^2$ and

 $T[x(1), x(2), x(3), \dots]^{t} = [x(2), \frac{x(3)}{2}, \frac{x(4)}{3}, \dots]^{t}$

Then T is quasi-nilpotent but not nilpotent. R(z) has an essential singularity at 0.

7.2 Let λ be an isolated point of $\sigma(T)$. If $x \in R(P_{\lambda})$ and $z \in \rho(T)$, then $R(z)x = -\sum_{k=0}^{\infty} (T-\lambda I)^{k}x \land (z-\lambda)^{k+1}$. Also,

$$\mathbb{R}(\mathbb{P}_{\lambda}) = \{ \mathbf{x} \in \mathbb{X} : \| (\mathbb{T} - \lambda \mathbf{I})^n \mathbf{x} \|^{1/n} \to 0 \text{ as } n \to \infty \}$$

7.3 Let dim $P_{\lambda}(X) = 3$ and assume that there are two linearly independent eigenvectors corresponding to λ , but no more. Then $TP_{\lambda} \neq \lambda P_{\lambda}$, but $T^2P_{\lambda} = \lambda P_{\lambda}(2T-\lambda I)$.

7.4 Let λ be an isolated point of $\sigma(T)$. Then the function $z \mapsto R(z)(I-P_{\lambda})$ has a removable singularity at λ . If $\Gamma \subset \rho(T)$ and Int Γ contains only a finite number of points of $\sigma(T)$, then the function $z \mapsto R(z)(I-P_{\Gamma})$ has only removable singularities in Int Γ .

7.5 Let $\lambda \in \sigma_d(T)$ and $Y = R(P_{\lambda})$. Then for n = 1, 2, ...,

$$\mathbb{R}((T-\lambda I)^{n}) = \{ y \in X : P_{\lambda} y \in \mathbb{R}((T_{Y}-\lambda I_{Y})^{n}) \}$$

and it is a closed subspace of X .

7.6 Let λ be a pole of R(z) of order ℓ . Then every nonzero element of $R(D_{\lambda}^{\ell-1})$ is an eigenvector of T corresponding to λ (Note: $D_{\lambda}^{0} = P_{\lambda}$).

7.7 Let A, $B \in BL(X)$. Then $\sigma_d(AB) \setminus \{0\} = \sigma_d(BA) \setminus \{0\}$. Let $0 \neq \lambda \in \sigma_d(AB)$ have algebraic (resp., geometric) multiplicity m (resp., g), and let λ be a pole of order ℓ of R(AB,z). Then the same holds if we replace AB by BA. (Cf. Problem 5.1.) In fact, $AP_{\lambda}(BA) = P_{\lambda}(AB)A$. If X is finite dimensional, then 0 is an eigenvalue of the same algebraic multiplicity of AB and of BA, and it is a pole of the same order of R(AB,z) and R(BA,z), but the dimensions of Z(AB) and Z(BA) may not be equal. 7.8 Let $z_0 \in \rho(T)$. A complex number λ is an isolated point of $\sigma(T)$ if and only if $1/(\lambda - z_0)$ is an isolated point of $\sigma(R(z_0))$; in that case, the associated spectral projections are the same and $Z(T-\lambda I) = Z(R(z_0)-I/(\lambda-z_0))$. Moreover, the order of the pole of R(T,z) at λ is the same as the order of the pole of $R(R(z_0),z)$ at $1/(\lambda-z_0)$. (Hint: (5.2) and Problem 4.8)

7.9 Let λ be an isolated point of $\sigma(T)$. For $z\in\rho(T)$, we have

$$\left[S_{\lambda} - \frac{I}{z-\lambda}\right]^{-1} = -(z-\lambda)I - (z-\lambda)^{2}R(z)(I-P_{\lambda})$$

Then $\mu(\neq \lambda)$ is an isolated point of $\sigma(T)$ if and only if $1/(\mu-\lambda)$ is an isolated point of $\sigma(S_{\lambda})$; in that case, the associated spectral projections are the same, and $Z(T-\mu I) = Z(S_{\lambda}-I/(\mu-\lambda))$.

7.10 Let λ be a pole of R(z) of order ℓ , A = T - λ I and S = S_{λ}. Then A and S satisfy SAS = S, A^{ℓ}SA = A^{ℓ}, SA = AS (i.e., S_{λ} is the <u>Drazin inverse</u> of T - λ I). If λ is semisimple, then SAS = S, ASA = A, SA = AS (i.e., S_{λ} is the <u>group inverse</u> of T - λ I). Let X be a Hilbert space and λ semisimple. Then the projection P_{λ} is orthogonal if and only if SA = A^{*}S^{*} (i.e., S is the <u>Moore-Penrose inverse</u> of T - λ I; see the Penrose conditions on page 403).

7.11 Let $X = L^2([-\pi,\pi])$, and for $x \in X$,

$$Tx(s) = \int_{-\pi}^{\pi} k(s,t)x(t)dt , s \in [-\pi,\pi] ,$$

$$k(s,t) = \frac{1}{2\sqrt{2}} \begin{cases} \sin \sqrt{2}(s-t) + (\cot \pi\sqrt{2}) \cos \sqrt{2}(s-t) , -\pi \leq t \leq s \leq \pi \\ \sin \sqrt{2}(t-s) + (\cot \pi\sqrt{2}) \cos \sqrt{2}(t-s) , -\pi \leq s \leq t \leq \pi \end{cases}$$

The eigenvalues of T are $1/(2-n^2)$, n = 0, 1, ... The dominant eigenvalue 1 is semisimple but not simple.