1.10. Comparison of Semigroups.

In perturbation theory one starts from a semigroup S and an operator P, which is "small" with respect to the generator H of S, and then constructs a perturbed semigroup S^{P} , with generator H + P, which is "close" to S. The notions of "smallness" of the perturbation and "closeness" of the semigroups are intimately related. In particular one can estimate from the identity

$$S_{t} - S_{t}^{P} = \int_{0}^{t} ds \frac{d}{ds} (S_{t-s}^{P} S_{s})$$
$$= \int_{0}^{t} ds S_{t-s}^{P} S_{s}$$

that

$$\|s_t - s_t^p\| = o(t)$$
,

as $t \rightarrow 0$, if P is bounded, or

$$\left\| \left(S_{t}^{} - S_{t}^{p} \right) a \right\| = O(t)$$

for all a $\in D(H)$, as $t \rightarrow 0$, if P is relatively bounded with respect to H . Our aim is to prove converses to these statements.

We now begin with two semigroups satisfying the estimate (*), or (**), and attempt to prove that the corresponding generators differ by a bounded, or a relatively bounded, pertúrbation. The difficulty is that these converse statements are not valid for general C_0 -semigroups. Nevertheless they are valid for C_0^* -semigroups, with some slight qualification, and hence for C_0 -semigroups on reflexive Banach spaces. In general another phenomenon of intertwining of generators has to be taken into account. We will discuss this after describing the basic results on C_0^* -semigroups, and their corollaries.

THEOREM 1.10.1. Let S and T be two C_0^* -semigroups on the Banach space B with generators H and K, respectively. The following conditions are equivalent:

- 1. $\|S_{+} T_{+}\| = O(t)$ as $t \to 0+$,
- 2. D(H) = D(K) and K = H + P where P is a bounded operator from the norm closure $\overline{D(H)}$ of D(H) to B.

Proof. $1 \Rightarrow 2$. Condition 1 states that there are constants N , $\delta > 0$ such that

$$\|S_t - T_t\| \le Nt$$

for $0 \le t < \delta$. Now for $f \in D(H)$ consider the one-parameter family $f_t = (S_t - T_t)f/t \in B$. One has $||f_t|| \le N||f||$ for $0 \le t < \delta$. But the unit ball of B is compact in the weak*-topology, by the Alaoglu-Birkhoff theorem, and hence there exists a subnet $f_{t_{\alpha}}$ which is weak*-convergent, as $t_{\alpha} \ne 0+$, to a limit g. Now if K_* and T_{*t} denote the adjoints of K and T_t , on B_* , which exist by Lemma 1.5.1, one has

126.

$$f(K_{a}a) = \lim_{\alpha} f\left(\left(I - T_{*t_{\alpha}}\right)a\right) / t_{\alpha}$$
$$= \lim_{\alpha} \left(\left(I - S_{t_{\alpha}}\right)f\right)(a) / t_{\alpha} + \lim_{\alpha} f_{t_{\alpha}}(a)$$
$$= (Hf)(a) + g(a)$$

for all $a \in D(K_*)$ and $f \in D(H)$. Since the right hand side is continuous in a , and since $D(K_*)$ is norm-dense in \mathcal{B}_* , one concludes that $f \in D(K)$ and hence $D(H) \subseteq D(K)$. But reversing the roles of S and T in this argument gives $D(K) \subseteq D(H)$ and hence D(H) = D(K). Furthermore the foregoing identity gives

$$Kf = Hf + g$$
.

But $\|g\| \le N \|f\|$ and hence K - H extends by closure to a bounded operator P from $\overline{D(H)}$ to B, with $\|P\| \le N$.

 $2 \Rightarrow 1$. If $f \in D(H)$ then $S_{S}f \in D(H)$ and

$$((S_t-T_t)f)(a) = \int_0^t ds (T_{t-s}PS_sf)(a)$$
.

Therefore

$$\|S_{t} - T_{t}\| \le t \|P\| \sup\{\|T_{t-s}\| \|S_{s}\| ; 0 \le s \le t\}$$

= 0(t)

as t \rightarrow 0+ because $||S_t||$, $||T_t|| \le M \exp\{\omega t\}$ for suitable M, $\omega \ge 0$.

Note that in the proof of $1 \Rightarrow 2$ one establishes that the perturbation P satisfies the estimate

$$\|\mathbf{P}\| \leq \sup_{t>0} \|\mathbf{S}_t - \mathbf{T}_t\| / t$$

But in the proof of $2 \Rightarrow 1$ one has the converse estimate

$$\sup_{t>0} \|S_t - T_t\|/t \le \|P\|M^2$$

Thus if S and T are contraction semigroups, or more generally if $||S_+||$, $||T_+|| \le \exp\{\omega t\}$ for some $\omega \ge 0$, then

$$\|\mathbf{P}\| = \sup_{t\geq 0} \|\mathbf{S}_t - \mathbf{T}_t\|/t .$$

The magnitude of the perturbation is measured by the "distance" $\|S_{+} - T_{+}\|/t$ between the semigroups for small t.

The difficulty in interpreting Condition 2 of Theorem 1.10.1 as a perturbation result is that the perturbation P = K - H is only defined on the weak*-dense domain D(H). Although it is bounded as an operator from the norm closure of D(H)to B it is not clear that it has a bounded extension from B to B. This is the case, however, if D(H) is norm dense. In particular this follows if B is reflexive because then the norm topology and weak*-topology coincide. Therefore Theorem 1.10.1 has the following corollary.

COROLLARY 1.10.2. Let S and T be two C_0 -semigroups on the reflexive Banach space B with generators H and K respectively. The following conditions are equivalent:

1. $\|S_+ - T_+\| = O(t)$, as $t \to 0+$,

128.

2. There is a bounded operator P on B such that K = H - P.

Reflexivity of \mathcal{B} means that $\mathcal{B}^* = \mathcal{B}_*$ and hence weak*-continuity is equivalent to weak, or strong continuity. Therefore C_0^* -semigroups are C_0 -semigroups and this result follows from Theorem 1.10.1. But it is not generally true without reflexivity. Before giving a counterexample and discussing the new phenomenon which arises we will, however, describe the relative boundedness version of Theorem 1.10.1.

THEOREM 1.10.3. Let S and T be two C_0^* -semigroups on the Banach space B with generators H and K, respectively. The following conditions are equivalent:

1. $\| (S_t - T_t) f \| = O(t)$ as $t \neq 0+$, for all $f \in D(H)$,

2.

where D(P) = D(H) and

 $\|Pf\| \le a\|f\| + b\|Hf\|$

for all $f \in D(H)$ and some $a, b \ge 0$.

Proof. $1 \Rightarrow 2$. First remark that $f \in D(H)$ if, and only if, $\|(I-S_{+})f\| = O(t)$ at $t \Rightarrow 0+$, by Exercise 1.5.2. But then since

$$\left\| \left(\mathbf{I} - \mathbf{T}_{t} \right) \mathbf{f} \right\| \leq \left\| \left(\mathbf{I} - \mathbf{S}_{t} \right) \mathbf{f} \right\| + \left\| \left(\mathbf{S}_{t} - \mathbf{T}_{t} \right) \mathbf{f} \right\| = \mathbf{O}(t)$$

one must have $D(H) \subseteq D(K)$ and one can define P by D(P) = D(H)

130.

and P = K - H.

Next note that H and K are both weak*-closed, and hence strongly closed, and consider the graph $G(H) = \{(f, Hf); f \in D(H)\}$ equipped with the norm

 $\|(f, Hf)\| = \|f\| + \|Hf\|$.

The graph G(H) is a closed subspace of $B \times B$ and the mapping (f, Hf) \mapsto Kf is a linear operator from G(H) into $\mathcal B$. But this operator is closed, because if (f_n, Hf_n) converges in G(H) and $\mathsf{Kf}_n \quad \mathsf{converges in} \quad \mathcal{B} \quad \mathsf{then} \quad \left\| \mathsf{f}_n - \mathsf{f} \right\| \neq 0 \ , \ \mathsf{and} \quad \left\| \mathsf{Kf}_n - \mathsf{g} \right\| \neq 0 \ , \ \mathsf{for}$ some f, g $\in \mathcal{B}$ and g = Kf since K is closed. Therefore the mapping is bounded by the closed graph theorem, i.e., there is a constant c > 0 such

$$\|Kf\| \le c(\|f\| + \|Hf\|)$$

Consequently

$$||Pf|| = ||(K-H)f||$$

 $\leq c||f|| + (c+1)||Hf||$.

If $f \in D(H)$ then $S_t f \in D(H) \subseteq D(K)$ and 2 ⇒ 1.

$$((S_t-T_t)f)(a) = \int_0^t ds (T_{t-s}PS_sf)(a)$$

for all a $\in \mathcal{B}_{*}$. Therefore

$$\begin{split} \| (\mathbf{S}_{\mathsf{t}} - \mathbf{T}_{\mathsf{t}}) \mathbf{f} \| &\leq \mathsf{t} \quad \sup_{0 \leq \mathsf{s} \leq \mathsf{t}} \| \mathbf{T}_{\mathsf{t}-\mathsf{s}} \| \left(\mathsf{a} \| \mathbf{S}_{\mathsf{s}} \mathbf{f} \| + \mathsf{b} \| \mathbf{HS}_{\mathsf{s}} \mathbf{f} \| \right) \\ &\leq \mathsf{t} \quad \sup_{0 \leq \mathsf{s} \leq \mathsf{t}} \| \mathbf{T}_{\mathsf{t}-\mathsf{s}} \| \| \mathbf{S}_{\mathsf{s}} \| \left(\mathsf{a} \| \mathbf{f} \| + \mathsf{b} \| \mathbf{Hf} \| \right) \end{split}$$

$$|Kf|| \le c(||f||+||Hf||)$$
.

But $\|S_{t}\|$, $\|T_{t}\| \leq M \exp\{\omega t\}$ for suitable M, $\omega \geq 0$ and hence

$$\left\| \left(S_{t}^{-T} - T_{t}^{-T} \right) f \right\| = O(t)$$

as $t \rightarrow 0+$ for each $f \in D(H)$.

The analogues of Theorems 1.10.1 and 1.10.3 are not true for general C_0 -semigroups because of another effect which is illustrated by the following example.

Example 1.10.4. Let $\mathcal{B} = C_0(\mathbb{R})$ be the continuous functions on the real line which vanish at infinity, equipped with the usual supremum norm, and let S denote the C_0 -group of translations,

$$(S_{+}f)(x) = f(x-t)$$

for $f \in B$ and $t \in \mathbb{R}$. Thus the generator H of S is the operator of differentiation with domain the differentiable functions $f \in C_0(\mathbb{R})$ whose derivatives f' are also in $C_0(\mathbb{R})$. Next let M be the operator of multiplication by a bounded function m which is non-differentiable at some points but is uniformly Hölder continuous in the sense that

$$|m(x)-m(y)| \leq c|x-y|$$

for some c . Define W by W = $\exp{\{iM\}}$ and T by $T_t = WS_tW^{-1}$. Since

$$\left(\left(S_{t}-T_{t}\right)f\right)(x) = \left(1-\exp\{i(m(x)-m(x-t))\}\right)f(x-t)$$

one has the estimate

$$\left\|S_{t} - T_{t}\right\| \leq c|t| .$$

But the generator K of T is given by $K = WHW^{-1}$ and D(K) \neq D(H) because m is chosen to be non-differentiable. In fact one can choose m to be non-differentiable at a dense set of points and then one obtains the extreme case D(H) \cap D(K) = {0}.

Note that the same construction on $L^{\infty}(\mathbb{R})$ does not lead to a similar conclusion because the domain of the differentiation operator which generates translations is much larger and contains functions which are not continuously differentiable.

The infinitesimal comparison of C_0 -groups which are close together can be explained by a combination of a perturbation and a twist of the type occurring in Example 1.10.4. It is possible that this is also true for C_0 -semigroups but the following proof does use the group property in an essential way. It also broadens the comparison criterion.

THEOREM 1.10.5. Let S and T be two C_0^- or C_0^* -groups on the Banach space B with generators H and K, respectively and let $0 < \alpha \le 1$. The following conditions are equivalent:

1. $\|S_{+} - T_{+}\| = O(t^{\alpha})$ as $t \neq 0$,

2. there exist bounded operators P , W , such that W has a bounded inverse,

$$K = W(H+P)W^{-1}$$

132.

and

$$\left\|S_{t} - WS_{t}W^{-1}\right\| = O(t^{\alpha}) \quad as \quad t \to 0.$$

Proof. $1 \Rightarrow 2$. Define

$$W = \frac{1}{r} \int_0^r ds T_s S_{-s}$$

where r is chosen sufficiently small that ||I - W|| < 1, and hence W has a bounded inverse. This is possible by Condition 1. Next introduce

$$U_t = W^{-1}T_tWS_{-t}$$
.

One then has the identity

$$(I-U_h)/h = (rhW)^{-1} \int_0^h ds T_S S_{-S} - (rhW)^{-1} \int_r^{r+h} ds T_S S_{-S}$$

which implies the existence of the strong, or weak*-, limit

$$P = \lim_{h \to 0} \left(I - U_h \right) / h$$

and gives the identification

$$P = W^{-1}(I-T_rS_{-r})/r$$
.

Thus P is bounded. Next remark that

$$(I-T_t)Wa/t = W(I-S_t)a/t + W(I-U_t)S_ta/t$$
.

But the right hand side converges for all a \in D(H) in the limit

134.

 $t \rightarrow 0$. Hence Wa $\in D(K)$ and

$$KWa = W(H+P)a$$
.

Similarly if $a \in D(K)$ then $W^{-1}a \in D(H)$ and

$$W^{-1}Ka = (H+P)W^{-1}a$$
.

Thus D(K) = WD(H) and

 $K = W(H+P)W^{-1}$.

Finally one has

$$S_t - WS_tW^{-1} = (S_t^{-T}) + (T_t^{-WS_tW^{-1}})$$

But $t \mapsto WS_t W^{-1}$ is the group with generator

$$WHW^{-1} = K - WPW^{-1}$$

and hence

$$\left\| \mathbf{T}_{t} - \mathbf{W}\mathbf{S}_{t}\mathbf{W}^{-1} \right\| = O(t)$$

by perturbation theory, e.g., by Theorem 1.9.2. Thus

$$\| s_{t} - w s_{t} w^{-1} \| \leq \| s_{t} - T_{t} \| + \| T_{t} - w s_{t} w^{-1} \|$$
$$= o(t^{\alpha}) + o(t) = o(t^{\alpha}) .$$

 $2 \Rightarrow 1$. Define Q = -WPW⁻¹ then H = W⁻¹(K+Q)W and WSW⁻¹ is the group generated by K + Q. Thus

$$\left\| \mathbf{T}_{t} - \mathbf{W} \mathbf{S}_{t} \mathbf{W}^{-1} \right\| = \mathbf{O}(t)$$

as t \rightarrow 0 by another application of perturbation theory. But

$$S_t - T_t = (S_t - WS_t W^{-1}) + (WS_t W^{-1} - T_t)$$

and hence

$$\begin{split} \| S_{t} - T_{t} \| &\leq \| S_{t} - W S_{t} W^{-1} \| + \| W S_{t} W^{-1} - T_{t} \| \\ &= o(t^{\alpha}) + o(t) = o(t^{\alpha}) . \end{split}$$

Exercises.

1.10.1. Prove that if S and T are two C_0^- , or C_0^* , semigroups with

$$\|S_t - T_t\| = o(t)$$

as $t \rightarrow 0+$ then S = T.

1.10.2. If S is a C_0^- or C_0^* -semigroup prove that S is uniformly continuous if, and only if, there exist ε , $\delta > 0$ such that

$$\|I - S_t\| \le 1 - \varepsilon , \qquad 0 < t < \delta .$$

1.10.3. If S and T are two C_0^- or C_0^* -groups with generators H and K prove that there exist ε_1^- , $\delta_1^- > 0$ such that

136.

$$\left\| S_{t}^{T} - I \right\| \leq 1 - \varepsilon_{1}, \qquad 0 < t < \delta_{1},$$

if, and only if, there exist ε_2 , $\delta_2 > 0$ and bounded operators P, W, such that W has a bounded inverse $K = W(H+P)W^{-1}$ and

$$\left\| \mathbf{S}_{t} \mathbf{W} \mathbf{S}_{-t} \mathbf{W}^{-1} - \mathbf{I} \right\| \leq 1 - \varepsilon_{2} , \qquad 0 < t < \delta_{2} .$$

Hint: Follow the proof of Theorem 1.10.5. Note that Exercise 1.10.2 follows by setting T = I.