2. PROJECTION OPERATORS

A projection operator allows us to decompose a Banach space X as well as a commuting bounded operator T on X. In this way, we are able to concentrate only on a 'part' of X, or of T. These projection operators will often occur in the spectral theory as well as in various approximation procedures that we shall study.

A complex Banach space X is said to be <u>decomposed by a pair</u> (Y,Z) <u>of its closed subspaces</u> if X = Y + Z and $Y \cap Z = \{0\}$. In this case, we write

$X = Y \oplus Z$.

This happens if and only if every $x \in X$ can be written in a unique way as y + z with $Y \in Y$ and $z \in Z$; if we let Px = y, then P is a linear map from X to X and satisfies $P^2 = P$, i.e., P is a <u>projection</u>. Also, the set $\{(x, Px) : x \in X\}$ is closed in $X \times X$. This can be seen as follows. Let $x_n \to x$ and $Px_n \to y$. Since $Px_n \in Y$ and Y is closed, we see that $y \in Y$. Also, $x_n - Px_n \in Z$ and Z is closed, so that $x - y \in Z$. Since x = y + (x-y) with $y \in Y$ and $x - y \in Z$, we have Px = y. This shows that P is a closed operator; the closed graph theorem tells us that P is, in fact, continuous ([L], 10.3). This operator P is called the <u>projection</u> from X on Y along Z.

On the other hand, starting with a projection operator $P \in BL(X)$ we obtain a decomposition of X as follows: Let Y = R(P) and Z = Z(P). Since P is continuous, Z is closed; also, since Y = Z(I-P), where I - P is continuous, we see that Y is closed. Moreover, for every $x \in X$, we have x = Px + (x-Px), so that X = Y + Z. Clearly, $x \in Y \cap Z$ implies x = Px = 0. Thus,

$$X = R(P) \oplus Z(P)$$
.

It is worthwhile to note that for $P \in BL(X)$, we have

(2.1) either
$$P = 0$$
 or $||P|| \ge 1$.

This follows easily from $\|P\|$ = $\|P^2\| \leq \|P\|^2$.

Let X be decomposed by (Y,Z) and consider $T \in BL(X)$. We say that T <u>is decomposed by</u> (Y,Z) if $T(Y) \subset Y$ and $T(Z) \subset Z$, i.e., if Y and Z are <u>invariant subspaces for</u> T.

In this case, if we let $T_Y=T \, \big|_Y$: $Y \to Y$ and $T_Z=T \, \big|_Z$: $Z \to Z$, then for

$$x = y + z$$
, $y \in Y$, $z \in Z$,

we have

$$Tx = T_y y + T_7 z .$$

This allows us to write

$$T = T_Y \oplus T_Z .$$

We now give a criterion for T to be decomposed by (Y,Z) .

PROPOSITION 2.1 Let $X = Y \oplus Z$ and P be the projection on Y along Z. Then $T \in BL(X)$ is decomposed by (Y,Z) if and only if PT = TP, i.e., T and P commute. In this case, we have

$$T_{Y} = PTP|_{Y}$$
 and $T_{Z} = (I-P)T(I-P)|_{Z}$.

Proof PT = TP if and only if PTx = TPx for all $x \in X$ if and only if PTy + PTz = TPy + TPz for all $y \in Y$ and $z \in Z$, i.e., PTy + PTz = Ty for all $y \in Y$ and $z \in Z$ if and only if PTy = Ty and PTz = 0 for all $y \in Y$ and $z \in Z$ (upon applying P to both sides). This happens if and only if $Ty \in Y$ and $Tz \in Z$ for all $y \in Y$ and $z \in Z$, i.e., $T(Y) \subset Y$ and $T(Z) \subset Z$. The rest is easy.

Let us now relate the results of this section to the adjoint considerations of Section 1.

PROPOSITION 2.2 (a) Let $X = Y \oplus Z$. Then

$$X^* = Z^{\perp} \oplus Y^{\perp} .$$

If P is the projection on Y along Z , then P^{\bigstar} is the projection on Z^{\perp} along Y^{\perp} ; thus,

(2.2)
$$R(P^*) = Z^{\perp} \text{ and } Z(P^*) = Y^{\perp}.$$

$$Fy^* = y^*|_Y$$

is one to one and onto.

(b) Let $T \in BL(X)$ and $T = T_Y \oplus T_Z$. Then $T^* = (T^*)_Z \bot \oplus (T^*)_Y \bot$.

The map $(T^*)_Z \perp$ can be identified with $(T_Y)^*$ as a linear map via the map F , i.e., the following diagram commutes

Proof (a) Since P is a projection, we have

$$(P^*)^2 = (P^2)^* = P^*$$
,

Also, by 1.3(c),

$$Z(P^{*}) = R(P)^{\perp} = Y^{\perp}$$
,
 $R(P^{*}) = Z(I-P^{*}) = R(I-P)^{\perp} = Z^{\perp}$

Hence P^{\bigstar} is a projection from X^{\bigstar} on Z^{\bot} along Y^{\bot} . Thus,

$$X^* = Z^{\perp} \oplus Y^{\perp}$$
.

Now, let $y^* \in Z^{\perp}$. If $Fy^* = y^* |_Y = 0$, then $\langle y^*, x \rangle = 0$ for all $x \in Z \cup Y$, i.e., $y^* = 0$. This shows that the map F is one to one. Next, for $w^* \in Y^*$, define $y^* \in X^*$ by

$$\langle y^{*}, x \rangle = \langle w^{*}, Px \rangle$$
, $x \in X$.

Then $y^* \in Z^{\perp}$ and $Fy^* = w^*$. Thus, the map F is onto.

(b) Since T is decomposed by (Y,Z) , we see by Proposition 2.1 that TP = PT . Hence

$$T^*P^* = (PT)^* = (TP)^* = P^*T^*$$
,

so that T^{\bigstar} is decomposed by $R(P^{\bigstar})=Z^{\bot}$ and $Z(P^{\bigstar})=Y^{\bot}$. Lastly, for $y^{\bigstar}\in Z^{\bot}$ and $y\in Y$, we have

$$\langle (T_{Y})^{*}Fy^{*}, y \rangle = \langle Fy^{*}, T_{Y}y \rangle$$

$$= \langle y^{*}, Ty \rangle$$

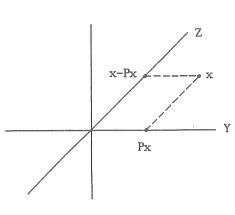
$$= \langle T^{*}y^{*}, y \rangle$$

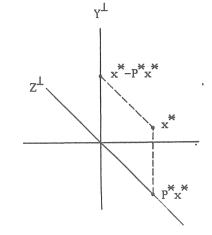
$$= \langle (T^{*})_{Z} \downarrow y^{*}, y \rangle$$

$$= \langle F(T^{*})_{Z} \downarrow y^{*}, y \rangle .$$

This shows that we can identify $(T^*)_Z \perp$ with $(T_Y)^*$ via the map F . //

The result in part (a) of the above proposition can be illustrated as follows.





So far we have not said anything about the existence of a decomposition of X. Indeed, given a closed subspace Y of X, there may not exist any closed subspace Z of X such that $X = Y \oplus Z$. Such is the case if X is the space of all complex-valued bounded functions on [a,b] and Y = C([a,b]). (See [F].) However, if Y is a finite dimensional subpace of a Banach space X, then there exist many closed subspaces Z of X such that $X = Y \oplus Z$, as we shall see in the next section. We now show that if X is a Hilbert space, then every closed subspace Y of X can be 'complemented', and that too in a canonical manner.

PROPOSITION 2.3 Let X be a Hilbert space and Y be a closed subspace of X. Then

 $X = Y \oplus Y^{\perp}$.

The projection P on Y along Y^{\perp} satisfies

$$P = 0$$
 or $||P|| = 1$, and
 $\langle Px.x \rangle > 0$ for all $x \in X$.

In particular, P is self-adjoint. Conversely, if a projection $P \in BL(X)$ is normal, then

$$R(P)^{\perp} = Z(P)$$
.

Proof Let $x \in X$ and d = dist(x, Y). Find $y_n \in Y$ such that

$$\|x-y_n\| \to d$$
 as $n \to \infty$.

By the parallelogram law,

$$2||x-y_n||^2 + 2||x-y_m||^2 = ||2x-y_n-y_m||^2 + ||y_n-y_m||^2$$
.

Now,

$$2d \leq 2||\mathbf{x} - (\mathbf{y}_n + \mathbf{y}_m)/2|| = ||2\mathbf{x} - \mathbf{y}_n - \mathbf{y}_m|| \leq ||\mathbf{x} - \mathbf{y}_n|| + ||\mathbf{x} - \mathbf{y}_m||$$

which tends to 2d as $n, m \to \infty$. Hence $\|y_n - y_m\|^2 \to 0$ as $n, m \to \infty$, i.e., (y_n) is a Cauchy sequence in Y. Let $y_n \to y \in Y$, since Y. is closed. We show that $x - y \in Y^{\perp}$. Let $y_0 \in Y$ with $\|y_0\| = 1$. Since

$$\mathbf{x} - \mathbf{y} = [(\mathbf{x} - \mathbf{y}) - \langle \mathbf{x} - \mathbf{y}, \mathbf{y}_0 \rangle \mathbf{y}_0] + \langle \mathbf{x} - \mathbf{y}, \mathbf{y}_0 \rangle \mathbf{y}_0 ,$$

the Pythagoras theorem shows that

$$\|x-y\|^2 = \|(x-y) - \langle x-y, y_0 \rangle y_0\|^2 + |\langle x-y, y_0 \rangle|^2$$
.

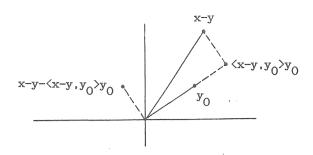


Figure 2.2

On the other hand, since the element y + $\langle x-y\,,y_0\rangle y_0$ belongs to Y ,

 $||x-y|| = d \leq ||(x-y) - \langle x-y, y_0 \rangle y_0|| .$

Hence $\langle x-y, y_0 \rangle = 0$, i.e., x - y is orthogonal to y_0 . Since y_0 is an arbitrary element of norm 1 in Y, we see that $x - y \in Y^{\perp}$.

Thus, x = y + (x-y) with $y \in Y$ and $x - y \in Y^{\perp}$. Since $Y \cap Y^{\perp} = \{0\}$, we have $X = Y \oplus Y^{\perp}$.

Let P be the projection on Y along Y^{\perp} . Then for all $x \in X$,

$$\langle Px, x \rangle = \langle Px, Px \rangle + \langle Px, x-Px \rangle$$

= $\langle Px, Px \rangle \ge 0$.

This implies, in particular, that $\langle Px, x \rangle$ is real for all $x \in X$. Hence by (1.8), P is self-adjoint. Also, for $x \in X$, the Pythagoras theorem shows that

$$\|x\|^{2} = \|Px + (x-Px)\|^{2} = \|Px\|^{2} + \|x-Px\|^{2}$$

since $\langle Px, x-Px \rangle = 0$. Thus, $||Px||^2 \leq ||x||^2$, i.e., $||P|| \leq 1$. But we always have P = 0 or $||P|| \geq 1$ for any projection P. Hence in the present case, P = 0 or ||P|| = 1.

Lastly, let $P \in BL(X)$ be a normal projection. Then by (1.8), $Z(P) = Z(P^*)$. But by Proposition 1.3(c), $Z(P^*) = R(P)^{\perp}$. Hence $Z(P) = R(P)^{\perp}$. // The projection on a closed subspace Y of a Hilbert space X along its orthogonal complement Y^{\perp} is called the <u>orthogonal</u> <u>projection on</u> Y. Thus, a projection $P \in BL(X)$ is orthogonal if and only if $Z(P) = R(P)^{\perp}$.

Before we conclude this section, we introduce the concept of the gap between two closed subspaces of a Banach space X and relate it to projections on them.

Let Y and \widetilde{Y} be closed subspaces of X . If $Y=\{0\}$, let $\delta(Y,\widetilde{Y})\,=\,0\ ,\ \text{and otherwise let}$

$$\delta(Y, \widetilde{Y}) = \sup\{dist(y, \widetilde{Y}) : y \in Y, \|y\| = 1\}$$
.

Thus, $\delta(Y,\widetilde{Y})$ is the smallest number δ such that

dist
$$(y, \tilde{Y}) \leq \delta \|y\|$$
 for all $y \in Y$.

It is clear that $0 \leq \delta(Y, \widetilde{Y}) \leq 1$ and $\delta(Y, \widetilde{Y}) = 0$ if and only if $Y \subset \widetilde{Y}$. We note that $\delta(Y, \widetilde{Y})$ can be zero even when $Y \neq \widetilde{Y}$, and may not equal $\delta(\widetilde{Y}, Y)$. To mend these matters, define the <u>gap</u> between Y and \widetilde{Y} by

(2.3)
$$\hat{\delta}(Y, \widetilde{Y}) = \max\{\delta(Y, \widetilde{Y}), \delta(\widetilde{Y}, Y)\}$$

Then $\hat{\delta}(Y,\widetilde{Y}) = 0$ if and only if $Y = \widetilde{Y}$ and $\delta(Y,\widetilde{Y}) = \delta(\widetilde{Y},Y)$.

Let P and \widetilde{P} be projections onto Y and \widetilde{Y} , respectively. Then it follows that

$$\begin{split} \delta(\mathbf{Y},\widetilde{\mathbf{Y}}) &\leq \|(\mathbf{P}-\widetilde{\mathbf{P}})\mathbf{P}\| ,\\ (2.4) \\ \hat{\delta}(\mathbf{Y},\widetilde{\mathbf{Y}}) &\leq \max\{\|(\mathbf{P}-\widetilde{\mathbf{P}})\mathbf{P}\| , \|(\widetilde{\mathbf{P}}-\mathbf{P})\widetilde{\mathbf{P}}\|\} \end{split}$$

In case X is a Hilbert space and P as well as \tilde{P} are orthogonal projections, then it can be easily seen that (2.5)

$$\hat{\delta}(\mathbf{Y}, \widetilde{\mathbf{Y}}) = \max\{\|(\mathbf{P}-\widetilde{\mathbf{P}})\mathbf{P}\|_2, \|(\widetilde{\mathbf{P}}-\mathbf{P})\widetilde{\mathbf{P}}\|_2\}$$

 $\delta(\mathbf{Y}, \widetilde{\mathbf{Y}}) = \|(\mathbf{P} - \widetilde{\mathbf{P}})\mathbf{P}\|_2$,

In fact, Kato has proved that

(2.6)
$$\hat{\delta}(\mathbf{Y}, \mathbf{\widetilde{Y}}) = \|\mathbf{P} - \mathbf{\widetilde{P}}\|_2 \leq \|\mathbf{Q} - \mathbf{\widetilde{Q}}\|_2$$
,

where Q and \tilde{Q} are any projections on Y and \tilde{Y} respectively ([K], Problem 6.33, Theorems 6.34 and 6.35). In particular, $\hat{\delta}$ is a metric on the set of all closed subspaces of a Hilbert space.

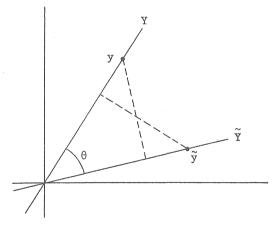


Figure 2.3

 $\hat{\delta}(Y,\widetilde{Y})$ can be interpreted to be the sine of 'the acute angle between Y and \widetilde{Y} '. (See [GV], p.22.)

Problems

2.1 If P is a projection, then I - P is a projection on Z(P)along R(P); if P is orthogonal then so is I - P.

2.2 Let Y_1, \ldots, Y_n be closed subspaces of X. Then $X = Y_1 + \ldots + Y_n$ and $Y_i \cap Y_j = \{0\}$ for $i \neq j$ (i.e., $X = Y_1 \oplus \ldots \oplus Y_n$) if and only if there are projections P_1, \ldots, P_n such that $R(P_i) = Y_i$, $P_i P_j = 0$ if $i \neq j$, and $I = P_1 + \ldots + P_n$. Let $T \in BL(X)$. Then $T = T_{Y_1} \oplus \ldots \oplus T_{Y_n}$ if and only if $TP_i = P_i T$ for $i = 1, \ldots, n$.

26

2.3 Let P and Q be projections. (i) P + Q is a projection if and only if the <u>Jordan product</u> $PoQ \equiv (PQ+QP)/2 = 0$, and then PQ = 0. (ii) For P and Q orthogonal, PQ = 0 if and only if PoQ = 0. (iii) $(P-Q)^2 + (I-P-Q)^2 = I$ and $(P-Q)^2$ commutes with both P and Q.

2.4 Let X be a Hilbert space and Y a closed subspace of X. If (u_{α}) is an orthonormal basis of Y, then the orthogonal projection on Y is given by

$$Px = \sum_{\alpha} \langle x, u_{\alpha} \rangle u_{\alpha}, \quad \forall x \in X$$

(Cf. 22.6 of [L].) For $x \in X$, Px is the best approximation to x from Y , i.e., ||x-Px|| = dist(x,Y). (Cf. 23.2 of [L].)

2.5 The map F of Proposition 2.2 which sends $y^* \in Z^{\perp}$ to $y^*|_Y$ need not be an isometry of Z^{\perp} onto Y^* .

2.6 For $Y \subset X$, let $S_Y = \{y \in Y : \|y\| = 1\}$. Let Y and \widetilde{Y} be closed subspaces of X . Define

$$(2.5) \quad d(Y,\widetilde{Y}) = \begin{cases} 0 , & \text{if } Y = \{0\} \\ \sup\{dist(y, S_{\widetilde{Y}}) : y \in S_{Y}\}, & \text{if } Y \neq \{0\} \neq \widetilde{Y} \\ 2 , & \text{if } Y \neq \{0\}, & \widetilde{Y} = \{0\} \end{cases}.$$

Then $d(Y,Z) \leq d(Y,\widetilde{Y}) + d(\widetilde{Y},Z)$ for a closed subspace Z of X . Let

(2.6)
$$\hat{d}(Y, \widetilde{Y}) = \max\{d(Y, \widetilde{Y}), d(\widetilde{Y}, Y)\}$$

Then $\,\, \hat{d}\,$ is a metric on the closed subspaces of a Banach space $\,X$.

2.7 Let $X = \mathbb{C}^n$ and q_1, \ldots, q_k form an orthonormal basis of a closed subspace Y of X. Let Q denote the $n \times k$ matrix whose j-th column is q_j . Then $Q^H Q = I_k$, and the orthogonal projection on Y is given by QQ^H .