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A projection operator allows us to decompose a Ean.:ach space X as 

well as a commuting bounded operator T on X . In this way, we are 

able to concentrate only on a 'part' of v 
"'' or of T. These 

proJection operators will often occur in the spectral theory as well as 

in various approximation procedures tl~t we shall study. 

A complex Banach space X is said to be decomposed by a pair 

,Z) of its closed subspaces if X= Y + Z and Y n Z = {0} . In 

this case, we write 

This happens if and only if every x EX can be written in a 

unique way as y + z vii th Y E Y ru1.d z € Z if we let Px y 

then P is a Iinear map from X to X and satisfies P2 = P i.e., 

P is a m:ojection. Also, the set { Px} : X E is closed in X x 

X This can be seen as follows. Let xn --~> x and Pxn _, y Since 

Pxn E Y and Y is closed, 'l(e see that y E Y Also, x-PxEZ 
n n 

and Z is closed, so that x- y E Z . Since x = y + (x-y} with 

y € Y and x - y € Z we have Px = y This shows that P is a 

cLosed operator; the cLosed. graph theorem tells us that P is, in fact, 

continuous {[L], 10. This operator P is called the projection 

On the other hand, starting with a projection operator P E BL(X) 

we obtain a decomposition of X as follows: Let Y = R(P) and 

Z = Z(P) Since P is continuous, Z is closed; also, since Y 

Z(I-P} , where I P is continuous, we see th.at Y is closed. 

Moreover, for every x € X , we have x = Px + (x-Px) so that 

X= Y + Z Clearly, X € y n z implies X = Px = 0 . Thus, 

X R(P) ~ Z(P) . 
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It is worthwhile to note that for P € BL(X} , we have 

1) either P 0 or iiPII 2 1 . 

This follows easily from IIPil = IIP2!1 ~ 

Let X be decomposed by (Y,Z) and consider T € BL(X) . We say 

that T is decomposed by (Y.Z) if T(Y) c Y and T(Z) c Z , i.e .. 

if Y and Z are invariant subspaces _f.Q];: T 

In this case, if we let Ty = TIY 
then for 

x=y+z, yEY, z€Z, 

we have 

This allows us to write 

We now give a criterion for T to be decomposed by (Y,Z) . 

z -> z ' 

PROPOSITION 2.1 Let X = Y ~ Z and P be the projection on Y along 

Z . Then T E BL(X) is decomposed by (Y, if and only if PT = TP , 

i.e., T and P commute. In this case, we have 

Ty = PTPjy and Tz = (I-P}T(I-P) lz . 

Proof PT = TP if and only if PTx = TPx for all x E X if and only 

if PTy + PTz = TPy + TPz for all y € Y and z E Z, i.e., 

PTy + PTz = Ty for all y E Y and z E Z if and only if PTy Ty 
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and PTz = 0 for all y E Y and z E Z {upon applying P to both 

sides). This happens if and only if Ty E Y and Tz E Z for all 

yEY and zEZ i.e., T{Y) C Y and T{Z) C Z. The rest is 

easy. /) 

Let us now relate the results of this section to the adjoint 

considerations of Section 1. 

PROI'OSITim 2.2 {a) Let X = Y ED Z . Then 

If P is the projection on Y along Z , then p* is the projection 

on zi along yi thus, 

The linear map F Zi ~ y* given by 

* * Fy = y IY 

is one to one and onto. 

{b) Let T E BL{X) and T = Ty ED Tz . Then 

T* = {T*}zi ED {T*}yi . 

The map {T*)~ can be identified with {Ty}* as a linear map via the 

map F, i.e., the following diagram commutes 

F y* 

F 
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(a) Since P is a projection, we have 

Also, by 1.3(c), 

Hence p* is a. projection from .l on Z along Thus, 

* z.l F * * * Now, let y € If y = y IY = 0 . then (y .x> = 0 for 

all X € ZUY i.e., * = 0 This y shows that the map F is one to 

Next~ fo:r * * one. w € define y € 

,x) = <w*.Px> , x E X . 

Then .i * * € Z and Fy = w Thus, the map F is onto. 

Since T is decomposed by (Y, we see by Proposition 

2.1 that TP = PT . Hence 

so that 

Lastly, for € z.i and y € y ' we have 

* = (y ,Ty> 

** <T y ,y) 

* * <(T )z.lY . 

* * <F(T )zl.y ,y> 
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This shows that we can identify via the 

map F . // 

The result in part {a) of th~ above proposition can be illustrated 

as follows. 

Px 

z 

-----/'X 
/ 

/ 
/ 

/ 
/ 

/ y 

·Figure 2.1 

So far we have not said anything about the existence of a 

decomposition of X . Indeed, given a closed subspace Y of X , 

there may not exist any closed subspace Z of X such that 

X = Y m Z . Such is the case if X is the space of all complex-valued 

bounded functions on [a,b] and Y = C([a,b]). (See [F].) However, if 

Y is a finite dimensional subpace of a Banach space X , then there 

exist many closed subspaces Z of X such that X = Y m Z , as we 

shall see in the next section. We now show that if X is a Hilbert 

space, then every closed subspace Y of X can be 'complemented', and 

that too in a canonical manner. 

PROPOSITION 2.3 Let X be a Hilbert space and Y be a closed 

subspace of X . Then 
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The projection P on Y along y1 satisfies 

P = 0 or IIPII = 1 , and 

<Px.x> z 0 for all x € X • 

In particular, P is self-adjoint. Conversely, if a projection 

P € BL{X) is normal, then 

R{P).l = Z{P) 

Proof Let x € X and d = dist{x.Y) Find yn € Y such that 

llx-y II ~ d as n ~ oo • 
n 

By the paraLLeLogram Law, 

211x-y 112 + 211x-y 112 = 112x-y -y 112 + lly -y 112 
n m n m n m 

Now, 

which tends to 2d as n,m ~ 00 • Hence 2 lly -y II ~ 0 as n,m ~ 00 , n m 

i.e., {yn) is a Cauchy sequence in Y Let y ~ y € Y 
n 

since Y 

is closed. We show that x - y € y1 . Let y0 € Y with lly0 11 = 1 

Since 

the Pythagoras theorem shows that 

2 2 2 llx-yll ll{x-y) - <x-y,y0>y0 11 + l<x-y,y0>1 



x-y-<x-y,yo>Yo \ 
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Figure 2.2 

x-y 

\ 
\ 

\ 

/,.'-<x-y,yo>Yo 
/ 

On the other hand·, since the element y + <x-y ,y0>y0 belongs to Y , 

llx-yll = d 5; ll{x-y) - <x-y,y0>y0 11 

Hence <x-y,y0> = 0, i.e., x- y is orthogonal to y0 . Since y0 

is an arbitrary element of norm 1 in Y , we see that x - y € yl 

Thus, x = y + (x-y) with y € Y and x - y € yl . Since 

Y n yl = {0} , we have X = Y Ql yl . 

Let P be the projection on Y along yl . Then for all x € X , 

<Px,x> = <Px. Px> + <Px.x-Px> 

<Px.Px> l 0 . 

This implies, in particular, that <Px.x> is real for all x € X . 

Hence by {1.8), P is self-adjoint. Also, for x € X , the Pythagoras 

theorem shows that 

llxll2 = IIPx + (x-Px)ll2 = 11Pxll2 + llx-Pxll2 

since <Px,x-Px> = 0 . Thus, 11Pxll2 5; llxll2 , i.e., IIPII ~ 1 . But we 

always have P = 0 or IIPII l 1 for any projection P . Hence in the 

present case, P = 0 or IIPII :::: 1 . 

Lastly, let P € BL(X) be a normal projection. Then by (1.8), 

Z(P) = Z(P*) But by Proposition 1.3(c), Z{P*) = R(P)~ . Hence 

Z(P) = R(P)~ // 
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The projection on a closed subspace Y of a Hilbert space X 

along its orthogonal complement yl is called the orthogonal 

projectjon on Y . Thus, a projection P € BL(X) is orthogonal if and 

only if Z(P) = R(P)~ . 

Before we conclude this section, we introduce the concept of the 

gap between two closed subspaces of a Banach space X and relate it to 

projections on them. 

Let Y and Y be closed subspaces of X . If Y = {0} , let 

6(Y,Y) = 0 , and otherwise let 

6(Y,Y) = sup{dist(y,Y) y € Y, llyll = 1} . 

Thus, 6(Y,Y) is the smallest number 6 such that 

dist(y, Y) ~ 611yll for all y € Y 

It is clear that 0 ~ 6(Y,Y) ~ 1 and 6(Y,Y) = 0 if and only if 

Y C Y . We note that 6(Y,Y} can be zero even when Y ¢ Y , and may 

not equal 6(Y,Y) . To mend these matters, define the~ between Y 

and Y by 

(2.3) 6(Y,Y) = max{6(Y,Y) . 6(Y,Y)} 

Then B(Y,Y) = 0 if and only if Y = Y and 6(Y.Y) = 6(Y,Y) 

Let P and P be projections onto Y and Y , respectively. 

Then it follows that 

6(Y,Y) ~ II(P-P)PII , 
(2.4) 

6(Y,Y) ~ max{II(P-P)PII , II{P-P)PII} 

In case X is a Hilbert space and P as well as P are 

orthogonaL projections, then it can be easily seen that 
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cS(Y,Y) = II(P-P}PII2 
(2.5} 

In fact, Kato has proved that 

(2.6} 

where Q and Q are any projections on Y and Y respectively ([K], 

Problem 6.33, Theorems 6.34 and 6.35}. In particular, 6 is a metric 

on the set of all closed subspaces of a Hilbert space. 

y 
I 
I 
I 

y 

',I 
'l. 

1'-
1 ', 
I ' 

Figure 2.3 

6(Y,Y) can be interpreted to be the sine of 'the acute angle between Y 

and Y (See [GV], p.22.} 

Problems 

2.1 If P is a projection, then I- P is a projection on Z(P) 

along R(P} if P is orthogonal then so is I - P . 

2.2 Let Y1 , ... ,Yn be closed subspaces of X. Then X= Y1 + ... + Yn 

and Yin Yj = {0} for i ¢ j {i.e., X= Y1 $ .•. $ Yn) if and only 

if there are projections pl' ... ,Pn such that R{P.) 
1 

= Y. ' pipj = 0 
1 

if i ¢ j ' and I = pl + ... + p Let T € BL(X) Then 
n 

T = Ty $ $ Ty if and only if TP. = P.T for i = 1, ... ,n 
1 1 

1 n 
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:2.3 Let P and Q be projections. (i) P + Q is a pro,jection if and 

only if the ,Jordan ~roduct PoQ = (PQ+QP)/2 = 0 , and then PQ = 0 . 

(ii) For P an.d Q orthogonal, PQ = 0 if and only if PoQ = 0 . 

(iii) + ( 
' 

= I and (P-Q}2 commutes with both P and Q 

2.4 Let X be a Hilbert space and Y a closed subspace of X . If 

(ua) is an orthonormal basis of Y 

Y is given by 

then the orthogonal pro,jection on 

Px:;:;; L 
a 

(Cf. 22.6 of [L].) For x EX ~A is the best approximation to x 

from Y , i.e., llx-Pxl! = dist(x,Y) (Cf. 23.2 of [L].) 

2.5 The map F of Proposi ticm 2.2 which sends * y € to /" IY need 

not be an isometry of .1 Z onto 

2.6 For Y C X , let Sy = € y !iy!l = Let Y and Y be 

closed subspaces of X Define 

(2.5) d(Y,Y} 

r o if y = {0} 

i sup{dist(y,sy) : y € if Y # {0} ¢ Y 
l 2 if y # {0} ' y = {0} 

Then d(Y,Z) ~ d(Y,Y) + d(Y,Z) for a closed subspace Z of X . Let 

(2.6) d(Y,Y) = max{d(Y.Y) , d(Y } . 

Then d is a metric on the closed subspaces of a Banach space X . 

2.7 Let X= ~n and q1, ... ,qk form an orthonormal basis of a closed 

subspace Y of X . Let Q denote the n x k matrix whose j-th 

column is qj . Then QHQ = Ik , and the orthogonal projection on Y 

. . b f""lnH 1s g1ven y ~ . 


