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ON THE CONNECfEDNESS PROPERTIES OF SUNS 

IN FINITE DifiENSIONAL SPACES 

A..BSTRACf 

The author introduced in [3] the notion of an 

M-con~ected closed subset of a norrned linear space and 

defined the class of (BM)-spaces. An M-connected 

closed subset of a finite dimensional normed linear 

space is a sun and a sun in a space which is either of 

dimension two or is a finite dimensional (m>i)-space is 

M-connected. Theorem 1 asserts that an M-connected 

closed subset of a finite dimensional space is 

n-connected for all n = 0,1,2 .... Theorem 2 relates 

Tl1eorem 1 to the results of [3]. Theorem 3 is an 

improvement of a result of Koshcheev and asserts that 

a sun in a finite dimensional space is path-connected. 

1980 Mathematics Subject Classification (1985): 41A65; 

46B20, 54H99. 

1 . INTJIDDUCfiON 

The concept of an M-connected closed subject of a normed linear space (or 

even of a metric space) was introduced in [3]. The definition is in terms of 

the metric structure of the space but it has topological consequences. The 

principal result of this paper is the terminologically satisfying 

An M-connected cLosed subset of a finite dimensionaL reaL normed 

linear space is n-connected for aLL n = 0, 1, 2, .... 
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In the class of (BM)-spaces introduced in [3] M-connectedness provides a 

characterisation of those subsets of the space which are suns. The second of 

our theorems is obtained by combining Theorem 1 with results of [3]. Let G 

be an arbitrary non-trivial abelian group. A space (all our spaces are 

metric) will be said to be acyclic if its Cech (or Alexander) cohomology with 

coefficients in G is trivial. 

THEOREM 2. Let K be a closed subset of a finite dimensionaL reaL normed 

Linear space X. Each of the first four of the five conditions 

(1) K is M-connected, 

(2) For each cLosed batt B of X the set K n B is 

n-connected for all n = 0,1,2, ... , 

(3) For each closed ball B of X the set K n B either 

is empty or is acyclic, 

K is P-acyclic in the sense of VLasov (see [10] or [3]), 

(5) K is a sun, 

implies the succeeding one. If X either is of dimension two or is a 

(BM)-space then the conditions are equivaLent. 

The implication (1) ~ (2) is an immediate consequence of Theorem 1 and 

a property of M-connectedness : if K is M-connected and B is a closed 

ball in X then K n B is also M-connected. The implication (2) ~ (3) 

is purely topological being a direct consequence of [9, Theorems 7.5.5, 5.5.3 

(applied to singular homology and cohomology) and 6.9.5]. 

The other implications of the theorem (and the direct implication (1) ~ (3)) 

are discussed in [3]. 

Conditions under which the results of [3] can be extended to an infinite 

dimensional space and a boundedly compact subset K are discussed in [4]. 
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Koshcheev [6] has proved that a sun in a finite dimensional space is 

connected. He has also obtained results for suns in infinite dimensional 

spaces [7,8]. Here we obtain an improvement (mentioned in [3]) of Koshcheev's 

result. 

THEOREM 3. Let X be a real normed linear space of finite dimension. IF K 

is a closed subset of X and K is a sun, then K is path-connected and 

locally path-connected. More precisely, there exist positive constants M 

and a depending only upon X such that if x0 ,y0 are distinct points of K 

then there exists a path s: [0,1] ~K From x0 to y0 which satisfies 

the condition 

(*) lis(~) - s(n)ll ~ M llx0 - y011 l~-11la 

for all ~.11 € [0,1]. 

Theorems 2 and 3 together add point to the question "What connectedness 

properties are shared by all suns in finite dimensional spaces?" Theorems 1 

and 3 are proved in Sections 2 and 3 respectively. The definitions and 

properties of suns and M-connected sets are discussed to the extent necessary 

to make the account readable. 

The author's interest in the subject of suns was much increased by the 

work of Berens and Hetzelt [1,2]. Theorem 2 of this paper is a direct 

response to a remark of Prof. Berens who suggested that 'P-acyclicity is not 

the right condition'. 

2. M--<Dl'fflECI'EI IMPLIES n--a>NNECI.'ED 

Throughout the paper X will be a fixed real normed linear space of finite 

dimension m. The norm on X will be denoted by 11•11. 

First we introduce some notation. We choose, once for all, f 1 , •.• ,fm 

in ext S(X*), the set of extreme points of the unit sphere of x*, such that 
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f 1, ... ,fm is a basis of x*. It will be convenient to work with the norm I· I 

on X, equivalent to 11•11, defined by 

lxl = max lf.(x}l 
lS:iS:m 1 

For any bounded subset A of X and for i = l, ... ,m let 

and let 

d(A) =max d.(A) 
lS:i~m 2 

Thus d(A) is the diameter of A with respect to the norm I· 1. 

If ai S: ~i for i = l, ... ,m then the set 

will be called a box. 

b 
m -1 
n fi {[ai,f\]) 

i=l 

If A is a bounded subset of X and a. = l.(A), 
1 l 

~i = mi(A) then b is the smallest box which contains A and will be 

denoted b(A). 

If A is a bounded subset of X then the Banach-Mazur Hull of A is 

the set 

M(A) = n {B : B is a closed ball of X, A~ B}. 

A closed subset K of X is said to be M-connected [3] if 

K n (M({x,y})' {x,y}) # 0 

whenever x,y are distinct points of K. The properties of M-connected sets 

which are required, and which are established in [3] are the following. 

(Ml) If K is M-connected and B is a closed ball of X then K n B is 

M-connected (one can read this as including the statement that M-connectedness 

implies local M-connectedness). 

is M-connected, * f € ext S(X ) and a € ffi then (M2) If K 

K n f-1((-ro,a]) is also M-connected; consequently for each box b the set 

K n b is M-connected. 

(M3) If K is M-connected then K is path-connected. 

In the proof of Theorem 1 only the properties (M2) and (M3) are needed. 
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Given a non-negative integer n let 

Eo= {x = (El, ... ,fn+l} € mn+l : 0 ~ Ei~l 

The boundary of a subset A of IRn+l relative to 

for i = 1,2, ... ,n+1}. 

Thus the pair 

IRn+l will be denoted BA. 

n+l n 
is homeomorphic to the pair (E ,S ), the sta1~dard 

euclidean (n+l)-ball and its boundary sphere. Theorem 1 is equivalent to the 

statement that if K is an M-connected subset of X then for each 

non-negative integer n any continuous mapping 

has a continuous extension over E0 . The proof is by induction on n. 

Property (M3) is the case n = 0. 

Now let n be a positive integer and assume that every M-connected 

subset of X is (n-1)-con~ected. Let 

be a continuous mapping. It must be shown that a continuous extension of 'f' 

over E0 can be constructed. The construction will be in five steps. Step 1 

is the basic one. Step 2 involves a finite repetition of Step 1. Step 3 

consists of an infinite repetition of Step 2. Throughout the discussion the 

same symbol ~will be used for the initial mapping and for extensions of it. 

The first step of the extension process depends upon an 

If n 2 1, Y is an (n-1)-connected space and (X,A) is a 

finite relative CW-complex with dim(X\A) ~ n then any continuous mapping 

f :A ~y can be extended over X. 

The proof of the lemma is an elementary exercise. The lemma is a very 

simple case (in which there are no obstructions) of results in obstruction 

theory, e.g. [5, Proposition VI.6.6] or [9, Theorem 8.1.17]. 

We shall work with subsets of ffin+l which are unions of cubical cells of 

certain lattices. For each positive integer p the set 2-p ~n+l is a 
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lattice in uf1+1. 
' 

the sets of the form 

where ai,bi € Z and ai ~ bi ~ ai+1 for i = 1, ... ,n+1 will be referred to 

as the cubical cells of the 2-p-lattice. The dimension of such a cell is 

card {i : bi # ai}. Any union of cubical cells of the 2-p-lattice is a 

CW-complex in a natural and obvious way. 

Step 1 of the extension process Let E be a subset of E0 such that E is 

a union of (n+1}-cells of some 2-p-lattice and let 

cp:aE--+K 

be a continuous mapping. Let j € {1, ... ,n}. 

Then there exists a finite family of subsets A1 , .•. ,~ of E and a 

M 
continuous extension of cp over E ' k~1 int ~ such that 

(1.1} For each k = 1, .•. ,M· the set ~ is a union of (n+1}-cells of 

some 2-q-lattice, 

M 
(1.2} U ~ = E, 

k=1 

(1.3} int ~ n int A1 = 0 for k # 1, 

M 
(1.4} cp(E' U int ~} ~ b(cp(8E)}, 

k=1 

(1.5} dj(cp(8~}} ~ ~ dj(cp(8E}) for k = 1, ... ,M. 

(The first digit of the numeration refers to Step 1.} 

Proof First note that 8E is a union of n-cells of the 2-p-lattice. 

We can suppose that d.(cp(aE}} ) 0 for otherwise we can take M = 1, 
J 

A1 = E. Let 

for i = 0,1,2,3. 

ai = lj(cp(aE}} + ~ (mj(cp(aE}} - lj(cp(aE}}} 

-1 -1 
Let Ii = [ai,ai+1] and Fi = cp (fj (Ii)) 

Thus F0 ,F2 are disjoint closed subsets of aE. 

for i = 0,1,2. 

It will be shown that there exist an integer q and a subset D of E 

such that 
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(i) D is a union of cells of the 2-q-lattice and D !_:; E \. (Fo U F2), 

(ii) D separates Fo at!d v in E, and "2 

(iii) D is minimal subject to the conditions (i) and ( ii). 

· dh d ~'· "h h · IRn+l Let _ere enote u.:tstance Wlt_ respect tote max norm :tn . In order to 

find q and D let 

{j 

and choose q?: p such that ?-q < 6. Let 11' be the union of all those 

(n+l)-cells of the 2-q-lattice which are contained in E and meet !. Thus 

li' satisfies conditions ( i) and ( ii). If a subset A' of E satisfies ( i) 

and (ii) then so does the union of all those cells of the 2-q -lattice '~hich 

are contained in 11' and are of dimension ~ n. Consequently there exists a 

set D which satisfies conditions (i), (ii) and (iii) and it is a union of 

cells of dimension ::;: n. It is easily seen that, by (i:i.:i.), for such a set D 

the set D n CJE is a union of (n-1}-cells of the lattice. 

Now D n 

Therefore 
-1 

<P(D n BE)!;;; K n b(<P(BE)) 11 fj ([a1,a2]). 

The set on the right is M-connected by (M2) and. so (n-1)-connected by the 

inductive hypothesis. Therefore, by the E..xtens:ion Lemma, the mapping 

has a continuous extension over D. An extension gives a continuous extension 

of 

over D U BE. 

The open subset E \. (D U BE) of mn+l is dense in E and has a finite 

number of components; let the closures of these components be A1 , ... ,Ar<i· 

Then conditions (1.1)-(1,.4) are satisfied. If U is a component of 

E \. (D U BE) then u cannot meet both F1 and F2 , consequently <P(BU} is a 

subset either of e-l(r ]) or of 
-1 

This proves that (1.5} rj lao,a2 fj ([a1,a3]). 

is satisfied. 
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Step 2 of the extensio~ process Let E be a subset of E0 such that E is a 

union of (n+l)-cells of some 2-p-lattice and let 

<p: aE-K 

be a continuous mapping. Then there exists a finite family of closed subsets 

Ei····•EN of E and a conti~uous extension of 

that 

N 
<p over E ' U int Ek 

k=l 
such 

(2.1) For each k = l, ... ,N the set Ek is a union of (n+l)-cells of 

some 2-q-lattice, 

M 
(2.2) U Ek = E, 

k+l 

(2.3) int Ek n int Ei = 0 for k ~ l, 
N 

(2.4) <p(E' U Ek) ~ b(<p(8E)), 
k=l 

(2.5) d(<p(o~)) ~ ~ d(<p(8E)) for k = l, ... ,N. 

Proof The sets Ei•···•EN and the extension <pare obtained by applying 

Stage 1 to j = 1 and E to obtain sets A1, ... ,AM' then applying Stage 1 to 

j = 2 and each of A1 , •.. ,~ and so on for j = 3, ... ,m. 

Step 3 of the exte~sion process There exist positive integers 

i) fori= 0,1,2, ... , sets E~i) 
J 

for j = 1, ... 

and an extension of <p : aE0 --; K over the set 

00 

i=l 

such that 

N(i) 
E~i) (3o2) u = Eo for each i = 0,1,2,0 .. ; 

j=l J 

(3.3) · t E(i) n int ~i) lD . 
J 

= 0 for j # k and 

i) and i = 0,1,2, ... , 

i 1,2, ... ; 
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(3.4) For each i+l,j such that 1 ~ j ~ N{i+l} there exists j' 

such that E~i+l) C E~~) and 
J - J 

{3.5) ~(BE~i+l}) ~ b(~(BE~~))); a~d 

.6} d(~(aEj 1 )}) ~ (~)i d(~(oE)) for all j l, ... ,N(i) and 

i = 0,1,2,. 

Proof N(O) and E~O} are defined by (3.1). If for r = O, ... ,i-1, 

the sets E~r) for j = l, ... ,N(r) aud r = O, ... ,i-1 and a continuous 
J 

extension 

N(i-1) 
~ : (E0 \. u int 

j=l 
E~i-1)) _____, K 

J 

l~ve been defined then i), the sets E~i} for j = l, ... ,N(i) and a 

continuous extension 

i) (.) 
•P : (E \. int E . 1 ) --" K 

0 j=l J 

are b . d b· l . S 2 '· f h E(i-1) E..(i-1) o ta:~.ne y app y1ng tep to eacn o t e sets 1 , ... •-!~(i·-1). 

Step 4 of the extension process The extension 

is uniformly continuous and so extends over A-. 

Proof Let i be a positive integer. Let 

o - · {d(E(i) E..(i}) · 1 < . k < N(") EJ~i} n E,(i) = 0}. i - mJLn j ,_k . _ J, _ , 1 , K 

Then ci > 0. If x,y E E and d(}c,y) < oi then there exist j,k such that 

If also 
N(i) (") 

x,y E (E0 ' U int E.1 ) 
j=l J 

then 

This proves the assertion. 
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Step 5 of the extension process Let U be a component of the open subset 

E' A- of ffin+l. 

int E~i) for some 
J 

and so, by 3.6, 

For each 

j and 

i = 0,1,2,... the set U :is a subset of 

au c E(.i). Th b 3 5 _ J en, y .. , 

~(BU) ~ b(~(BE~i)) 

d(~(BU)) ~ d(~(E}i))) ~ (~)i d(~(aE0)). 
This inequality holds for all i = 0,1,2, ... and therefore ~(aU) is a 

single point. It follows that 

can be extended over E0 by defining it to be constant on the closure of each 

component of E0 ' A-. It is easy to see that the resulting extension is 

continuous. Thus we have obtained a continuous extension of the original 

mapping ~ aE0 ~ K and the proof of the theorem by induction is 

complete. 

3. SUNS: ARE PA1H-{)()NNECfED. 

A closed subset K of the normed linear space X (of finite dimension 

is a sun if for each x E X ' K there exists a point s € K (a soLar point 

for x in K) such that 

for all A. ~ 0. Let 

ll(s+A.(x-s)) - sll d(s+A.(x-s),K) 

B(x,r) = {y € X : llx-yll < r} 

B'(x,r) = {y EX : llx-yll s; 

S(x,r) = {y € X : llx-yll = r} 

denote the open ball, closed ball and sphere in X of centrex and radius r 

respectively. The proof of Theorem 3 depends on the following well-known 

property of solar points. 
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Proposition (v.[3],Prop 2.1). If K is a sun in X, x € X' K and s € K 

is a sol.ar point for X in K then [s,k] n B{x,llx-sll) = 0 for al.l. k € K. 

Let K be a sun in X and let x0 ,x1 be distinct points of K. First 

we describe the construction of a path in K from x0 to x1 . The idea arose 

from consideration of the case in which X is a space of dimension two 

{see[2,3]). Let 

D = {2-ki : i = 0,1, ..• ,2k, k = 0,1, ... } 

be the set of dyadic rationals in [0,1]. A mapping s: D ~K can be 

chosen inductively in the following way: 

Let s(O) = x0 , s(1} = x1. {i) 

{ii) If the points s(~) have been chosen for i = 0, ... ,2j and 
2J 

j = o, ... ,k then for k-1 
i = 0, ... ,2 let 

and choose 

= { z(i,k} 

a solar 

if z(i,k} € K, 

point for z(i,k} in K if z(i,k} ~ K. 

It will be shown that a mapping s: D ~K chosen in this way satisfies 

condition {*) of Theorem 3 (for some M and a). It will then follow that 

s : D ~ K is uniformly continuous and so has a continuous extension 

s : [0,1] ~ K. The extension will also satisfy {*). The proof will be 

complete. 

The proof depends upon the principal Lemma 3 of [6] which we reformulate 

as follows. 

LEMMA There exists ~· € (0,1), a constant depending onLy upon the space 

X, such that if ((xr,yr,zr,sr) : r = O, ... ,m-1) is an m-tupl.e of points in 

x4 (that is a point of (X4)m) which satisfies the conditions 

(1) 
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(2) 

r = 0, ... ,m-2, 

(3} -zrll) = 0 for r O, ••. ,m-1, 

then 

Let M = max{~,M'}. Let s: D ~K be a mapping chosen to satisfy 

conditions (i) and (ii). It will be shown that if 

4m 
M = M(l-!..t)' a 

then s : D ~ K satisfies condition (*) of Theorem 3. 

In order to describe the proof we introduce the set 

T = {(i,j) : i = 0, ••• ,2j-1; j = 0,1,2, ... } 

which will be regarded as a directed tree in which {i,j) has the two 

immediate successors (2i,j+1) and (2i+l,j+l). Then (0,0) is the root of 

the tree and (i,j) is a point at height j in the tree. Let ~ denote the 

partial order in T. To each point (i,j) € T we associate the line segment 

i s(i~l)], z(i j) [s(--:-), its mid-point and its length 
2J 2J 

l(i,j) lls( 1: 1 ) i The line segments corresponding level of the = - s(--:-)11. to a 
2J 2J 

tree form a polygonal path which is an approximation to the path 

s : [0,1] ~ K. 

Consider a point (i,j) E T. i 
For the moment write x = s(-:"), y 

2J 

and s = s(2i~1 ). If z = z(j.,j) 1£ K then s is a solar point for z in K 
2J 

and by the Proposition 

([x,s] U [y,s] n B(z,lls-zll) = 0. 

Thus to any sequence (i0 ,j) ~ (i 1 ,j+l) ~ ,,, of successive points in the 

tree there corresponds a sequence of points in x4 . If none of the points 

z(ir,j+r} is in K then the sequence of points satisfy conditions (1), (2) 

and (3) (for all relevant r). 
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s(2i~1) 
2J 

is a point of K closest to 

z(i.j). It follows that if (i 0 ,j) s (i 1 ,j+1) then 

(4) l(il ,j+l) s l( j) 

and 

(5) 

Thus l is a monotonically decreasing function on T. If 

(6) 

Suppose that 

1 
l(il,j+l) = 2 l 

successive points in the tree. If z( ,j+r) E K for some r € {O, ... ,m-1} 

then by (6) and the monotonicity of l 

l( 

and otherwise, by the le=, 

Consequently, in either case 

l(im' s ~ l(i0 ,j). 

Also, by (5) and the monotonicity of l, 

(8) 

Now we climb up the tree m levels at a time. Suppose that 

(i,j+n) ;;:: (i0 ,j) :=md that km S: n < (k+l Then there is a sequence 

{i0 ,j) s (i 1 ,j+m) s ... s (ik,j+km) s (i,j+n) 

in the tree. By {5), the monotonic tty of l, (8) and (7), 

lls(2~+l ) - z(i0 ,j)li s lis( ~i+l ) - z(i,j+n)ll + llz(i,j+n) - z(ik,j+krn)ll 
2 J+n+l 2 J+n+1 

(9) 

k 
+ :Z: llz(ir,j+rn} - z(ir-l ,j+(r-l)n}ll 

r=l 
k 

~ ~l(i,j+n) + rn l(ik,j+krn) +2m l{ir_1 ,j+(r-1)m) 
r=l 

1 k k+l r-1 s (2 ~ + :z: m ~ } l(i0 ,j) 
r=l 

< -1m l ( io' j} . 
--~ 
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(if E is in the open interval then is given by 

for the end points of the interval,) 

Now suppose that f,~ ED. Let N 

Then 

IE-1JI ~ --
2Nm ' 

N 1 I Ia ~~ < - ,1,;-1) 
l.l 

and there exists an i such that 
i-1 i+l 

,1J} ~ [ Nm ' ~N ]. 
2 2m 

It follows from ( and (7) that 

lls(E) - s(YI)II 

I J. 

2 l(i-l,Nm), l(i,Nm) 

s ~l.l jl 1{0,0) 

< 

The proof is complete, 

(10) clearly holds 

II 

We conclude by remarking that Theorem 3 is true with a"' 1 if the space 

X either is two-dimensional or is a EM-space, a:nd, more generally, that the 

conclusion holds with =1 if K is an ~i-connected set, whatever the finite 

dimensional space X, In the case dim X= 2 the result foHows from those 

of [2], 
00 

for X"' i (m) it follows from those of [1] and for M-connected sets 

i.n general it is proved in [3], 
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