
CHlWTER 2 

GEOMETRIC PRELIMINARIES 

Almost linear functions, approximate fundamental solutions, 

and representation formulae. Harmonic coordinates. 

2.1 OUTLINE OF THE CHAPTER 

This chapter begins with a collection of basic estimates for Jacobi 

fields and some convexity results. We mostly follow the elegant presentation 

in [BK]. 

We ·then introduce the notion of almost linear functions on a manifold, 

the main technical innovation of [JIG]. Whereas standard coordina-te f1mctions, 

e.g. Riemannian normal coordina-tes, have only rather poor regularity 

properties ( cf. the example in 2. 8) due to the fac·t that they involve not only 

the distance function but also angular terms, almost linear ftmctions will be 

constructed by only using the distance function, which admits a sufficient 

control through Jacobi field estimates. The basic idea is to use the 

Euclidean identity 2<x,p-q> = lx-ql 2 - lx-pl 2 (p = -q) as a definition. 

These functions satisfy almost, i.e. up to a small error term, the usual 

characterizations of linear functions in Euclidean space, e.g. tha-t the first 

derivatives are constant, the second ones vanish, or the Taylor expansion 

terminates after the second term. These error terms are inevitable due to the 

presence of curvature, conceptually considered as a measure of deviation from 

Euclidean space. Such error terms, however, generally are of lo•1er order than 

the other ·terms which appear already in the Euclidean versions of the formulae 

and hence can be easily absorbed. In particular, we discuss approximate 

fundamental solutions of the Laplace and heat equation on manifolds and derive 

representation formulae. Almost linear functions permit to gain one order of 

differentiation in such formulae by enabling us to also approximate the 
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derivatives of fundamental solutions. 

Another application of almost linear: func·tions is the construction of 

harmonic coordinates on manifolds with the help of a perturbation argumen·t. 

They possess even better regularity properties, since, for instance, we can 

derive Ca -bounds for the corresponding Christ.offel symbols in terms of 

curvature bounds only, not involving any curvature derivatives. 'I'hey there-

fore seem to be optimally adapted to ·the concept of manifolds of bounded 

geometxy. In the present notes, they will play an important role in the 

derivation of higher order a--priori estimates for harmonic maps. 

Starting with section 2.6, all the results of this chapter are either 

taken from or inspired by [JKl]. 

2.2 JACOBI FIELD ESTIMATES 

Let c(s,t) = ct(s) be a family of geodesics parametrized by t 

s usually will be taken as the arc length par?..meteJ:· on each geodesic. 

d 
Jt(s) = ()t c(s,t) is ·then a Jacobi field. It satisfies the equation 

(2 .. 2.1) D D ( + R [~cs ' Jt)l ~cs· = 0 ~ Cls Jt. s) o I o 

which easily follows from and the definition of the curvature 

tensor. 

From (2.2.1) we see tha·t the tangential component of a Jacobi field J, 

Jtan = <.J, ~~· >J satisfies 

and is hence independent of the metric. In pa:r·ticular, Jtan is l.ineaJ:·. In 

order to .incorporate the tangential component in the estimates, we have to 

assume that we have curvature bounds 
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(2. 2. 2) A s: 0 I ll 2: 0 

i.e. a nonposi·tive lmver and a nonnegative upper bound, or else to assume 

tan 
J 0. 

We need some definitions: 

always denotes a derivative with respect to s , while is the 

differentiation with respect to t . 

We put 

{ 
cos (/P s) 

cp(s) l 

cosh(H s) 

if p > 0 

if p () 

if p < 0 

and 

{ 
J:_ sin (/p s) 
IP 

sp(s) s 

if p > 0 

if p 0 

l sinh (1-p s) if p < 0 

Both functions solve the Jacobi equation for constant sec·tional curvature P 1 

namely 

(2. 2. 3) f" + Pf 0 

with initial values f(O) 1 1 f' (0) 0 , or f (0) 0 , f' (0) 1 1 

resp. 

c will always be a geodesic arc parametrized by s proportionally to 

arclength, and usually lc' I = 1 for simplicity. 

LEfv1MA 2.2. 1 Assume K S: ll and I c' I 

Let f]J := IJ(O) I ell + IJI' (0) 

with the same initial conditions as 

1 , and eithe.r Jl ::: 0 

s be the solution of 
]J 

IJI 

o.r Jtan _ 0 . 

f" + ]Jf 0 
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If f (sl > 0 for s E (O,crl , then 
1J 

(2. 2.4) <J,J'> f :<:<JJ>f' 
1J ' )l 

on (O,o) 

(2. 2. 5) 1 
\J(sl) J \J(s2) I 

if < s 1 ~ s 2 < a ~ ---- ~ 0 f (s1 ) f (s2J 

(2. 2. 6) jJ(O) \ c (s) + \Jj' (0) s (s) ~ jJ(s) I 
1J 1J 

for: s E (O,ol • 

Proof 

Hence 

Since \J I (0) f (0) , jJj' (0) = f' (0) , (2.2.4) follows. Then 
)l )l 

.since it vanishes at 0 and has nonnegative derivative. 

(2.2.5) again follows from the initial conditions, and (2.2.5) implies 

LEM~1A 2.2.2 Asswne K ::; 11 , and either ll 2 o or Jtan o , and \K\ ~ A2 " 

J(O) = 0 , 

Then 

(2.2.7) 

\c' \ = 1 , c 2 o on ( o , a) • 
ll 

1 2 2 
jJ(s) -· sJ' (s) I ::; jJ(t) \ "2 As 

Proof Let P be a parallel vector field along c , and s E (O,o) . 

\<J(s) - sJ' (s), P(s))' J = \s <R(c' ,J)c' ,P > (s) I 

s (s) 

::; A2 s jJ(O) I - 11-
s)l ( cr) 

by (2.2.5) 
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since c]l 2: 0 on [O,cr] 

and (2.2.7) follows by integratio~ of this inequality. 

q.e.d. 

Instead of prescribing J(O) and J'(O) , one can also prescribe J(O) 

and J(P) for p < TI/~ • For example, since we showed in the proof of 

Lemma 2.2.1 that JJJ" + ]lJJJ <: 0 , we conclude, assuming Jc' J = 1 again, 

(2.2.8) sin(ljlp) JJ(s) J :$ sin(ljls) JJ(p) J + sin(ljl(p-s)) JJ(O) J . 

We shall also need the following estimate of Jager-Kaul [JaK2]. 

LEMMA 2.2.3 Suppose, K :$ Jl , lc' J = 1 , and 0 < p < TI/Iil in ease Jl > o • 

If X is a Jaeobi field along c with 

<x,c'> = o , 

then 

s' (p) 

(2.2.9) ;(x,x'> I~ 2: s~(P) <Jx<o>J 2 + Jx<p>J 2>- s)p> Jx<o>J·Jx<p>J. 

Proof Let 

s(t) := - 1- • ( Jx(O) Js (p-t) + Jx<pl Js (t)) • 
s]l(p) Jl Jl 

Then s solves 

(2.2.10) 

and 

and 

(2.2.11) 

s" + ]ls 0 , s(O) Jx<o> I , s(p) 

s ;:: 0 on [O,p] 

s' (0) = s)p> <Jx<pl I - s~(p) Jx(O) I> 

s' (p) = - 1 - (s' (p) Jx<p> I - Jx<Ol I> 
sJl(p) Jl 

Jx(p} I , 
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Then the function 

g := sjxj•- s•jxj 

is differentiable where jxj ~ 0 . (Note that the zeros of X are isolated, 

since X solves the Jacobi equation 

(2. 2 .12) X" + R(c' ,X) c' 0 ' 

which is a linear second order equation.) Moreover 

g' slxi"- s"lxl r<x x•>J' slTxr + vslxl 

= s 
1 2 2 2 1 

( Jxj jx• J - <x,x•> l - s • -jxj <x,R(c' ,lOc'> + 1.1s jxJ 
jxj3 

~ Q I 

since by assumption <x, R ( c' , X) c •> :> ]J I X J 2 • Thus g is not decreasing on 

those intervals where i·t is differentiable. As was noted above, points T 

where g' does not exist, Le. jX(T) j = 0 are discrete, and moreover 

g(T+O) - g(T-0) 2s(T) \X' (T) I <: 0 • 

Thus, g is not decreasing on [O,p] , and defining 

I X I' (p) lim jxj' (p-s) , 
s+O 

jxj' (OJ lim jxj• (t:) , 

t:+O 

1;1e conclude 

o :> g(p) - g(O) = s(pl jxj' (pl - s' (pJ jx(p) I - s(O) jxj• (0) + s• (O) jx(O) I 

by (2.2.11). 

s' (p) 

= <x,x'>(p) - <x,x'>(O) -~ ( jx(Ol j2 + jx<pl j2l 
]J 

+ s ~pl jx<ol 1·\X(pl I ' 
]J 

q.e.d. 



31 

We now turn to describe the effect of a lower curvature bound on Jacobi 

field estimates. 

LH1MA 2.2.4 Assume A ::;; K::;; 11 _, and ei-ther A ::;; o or Jtan::: 0 , IKI ::;; A2 _, 

I c' I ::: l _, and in addi-tion that J(O) and J' (O) are UnearZy dependent. 

For a parcone-te.r T , we define again f, If 

f~(A+lJ) > o on (O,p) _, then 

(2.2.13) 

and in any case_, if P denotes parallel t.ranslation along c 
s 

(2.2.14) IJ(s) - P (J(O) + sJ' (0)) I :S IJ(O) I (cosh(As) - 1) 
s 

+ IJI '(0) (f sinh(As) - s] 

Proof Let T be a parame·ter, and 11 == max(]l-T, T-A) • Let A be the 

vectorfield along c ·i:ha·t satisfies 

D D 
ds ds A + TA == 0 ' A(O) J(O) , A" (0) J' (0) • 

Let a be the solution of 

a" + (T-nla = niAI a(O) a' (0) 0 

and b the solution of 

b" + Tb = n I ,J I b(O) =b'(O) 0 0 

If P is a unit parallel field 

Hence 

d := {<J - A,P)- b}" s, - {<J - A,P)- b} s~ s 0 
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and 

r_l {<J- A,P>- b})' (s) = - 2-
1- r d ~ 0 

8 T s, (s) 0 

Thus _l {<J - A,P> - b} ~ 0 , since it vanishes at s = 0 • If s, > 0 on s, 
(O,P) , then this implies 

(2.2.15) 

and 

In a similar way 

(2.2.16) i.e. 

(2.2.15) and (2.2.16) give 

on (O,p) 

(b - a) ~ 0 , s, 

b ~ a 

(2.2.17) \J - A\ (s) ~ a(s) for s E (O,p) • 

(2.2.18) 0 

a.'ld thus 

since it vanishes at s = 0 , as A(O) and A' (0) are linearly dependent. 

This in turn implies 

i.e .. 

and hence 



and from (2.2.17) 

Choosing 
1 

T = i<v+l) , i.e. 

a= 
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f - f 
T-n T 

$ f 
T-n 

T-n = l, then proves (2.2.13). 

(2.2.18) also implies that (A/IAil' 0 , i.e. A/IAI is parallel, 

and choosing T = 0 then proves (2.2.14). 

2.3 APPLICATIONS TO GEODESIC CONSTRUCTIONS 

We let c(s,t) = exp (s·(v+tw)) be a family of geodesics radially 
p 

emanating from the point p • 

Then 

(2.3.1) 
a 

J(s) = at c(s,t) lt=O 

is a Jacobi field with 

J(O) 0 , 

(d exp ) •SW 
p sv 

J' (0) = w • 

If we put v = w , then J is tangential to c(s,O) and hence linear, i.e. 

J(s) = sv , which implies 

I < d exp > • v I = I v I p v 

or in other words, that expp : TPM + M is an isometry in the radial 

direction. 

If w and v are orthogonal, then (2.2.6) and (2.2.13) imply 

LEMMA 2.3.1 If w 1 v > l $ K $ v • then, if s <...:!!... in case v > 0 • -Iii 

(2. 3.2) lwl 
sv(s) 

I (d exp ) -wl lwl 
s 1 (s) . ---$ $ 

s p SV s 
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LEMMA 2.3.2 Let B(m,p) := {x E M : d(m,x) ~ p} be a baZZ in some manifoZd 

M whiah is disjoint to the aut Zoaus of its aentre m • We assume for the 

seationaZ aurvatures K in B (m, p) 

2 2 
-W ~ K ~ K and p < .2!... 

2K 

We define r(x) := d(x1m) and 1 2 
f(x) := 2 d(x1m) • Then 

and 

(2.3.3) 

(2.3.4) 

for x E B(m,p) 

Proof grad f (x) 

jgrad f(x) I = r(x) 

~ wr(x) coth(wr(x))• lvl 2 

and VETM 
X 

-1 
- expx m which implies (2.3.3). 

Let q(t) be a curve in M with q(O) = x and q(O) 

Then grad f(q(t)) 

-1 
c(s 1t) = expq(t) (s expq(t)m) 

a -a; c(s1tl ls=O 1 and hence 

Dv grad f(x) 
n a 

- at as c(s 1t) ls=0 1t=O 

n a - a; at c(slt) 

2 
f E C (B(m 1 p) 1 JR) 

v and 

a 
For fixed t 1 Jt(s) = at c(s,t) is the Jacobi field along the geodesic from 

m to q(t) with Jt(O) = q(t) and Jt(l) = 0 E TmM 

Dv grad f(x) = DJ (O) grad f(x) = -J~(O) • Since 
0 

Hence 

n2f(v 1v) = <n grad f, v> = - <J' (0) 1 J (O)) 1 
v 0 0 

(2.3.4) follows from (2.2.6) and (2.2.13) (since Jt(l) 0 1 Jt(l) and 
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J~(l) are linearly dependent). 

q.e.d. 

2.4 CONVEXITY OF GEODESIC BALLS 

The following convexity result was proved in [J2] and [BK], Prop. 6.4.6. 

PROP. 2.4.1 Suppose the baU B(m,p) is disjoint to the cut locus of m, 

and 
'IT 

p < 2K , where is an upper bound for the sectional curvatUloe of 

B(m,p) Then any two points in B(m,p) can he joined in B(m,p) by a 

unique geodesic arc. This arc is the shortest connect;ion between its end 

points a:ad thus in particular does not contain a pai7' of conjugate p01:nts. 

Proof Since the cut locus of a point m is closed, we can find some p• , 

p < p' < 27~, for which B(m,p') is still disjoint. to the cu·t locus of m 

For any two poin·ts p and q E B (m,. p) , we can find a shortest connec·tion 

y(t) in B(m,p') by the standard Arzela-Ascoli argument. Let y{O) p 

y(l) q ' and le·t C(• ,t) be the family of geodesics 1.vith c(O,t) = m 

c(l,t) y(t) The Jacobi fields Jt(s) 
d 

= dt c(s,t) are mono·tonically 

increasing in s E [0,1] by (2.2.5). Hence, in case y leaves B(m,p) 

somewhere between p and q , we can project it onto B(m,p) , i.e. take 

and obtain a shorter comparison curve in contradiction to Lhe choice of y 

Hence y is contained in B(m,p) and hence in particular in the interior of 

B(m,p') and is therefore geodesic. Furthermore, clearly length(y) ~ 2P 

The exponential map has maximal rank along any geodesic in B(m,p) of 

length ~ 2p by Lemma 2.3.1. In particular, they do not contain pairs of 

conjugate points and are locally unique. Hence, the set of pairs 

(p,q) E B(m,p) x B(m,p) with two geodesic connections is compact, since two 
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geodesics cannot collapse in the limit into a single one with conjugate 

points. Thus, if this set were non empty, we could find such a pair (p, q) 

of minimal distance with two minimal geodesic connections and 

and then have to form a closed geodesic. Namely, o-therwise, if they 

would form an angle < 'IT at p for example, then moving a little bit along 

the geodesic which bisects this angle, >ve could find a point p which is 

closer to q and still has two different connections to q , in contradiction 

to the choice of p and q (For more details on ·this argument, cf. [GKH]). 

On the other hand, by Lemma 2.3.2, d2 (.,m) is strictly convex on B(m,p) , 

and ·therefore the existence of a closed geodesic in B(:m,p) contradicts Cor. 

1.7.1. 

If now p,q E B(m,p) would have two geodesic connections, one of which, 

called Y , is longer than 2P , then y ceases somewhere between p and q 

to be the shortest connection of its endpoints, and hence we could again find 

two minimal geodesics, in cont.radiction ·to what we already proved. 

q.e.d. 

This result can be somewha·t. improved in ·two dimensions. Firs·t of all, 

we have 

LEMf"'A 2.4.1 Le·t s be a compact surface, possibl-y with boundary. If -the 

boundary y is not empty, 1:t is assumed to be conve.T., i.e. that through 

every point q of y there goes a geodes·i.c w"c -which i-s disjoint to s in 

a ne-ighbourhood of q Let p,q E s . Assume that there are two distinct 

homotopic geodesic arcs joining p and q • Then each of the points p 

and q has a conjugate point in s , and this point is conjugate to p or 

q , .resp., 1Jith respect to a geodesic arc which is the shortest conneetion ·in 

its homotopy class. 

Proof We denote the two geodesic arcs by Y 1 and Y 2 . We can assume 
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w.l.o.g. that and are shortest connections in their homotopy class 

between p and q , since otherwise, starting e.g. from p and moving on 

y1 , we would find a point q1 which would either be conjugate to p or 

would have a connection in S to p in the same homotopy class and of equal 

length as the segment of between p and (At this point, for the 

existence of such a connection, we have to use the convexity of y ). Since 

and are homotopic and distinct, because we could assume that they 

are shortest connections, they bound a set B of the topological type of the 

disc. 

We now look at a geodesic line emanating from p into B • As 

and are shortest, this line has to cease somewhere in B to be shortest 

connection to p • Repeating the argument, if we have not yet found the 

desired conjugate point, we get a nested sequence of geodesic two-angles, i.e. 

configurations consisting of two homotopic geodesic arcs of equal length 

which furthermore are shortest possible in their homotopy class. In the 

limit, this construction has to yield a geodesic arc covered twice. The 

endpoint q2 therefore is homotopic to p , and furthermore, the geodesic 

arc is the shortest connection in its homotopy class from p to q2 • 

q.e.d. 

LEMMA 2.4.2 Suppose B(p,R) := {q E l: : d(p,q) :;; R} , where l: is a surface, 

is topologically 

exp {v : lv I = r} p 

exponential map. 

Proof Clearly, 

(2.4.1) 

a disc for some r Tf 2 
< K (K:;; K) Then 

(3B(p,r) for all r :;; R, where expp : T l: p -+ l: is the 

Furthermore, dB(p,r) is convex, if 

<3B(p,r) :::: exp {v : lv I p 
r}:::: B(p,r) • 

exp {v : lv I = r} n El(p,r) 'I cp • 
p 

r < ..2!.. 
- 2K 

We assume now that 

expp is a local diffeomorphism on {v: lv I < .2!:} by Lemma 2. 3.1, and therefore 
K 
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r} is an immersed smooth curve for 
TI 

r < 
K 

Since 

r} is compact, we can find some q E expp{v: lv! = r} with 

minimal distance to p . Consequently, the shortest geodesic y from p to 

q is orthogonal to exp {v : lvl 
p 

r} at q and has length < r • On the 

other hand, q lwl = r 

t E [0,1] , is also orthogonal to 

and the geodesic 

exp { v : I vI = r} 
p 

y' = exp tw , 
p 

at q and different 

from y , since its length is precisely r • Thus, y and y' have an 

angle of rr a·t q and match toge·ther to a geodesic loop with corner at p • 

It is not difficult to see that every point inside this geodesic loop can be 

joined to p by a shortest geodesic, in spite of the fact that this loop 

might not be convex at p . Thus, we can carry over the argument of Lemma 

2.4.1 to assert the existence of a point p' inside this loop which is 

conjugate to p w.r.t. a shortest geodesic y" . Since p' E B(p,r) and 

r < .! this is in contradiction 'co Lemma 2. 3. 1. 'I'his proves the first 
K ' 

·claim. Furthermore, since expp has maximal rank on {v E Tpl: : Jvl < ~} , 

as noted above, we infer that every v E T L 
p 

with lvl = r has a neighbour-

hood V >fllhich is mapped 1mder expp injectively onto its image (cf. [Kl], 

p. 108f.). From this, we easily see that >ve may apply the estimate of Lemma 

2.3.2. Therefore, if then h is a convex func·tion on B (p, r) and 

consequently, 3B(p,r) 

convex function. 

exp {v : I vi 
p 

is convex as a' level set of a. 

PROP. 2.4.2 Suppose now~ that B(p,r) is a geodesic disc on a surface~ and 

r < ..2:_ ( 2) 
2 K K s I( • Then each pair of points q1 , q2 E B (p, r) can be j o·?ned 

by a unique geodesic arc in B(p,r) , and this are is free of conjugate 

points. 

Proof By virtue of Lemma 2.4.2, we could apply Lemma 2.4.1, if there would 

exis·t two geodesic arcs joining ql and q2 Consequently, we would find a 

pc.,int q3 conjugate to ql w.r.t. a shortest geodesic arc, i.e. an arc of 
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This would contradict Lemma 2.3.1. 

2.5 THE DISTANCE AS A FUNCTION OF TWO VARIABLES 

q.e.d. 

We suppose again that the ball B(p,H)cN is disjoint to the cut locus 

of p and that 

define 

and note that 

1T 
M < 2K , where 

l K~ (l - cos l<t) 

t2 

2 

It 

s ') 
0 I(" 

are curva,ture bounds. We 

if K > 0 

ifl< 0 

By assumption and 2.4, any two points y 1 ,y2 E: B(p,H) can be joined by 

a unique minimal geodesic in B(p,M) , and we can measure the distance 

between and by the length of the geodesic arc between them. We 

denote this (possibly modified) dis,tance function again by d (y 1 , y 2 ) . Then 

defines a c2 func,tion on B(p,M) >< B(p,M) , since q1~(0) 

we note that 

for y 

T (NXN) 
y 

{isometrically) 

0 • Moreover, 

In the following lemma, we shall estimate the Hessian of QK on 

B(p,H) x B(p,M) , using the Jacobi field estimate of Lemma 2.2.3. This 

result is again due to Jager-Kaul [JaK2]. 
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LEMMA 2.5.1 If y1 ~ y2 , then for aZZ 

v E T (NXN) , 
y 

(2. 5.1) 
2 2 

- K Q (y) lv I . 
K 

If v has the speciaZ form o E!J u or u E!J o , then 

(2.5.2) 

and this aZso hoZds for y1 = Y2 . 

Proof First some definitions 

c [O, P] -+ B (p,M) is the Lmique geodesic arc from y 1 

lc' I = 1 , 

e 1 (y) := -c' (0) 

e 2 (y) := c' (p) 

v~al1 := <v.' (y)) el. (y) 
J. l. 

tan 
:= v. - v. 

l. l 

Then, since p > 0 

grad d(y) e, (y) E!J 
.L 

(i 

(y) 

1.,2) • 

grad QK (y) = s 2 ( p) (e1 (y) E!J e 2 (y) l , and 
K 

2 
D Q (y) (v,v) = <D grad Q ,v) 

K v 1< 

(2.5.3) s' 2 (p)<e1 (y) E!J e 2 (y),v1 E!J v 2>2 + s ?(p)D2d(v,v) 
K C 

If ct(s) is the geodesic arc with 

to with 
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nor 
ct(p) = exp (tv ) 

y2 2 

(note that ct is unique, if t ~ 0 is small enough), then 

(2. 5. 4) 

is a ,Jacobi field along c with 

J(O) J (p) 

By Synge's formula (cf. [GI~~], §4.1), 

(2.5.5) 
? ?} 

D-d(v,v) = --?- length(c ) I =O 
3t- t t 

nor 
v 

2 

= J: ( \J' 12 -· <J,R(c' ,J)c'))ds 

(no·te that there is no boundary term, since 

<J,c'> = 0 ) 

We can apply Lemma 2. 2. 3 ·to obtain 

D2d(v,v) = rp ( IJ' 12 + <,J,J">)ds 
JO 

= <J,J'> 16 
s'2(p) 

1<: 
>---
- s 2 ( p) 

K 

and thus with (2.5.3) 

(2. 5.6) 2 D Q (v,v) 
K 

If v = 0 ~ u, (2.5.6) implies 

I norr2 
u I 
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2 2 
(1 - K Q (y)} I u I 

while in the general case, we only have 

and 

I tanl2 I norl2 vi + vi , 

and therefore from (2.5.6), 

1 2 2 I 12 I 12 = 2QK(y} <grad QK(y},v> - K Q (y} ( v1 + v2 ) • 

q.e.d. 

2.6 ALMOST LINEAR FUNCTIONS 

We are now ready to introduce almost linear functions, one of the main 

tools of [JKl]. 

Let B(m,p) be again a ball in some n-dimensional Riemannian manifold 

M which is disjoint to the cut locus of m , and assume curvature bounds 

and 

We put r(x} = d(m,x), f(x) 

P < __!.. 
2K • 

2 -!d (m,x} • 

DEFINITION 2.6.1 Let u E TmM be a unit vector, i.e. lui 

p(x) = expm(r(x}u} , q(x} = expm(-r(x)u} Then 

1, and put 
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1 2 2 
t(x) := 4r (x) (d(x,q(x)) - d(x,p(x)) ) 

is called an almost linear function. 

We observe that in the Euclidean case, this notion yields precisely the 

linear functions, because of Pythagoras' theorem. We furthermore note that 

(2. 6.1) -r(x) s 1(x) s r(x) . 

The estimates of [JKl] for almost linear functions are contained in 

THEOREM 2.6.1 Suppose B(m,p) is disjoint to the cut locus of m, 

IK\ s A2 on B(m,p) , a:nd p < .]!_ 
2K Let u E T M, lui m 

1(x) the associa·ted almost linear function, crad u(x) the radially 

parallel vector field on B (m, p) with u (m) = u • Then 

(2. 6. 2) 

(2. 6. 3) 

I grad t (x) ·- u (x) I s 2 ?l\_ sinh (2Ar) • r2 (x) 
k sin(2Kr) 

I 2 J I sinh(2Ar) 
D 1(x) s 9:<A sin(2Kr) wr ctgh(Wr)) r(x) 

1 ~ 

I -1 I [9 sinh(2Ar) ) 3 (2. 6. 4) 1 (x) - <grad 1 (x), -exp m) s ? KA · . 12 ) wr ctgh {Wr) r (x) • 
X - Sln Kr 

Proof Let y('t) be a geodesic with y(O) = x We then look at the 

following families of geodesics, joining y(t) wi·th p(y('t)) or q(y(t)) , 

resp., 

-1 
expy(t) (s • expy(t) p(y(t))) 

-1 
c 2 (s,t) = expy(t) (s. expy(t) q(y(t))) . 

(l 
Ji(•,t) = <lt ci (•,t) are Jacobi fields with 

y(t) 

i:u(t) 

J2(l,t) -i:u (t) 
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where we have abbreviated r(y(t)) = r(t) , u(y(t)) 

d 

u(t) , etc. We also 

write again = at c • We note that 

2 
d (p{y(t))' y(t)) 

2 d (q(y(t)), y(t)) i ( )2 c 2 s,t 

Now 

d 
c'2 - c'2 

2 1 1 D 
dt i(y(·t)) c {<c2, _£... c' >} ds r + '>- <' ' -----

(J·t c2. ,cl, 
4r 

2 2r 3t 1 

,2 - ,2 

I: c2 cl 
r + 

1 
{<c~' J2>' - <ci, J 1>"} ds 

4r 
2 2r L. 

(2.6.5) 

In order to control ci - c2 - 2ru which vanishes in the Euclidean case, 

we need the following result which follows from [BK]. 

LEMMA 2.6.1 Put t:(:r.) 

(2. 6. 6) \ci -

(2.6.7) lc' -
2 

(2. 6.8) \-c' -
1 

(2. 6. 9) I -1 -c2 

sinh (21\r) 
Siii(2Kr). 

-1 
(e){px m + ru) J 

-1 
(expx m ·- ru) \ 

-1 
ru) I (exp )t --m 

(x) s E(r) 

(x) s t:(r) 

(p(x)) s 

(exp ru) j {q(x)) - + s 
m 

E(r) 

E(r) 

Proof of Lemma 2.6.1 Le·t v E TxM, c(t) = exp tv, c(l) = q, where q is 

some point in M • Let w " TxM and w(t) be ·the parallel vector field 

along c (t) • 

We first. want to estimate d (F (w) , G (w)) , where 

F(w) 

G(w) 

expx(v + w) 

exp (w(l)) • 
q 
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We consider the family of geodesics 

c(s,t) = expc(t) (s. (w(t) + (1- t) c(t))) 

and the corresponding Jacobi fields 

Jt (x) c(s,t) • 

The initial conditions are 

(2.6.10} 

-C:<t> . 

We let J~0rm(s} be the component of Jt(s) which is orthogonal to 

c' (s,t} 

Since the curve c(l,t} joins F(w} and G(w) and has tangent vector 

J (1 } J norm (l} 
t = t , because Jtan(l) 

t 
0 (this follows from (2.6.10)} 

(2.6.11} :> flo d(F (w}, G(w}} IJ~0rm(l) ldt • 

We now want to apply (2.2.14). Since Jc•l isnotnecessari1yequaltol, we have to 

s rescale c (•,t) , i.e. to l.ook at the geodesics y(s,t) = c(~1 t) 

Fields J ( s, t) = J (I cs' I' t) . This amounts to replacing A by A I c' J 

and the Jacobi 

in (2.2.14). 

Since by (2.6.10) Jt(O} + Jt(O} = 0 , (2.2.14) yields, putting 

p = max( lwl, lv + wl) , and using cosh x sinh x ~ l x sinh x , 
X 3 

(2.6.12) 

Moreover, 

I ~~ 12 • I ~~ 12 < ~~ I ~~> 2 

2 2 2 
Jvl Jw + (1 - t) vi - <v,w + (1 - t) v> 

lvl 2 I 12 2 w - <v,w> • 
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Therefore, (2. 6.11) and (2. 6.12) imply 

(2.6.13) d(F(w), G(w)) 

In (2.6.13), we then put 
-1 

v = expx m, w = ±ru . 

Then 

F(w) 

G (>v) expm (±ru) p(x) or q(x) resp. 

Therefore, (2.6.6) and (2.6.7) follow from (2.6.13) and (2.3.2). (2.6.8) and 

(2.6.9) follow in a similar manner. 

q.e. d. 

We now continue the proof of Thm. 2.6.1: 

(2.6.6) and (2.6.7) yield 

(2. 6.14) I ' - c2 - 2ru \ {x) 5 2£: (r) 

and similarly from (2.6.8) and (2.6.9), if p denotes parallel transport 

along radial geodesics 

(2.6.15) \pci - pc2 - 2ru\ (m) s 2E:(r) • 

(2.6.15) ond lei+ c2\ 5 4r imply 

(2.6.16) I ,.2 
c -

2 

Since \r\ s I'YI , (2.6.5), (2.6.14), and (2.6.16) then yield 

<grad fL- u, y> I :S ~ E:(r) \Y] 

Le. (2.6.2). 

Differentiating (2. 6. 5) , we get 
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d2 
(2.6.17) -2 9-(y(t)) 

dt 
c' -

2 
( " .2) -r r 

4r2 + 2r3 

r r 
+ -- <c' c' y' > · < ' + ' " • "' 

2r2 2 - 1' s=O - 4r2 c2 cl, ~r4?s=l 

In the course of (2.6.5), we obtained 

Hence 

(2.6.18) r .. . 2 J r r 
<c2• + c 1• , c 2• - c 1• + 2ru> --- + ---

-4r2 2r3 

Since f with (2. 3. 4) 

( •• • 2 J -r r 
--,) + --3 s 
l4r- 2r 

lr1 2 
(3 + wr ctgh(Wr)) • 

4r3 

(2. 6.14) then gives 

( .. • 2 J -r -
(2.6.19) <c2• + c1•, c' - c' + 2ru> --- + -L-- s 

2 1 4r2 2r3 

?;E(r) 
1

.
1

2 
2 (3 + wr ctgh (Wr)} y 

Furthermore, since 

Using 

r 

(J(s) ~ p·J(O) - sJ' (s))' = sR(c' ,J) c' , 

I J ( s) - p J ( 0) - sJ' ( s) I s A 2 I c ' I 2 r a I J (a) I 
0 

IJ(s)l IJ(l) 1 si:-(Kic'ls) + IJ(Oll sin(l<.lc'l(l- s)) 
S I SJ.n(Kic'l) sw(Kic'll 

2 mav(IJ(O)I, IJ(llll sin(Kr) s ~ • sin(2Kr) ' 
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which follows from (2.2.8), we get 

(2.6.20) I,J(s) - p J(O) - s J' (s) I 

and similarly 

IJ(1-s) - p J(l) + (1-s) J' (1-s) I 

is estimated by the same quantity. 

We are now ready to control the second "terril of (2. 6.18) • First 

(2.6.21) 

Next: 

since J. (0) 
l 

Sinc-e -lr.l" < 11Y"I 

(2.6.23) 

+ 

12:i:< .> <. ·1 Lllr1 1 • 1 ~ c; - cl, Y + 4ru, Y> s-=-;- y s(r) . 

- 4 <:i:u, y> = 0 , 

(1) = :i:u, J 2 (1) = -:i:u 

(2.6.20), (2.6.21), and (2.6.22) then give 

(1)' Jl (ll> 

(1) ' 

s [4Sr(r) + 4A2 r 2 . sin(Kr)_) 1.:: \2 
sln (2Kr) J ( 

(2.6.18), (2.6.19), and (2.6.23) finally yield 

(8E(r) 2E(r) 
--2- + --2- wr 

r r 

[9 A sinh (2Arl 
s I< sin(2Kr) wr 

Thus, (2.6.3) is proved. 

For any geodesic c 

2 sin(Kr) 'j 2 ctgh (Wr) + 2A r-. ---- \ Y \ 
sln(2Kr) 

ctgh(wr))·r ·ly\ 2 • 
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d 
dt (Z(c(t)) - t <grad£, c(tl>l 

Taking the radial geodesic from m to x , we then see that (2.6.4) follows 

from (2.6.3). 

q.e.d. 

For later purposes, we also need to investigate how almos·t linear 

functions depend on the base point m To emphasize this dependence, we now 

use a subscript m , i.e. write Z (x) 
m 

for the corresponding almost linear 

ftmction. Let now y(t) be a geodesic arc, u(t) a parallel unit vector 

field along y(t) and the corresponding almos·t linear functions. 

LEMMA 2.6.2 For z "'B(y(t), p) , p < min(i(y(t)), TI/21<) 

(2.6.24) I d I 2 2 dt Zy(tl (zl s (5 + c A p ) . 

Proof Let p(t) d(y('t), z) 

p(t) expy(t) (p(t) u(t)) 

q(t) expy(t) (-p(t) u(t)) . 

Then 

(2.6.25) \(t)(z) = 4 p~t) (d2 (z,q(t))- d2 (z,p(t))). 

liVe look at the family of geodesics 

c(s,t) = expy(t) (sp(t) u(t)) . 

The corresponding Jacobi field Jt(s) 
d 

::lt c(s,t) then satisfies 

Jt (0) y(t) 

p(t) u(t) , since u(t) is parallel along y 

p(t) • 
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In particular, is tangential to the geodesic c(•,t) • Thus, 

J norm(O) and Jnorm'(o) 1· 1 d d d (2 2 13) · 1" t t are ~near y epen ent, an . • ~mp ~es 

(2.6.26) !PI $ !PI + cosh(Apl lrl , 

and the same inequality holds for jqj • 

(2.6.24) then follows from (2.6.26), !PI $ lrl , and d(z,q(t)) , 

d(z,p(t)) $ 2p(t) • 

Actually, one can even show the stronger estimate 

(2.6.27) 

q.e.d. 

The proof is rather tedious, however, and hence left out, since we do not 

need (2.6.27) in the sequel. 

2.7 APPROXIMATE FUNDAMENTAL SOLUTIONS AND REPRESENTATION FORMULAE 

We first apply Lemma 2.3.2 to construct approximate fundamental 

solutions of the Laplace and the heat equation on manifolds. 

LEMMA 2.7.1 Let B(m,p) be as in Lemma 2.3.2. 2 2 2 
A := max(K , w ) , and let 

~ be the Laplace-Beltrami operator on M , and n = dim M , h(x) 

(2. 7.1) for x 'I m if n = 2 

~~ r(x)2-nl $ n;2 A2 r2-n(x) for x 'I m if n ~ 3 

2 
:= d(x,m) 

(2. 7.2) 

and 
(2. 7. 3) I [ ~ _ a~) ( t-n/2 exp [ _ h ~~))] I $ 2A 2 h ~~) t -n/2 exp [ _ h ~~)) 

for (x,t) 'I (m,O) • 

The proof follows through a straightforward·computation from Lemma 2.3.2. 

q.e.d. 
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We now derive approximate versions of Green's representation formula, 

first in the elliptic case. 

LEMMA 2.7.2 Let B(m,p) be as above, h(x) = d(x,m) 2 Let w denote the 
n 

volume of the unit sphere in ~. If cjJ E c2 (B(m,P), JR) , then 

(2. 7. 4) if n = 2 + I M • log r (x) 
B(m,P) p 

- l I cpl s 2A2 I lcpl 
p ClB(m,p) B(m,P} 

(2.7.5) if n <: 3 I (n-2 )Wn QJ(m) + f ~cp ( 1n-2 - n~2) 
B(m,p) r(x) p 

We note that the error term is of lower order than the other two terms 

which are the same as in the Euclidean version of the Green representation 

formula. 

Proof We shall prove only (2.7.5) for simplicity. We put 

2-n 2-n 
g(x) = r(x) - P • 

Then for E > 0 

I (g~cjl - cjl~g) 
B(m,p)\B(m,E) 

I <g grad cjJ - cjJ grad g, dO) 
Cl(B(m,P)\B(m,E)) 

Now 

if Mgl s n;2 A2 I lcpl 
B(m,p)\B(m,E) B(m,p) rn-2 (x) 

by (2. 7. 2) 

giClB(m,p) = 0 

I cjJ <grad g, dO). = n-2 I cjJ 
3B(m,p) pn-l ClB(m,P) 

lim f g <grad cjl, dO> = 0 
e:+o 3B (m,e:) 



lim 
£+0 

and (2.7.5) follows. 
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J ¢ <grad g, dO> 
B(m,E) 

(n-2)wn ¢(m) 

In the parabolic case, the corresponding version is 

LEMMA 2.7.3 Let B(m,p) be as above, 

B(m,p,t0 ,t) := {(x,T) E B(m,p) x [t0 ,t]}, 

¢(•,T) cC2 (B(m,p), IR), ¢(x,•) cC1 ([t0 ,ti, IR). 

Then 

(2. 7. 6) 

HeY'e, 

Proof 

jC(4n)n ¢(m,t) + J [ll- a:) ¢(x,T){t-T)-n/2 
B(m,p,t0 ,t) 

r (x) -p [ r 2 ) ( 2 )) 
exp .- 4 (t-T) J- exp 4 (t-Tl dx dTj 

c is a constant depending only on n . 
n 

We put 

g(x,o) 

j¢(x,T) I 

, -n/2 r- (x) 
[ 

? ) 
(t-T; exp - 4 (t-T) • 

Let E: > 0 . Then 

I~ {g(x,t-T) [ll- a~) ¢(x,t)- ¢(x,T) (ll +a~) g(x,t-T)} dx dT 
n(m,p,to,t-E:) 

r . + 
J <g(x,t-T) grad ¢(x,T) - ¢(x,T) grad g(x,t-T), dO> dT 
r(x)=p 
t 0 sT:>t-t: 



+ f g(x,E) 
T=t-E 

¢(x,t-E) dx -

r(x)sp 

Now 
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JT=t 
0 

r(x)sp 

r (x) P 2 ) [ 2 )] 
4(t-t0 ) - exp- 4(t-t0 ) dx · 

I ¢(x,T) (ll + a~] g(x,t-T) dx dT 
B (m, p,t0 ,-t-E) 

s ?i\2 f. I"' lx T) I r2 (x) (t-T) -n/2 [ r2 (x) l d dT 
- 'Y •• ' (t-·r) exp - 4 (t-T); x 

B(m,p,t0 ,t) 

by (2.7.3) 

g(x,t-T) = 0 if r(x) = p 

J ¢(x,T) (t-T)-n/2 

r(x)=p 

( / (x) ) 2r (x) -+ 
exp- 4 (t-T) 4 (t-T) <grad r(x), dO> 

t0~Ts:-t 

since 

(2. 7. 7) 
-a 

exp(-y) s cay for y > 0 , a 2 0 . 

J "'(•{ ~) _1_ ( (t-T) -n/2 exn r- _LJ) dx dT 
~' • ' ' dT ~ . 4 { t-T) 

B(m,p,-t0 ,t) 

=I cjl(x,T)((-t-T)-n/2 -l exp[ _L))lr -!l+___t{_] dx dT - 4(t-T) 2 4(t-T) 
B(m,p,t0 ,t) 

s :~2 J l¢(x,T) I dx dT 
p B(m,p,t0 ,t) 

by (2.7.7) again 

s (t-t0 ) -n/2 J I¢ (x, t 0 ) I dx 
T=t0 

r(x)sp 

f </J(x,t-E) E-n/2 (ex/l- r
2
4<:>)(- exp[- ~:JJ dx 

r(x)sp 

as E -+ 0 
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and (2.7.6) follows. 

For a later purpose, we also note the following formula 

(2.7.8) 

+ c 
n 

en I 
r>+l p- r(x)=p 

I<PI + j¢(x,T) I 
t 0 s:,::;t 

I j¢(x,t0) I dx 
B (m, p) 

I I ,~, ( ~) I r 2 (x) (-t.-'l) -n/2 
'I' x, l (t-T) 

B(m,p,t0 ,t) 

[ r2(x)1J 
exp .- 4 (t-T) dx dT • 

q.e.d. 

(2. 7. 8) also follm<Ts from the preceding proof by handling t.he bmmdary terra at 

t t 0 in a different way. 

We now use almost linear functions in order to also obtain an approximate 

version of the derivative of Green's fU..'lC·tion. This is important for 

obtaining derivative estimates for functions on ma~ifolds. 

LEr~11A 2.7.4 Let B(m,p) be as before. For x E B(m,p), x 'f m, we define 

a(x) -n -n Q.(x) (r(x) - p -) , 

where Q, (x) is an almost Z.inear function. 

Then 



(2. 7.9) \6a\ :S 

Proof 

(2.7.10) grad a 

and 

6a 

and hence 
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9n 2KA sinh (21\r)_ wr ctgh (tur) 
sin (2Kr) -

-n+l 
r 

-n -n -n-2 
grad ~(r - p ) - n·~ r grad f 

for 

(f 

-n-? -n -n 
-2nr - <grad f, grad ~> + 6~· (r - p · ) 

x;im. 

I I I I ~n -n~-? I 
6a :S 6i r + 2n r - i - <grad f, grad ~>I + n\9,\ -n-2 

r \M- n\ 

since grad f 
-1 

-expx m and \grad fl r, cf. (2.3.3). 

(2.7.9) t.hen follov1s from (2.6.3), (2.6.4), and (2.3.4}. 

q.e.d. 

We now can p:r.·ove 'chat t;he gradient bound ·that is obtained in the 

Euclidean case by differentiating Green's representation formula, again holds 

on Riemannian manifolds up to a small error ·ten11o 

LE~lfvJA 2. 7. 5 Suppose 2 ' 
h E c (B (m, p), IR) , whel"e B (m, p) saUsfies the same 

assumptions as before. 

Then 

(2.7.11) w 
n 

[grad h(m) \ h (m) \ + J 
B(m,p) 

+ c i\2 J 
B (m,p) 

Flex~e c is a constant which depends only on n and Ap " 

Pr·oof For simplicity, v:;e assume h(m) 0. 

Ji',hl 
n-1 

r 
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Let ~ be an almost linear function with 

(2.7.12) <grad l(m), grad h(ml> = jgrad h(m) I 

and let a(x) ~(x) (r(x)-n- p-n) • Then for E: > 0 

I (a•l'>h - h•l'>a) = f <a grad h - h grad a, dO> 
B(m,p)\B(m,E:) d(B(m,P)\B(m,E)) 

Now 

r 
J jaol'>hl 

B (m, p) 

,;; f IL'>hl 
B(m,p) r(x)n-l 

since ll(x) I ,;; r(x) 

I I I 
B(m,p) r(x) 

by (2.7.9) 

ajClB(m,p) = 0 

J l<h grad a. do> I :::-E.. J I hi 
()B(m,p) pn ClB(m,p) 

by (2: 7.10) • 

Furthermore by (2.6.4) and since do=~ grad f•ldol 

1
1 _,_ 1 . 1 1 do, 1 
-;-<~·grad h, dO> - ; <grad ~. grad :E> •; <grad h, grad :E> • n:_l 
r r 

n lgrad hi • Idol 
r 

and hence, using (2.7.12), 

lim f · <a grad h, dO>= jgrad h(m) I • 1[ 
E-+0 dB(m,E:) 

=: a jgrad h(m) I 
n 

Finally, since h(x) =<grad h, grad f> + O(r(x) 2 ) , using (2.7.10) 

lim J <h grad a, dO> = lim J <grad h, grad f> 
s+o 8B(m,E:) s+o ClB(m,E) 

-n -n-2 + 
<grad ~ • r - n'~ • r grad f, dO> 

=a (1-n) jgrad h(m) I, using (2.6.4) as before. 
n 
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The preceding estimates easily imply (2.7.11), noting w 
n 

2.8 REGULARITY PROPERTIES OF COORDINATES. HARMONIC COORDINATES 

na. 
n 

In this section, we are concerned with regularity properties of 

coordinates on manifolds. Eventually, we shall show that harmonic 

coordinates, i.e. ones for which the coordinate functions are harmonic, 

possess best possible regularity properties. 

q.e.d. 

We start by noting that Riemannian normal coordinates have rather poor 

regularity properties. Namely, in [JKl] there was displayed the following 

example of a two-dimensional metric with Holder continuous curvature which 

itself is only Holder continuous in normal coordinates, but not better: 

2 2 2 2 
ds dr + G (r,~) d~ 

with 

for (0 < a < 1) 

for 1T :S ~ :S 21T 

For this metric 

for 
K 

for 1T :S ~ :S 21T • 

The reason for this phenomenon is that the formula for K in normal 

coordinates does not involve any derivatives of G with respect to~ 

Our aim is to construct coordinates for which we can control - in 

contrast to normal coordinates - the Christoffel symbols in terms of 

curvature bounds. 

Let us first derive some general identities for any coordinate map 

H 1 n < > n (h , ••• ,h ) : (B, • ,• ) -+ IR , where B is the coordinate domain and 



<·, ·> the Riemannian metric. If 

i cL'1i (p)v Thus <v,w> v = gij 

is an orthonormal basis of 

J\lloreove:r 

(2.8.2) 

jk 
g 
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v E T B ' then its 
p 

i wj and choosing v 
' 

v(dH•w) - dH d w- dH•f(v,w) 
v 

= - dH•f(v,w) 

since dH = id is linear. 

coordinates are 

v = w = ek ' where 

Hence we see that the Chris·toffel symbols r are given by the second 

derivatives of the coordina·te ftmctions. Thus, we have to control those 

second derivatives for suitable coordinates. 

We firs·t construct coordinates by almost linear functions. Let 

be an orthonormal basis of 'I'mM , and t , ... , ,'L the 
1 n 

corresponding almost linear functions. 

We define L 

(2. 8. 3) L (x) t. (x) u. (x) 
]_ ]_ 

Then, if P denotes parallel transport along radial geodesics, from Thm. 

2.6.1 

(2.8 .. 4) ldL - P(u) I ~ 2/-;- Kll sinh(2Ar) 
r 2 (x) 

sin (2Kr) 

(2. 8. 5) ln2L(x) I ~ 9/; i(l\. 
sinh (2fl.r) 

wr ctgh(Wr)•r(x) 
sin (2Kr) 

Note that the injectivity radius of p also enters, namely by restricting the 

size of the domain of definition of L (2.8.4) implies that L is 

invertible on some ball B (m, o) , •J'Ihere o depends on fl. , n, and the 
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injectivity radius. Hence L defines coordinates on this ball, and the 

corresponding Christoffel symbols are bounded because of (2.8.2) and (2.8.5). 

If we average this construction over all orthonormal bases U of T M , 
•Ill 

then the coordinates become canonical, since independent of a particular 

choice of U, while keeping the estimates (2.8.4) and (2.8.5). 

We call these coordinates aLmost linear coordinates. 

Let now L : B(p,R) -+ 

take the harmonic map 

with 

T M 
p 

m.n be almost linear coordinates. 

H B (p,R) -+ m.n 

HI<!B(p,R) Ll <!B(p,R) . 

We then 

we want to show that for some suitably chosen R , H is injective, i.e. a 

coordinate map. 

THEOREM 2.8.1 For each p E M there exists some R > 0 • depending only on 

A2 = max( IKI) ( K .is the sectional curvature of M J. i(p) (the 

injectivity radius of p ) • and n = dim M • with the property that on 

B(p,R) there exist harmonic coordinates. 

Proof Let ~ be almost linear on some ball B(p,R) . We solve 

~h = 0 in B(p,R) 

hi<!B(p,R) = ~~dB(p,R) 

Assuming 7f 
R < 2A and putting k h-~ , (2. 6. 3) implies 

(2.8.6) l ~kl < 9nA2 •Ad(x,p) ctgh(Ad(x,p)) • sinh(Ad(x,p)) • d(x,p) • 
- sin(Ad(x,p)) 

On the other hand, for 

<P (x) 
2 3 3 

- c 0A (d (x,p) - R l 
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by Lemma 2.3.2 

ll<jJ(x) 
2 2 

:: c0 A (3d (x, p) (n-ll A ctg (1\.d (x,p)) + 6dl • 

Tf For given R :S R0 < 21\., we can calculate c0 = c0 (J\.oR0 ,n) for which k ± ¢ 

is sub- or superharmonic, resp. Since k ± ¢I ClB (p, R) = 0 , the maximum 

principle implies 

(2.8. 7) ik<x> 1 s I<P<x> 1 

and for x1 E 8B(p,R) , x2 E B(p,R) 

(2. 8.8) 

or 

(2.8.9) 

Let x E B(p,R) , p := d(x,ClB(p,R)). Lemma 2.7.5, applied to B(x,p) yields 

w !grad k(x) I s ___£_ J lk(y) <• k(x) I dy + J lllk(y) I dy 
n n ~1 

p ClB(x,p) B(x,p) d(x,y) 

+ c1 (1\.p,n) J 
B (x, p) 

lk(y) - k(&]_ d 
n-1 Y 

d(x,y) 

and hence with (2.8.6) and (2.8.9) 

I grad k(x) J 

Here c = 
2 

remains bolli,ded for fixed n 

(2.6.2) then implies 

(2. 8.10) I grad h(x) - u(x) I 

Let {ei} be an orthonormal basis of T J'v! , 
p 

~i corresponding almost 

linear functions and hi harmonic functions with hii3B(p,R) = ~ijaB(p,R) • 



Putting H(x) 

(2.8.11) 

i 
h (x)e. 

~ 
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(2. 8.10) implies 

on B(p,R) • 

We then average again over orthonormal bases of T M 
p 

As for almost linear coordinates, we see that harmonic coordinates exist 

on fixed balls, the radius of which depends only on i(p) (since R < i(p) is 

necessary for the above constructions), n 

q.e.d. 

If (gik) is the metric tensor for the harmonic coordinates constructed 

above, then from (2.8.1) and (2.8.10) 

i 
- U I 

(2.8.12) implies 

and hence 

(2.8.13) 

k i k ~ grad h >- <u , grad h - u-/1 

We now want to estimate the Christoffel symbols for harmonic coordinates. 

LEMMA 2.8. 1 Let H = (h1 , ... ,hn) be harmonia coordinates. Then~ if (ei) 

is an orthonormal frame~ satisfying V i(ej) = 0 at x 
e 

(2.8.14) 

where R is t~e Rieei tensor. 
mn 

The proof uses the calculations presented in 1.6. 
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LEMMA 2.8.2 There exists some R0 > o • depending only on n • A2 • i(p) • 

with the property that for all R ~ R0 on B(p,R} there exist harmonia 

coordinates the metria tensor g of which satisfies 

(2.8.15) ldg(x) I 

Proof Since 

(2.8.16) 

c5A2 R2 
~ --..,.....=:.,;:--,.-----,-: 

d (x, ClB (p ,R)} 
for x E B(p,R} , 

in normal coordinates, (2.8.10) and (2.8.14} imply 

(2.8.17) 

We now use a method of Heinz [Hzl] to obtain (2.8.15). 

Let J.l := max d(x,ClB(p,R0 )) ldg(x) I . 
XEB(p,R0) 

Then there is some Xi E B(p,R0 ) with 

(2.8.18) 

and 

(2.8.19} ldg(p) I ~ L. 
Ro 

Let d := d(x1 ,ClB(p,R0)) , i.e. J = ldg(x1 l I . 

By Lemma 2.7.5, applied to B(xl,d8) I 0 < e < 1 

=: I + II + III . 
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By (2.8.12) 

by (2.8.17) 

if we choose 8 ~ t , since then for x E B(x1 ,d8) d(x,3B(p,R0 )) ~ d(l-8) ~ ~ 

and by (2.8.12) again 

Hence 

(2.8.21) \l ~% (cii.2R2 + c 9 11Ricll d 282 + c 10A4 R2 d282 ) + 2c9 e\l2 

2 
=: ...!.. aA2R2 + b6 L 

28 2 

a and b depend only on n and AR0 (for R ~ R0 l . 

We now choose R0 so small that 

(2.8.22) abA2 2 < 1 Ro • 

Then (2.8.21) implies that for each 8 ~ t either 

or 

On the other hand, for each \ll > llo there is some e 1 < t with 

Hence the second possibility cannot hold for any 8 ~ t , and the first one 

therefore is valid for each 8 ~ t , in particular for 8 = t , and 
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(2.8.15) then follows from the definition of v . 

q. e. d. 

Lemmata 2.8.1 and 2.8.2 now imply in conjunction with linear elliptic 

theory, that dgij is Holder con·tinuous on balls B (p,R) , R < R0 with any 

exponent a E (0,1) We only have to observe that the Laplace-Beltrami 

operator, written in harmonic (or almost linear) coordinates, now is a 

1 
divergence type elliptic operator with C~-coefficients while the right-hand 

side of {2.8.14) is bounded since the Christoffel symbols can be expressed in 

terms of dgik The corresponding estimates for the Green's functions of 6 

can be found in [GW]. •rhe importan·t point is that even the Holder norm of 

d ik 
.g for harmonic coordinates depends only on the dimension, the injectivity 

radius, and curva·ture bounds, but does not involve any curvature 

derivatives. 

We wan·t to present a simple proof of this result for a 2 
3 , using 

almost linear functions. 

Let us first define the notion of Holder continuity in a way which is 

invariant under renormalizations. A map f : B (p,R) . .,.. Y is called Holder 

continuous with exponent a , if for all x,y E B(p,R) 

d(f(x), f(y) 
1-CL a 

~ const. R d(x,y) . 

Similarly, the k-th derivative of f is Holder continuous, if 

I k k I 1- (k+a) a D f(x) - n· f(y) ~ const. R d(x,y) . 

THEOREM 2.8.2 Let p E x. ThePe exists R0 > o , depending solely on the 

injectivity radius of p , the dimension n of the considered manifold x and 

bounds for the sectional curvature on B(p,R0 ) with the property that for 
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R ~ R0 there exist harmonic coordinates on B(p,R} the metric tensor 

g = (gij} of which satisfies on each baLL B(p,(l-o}R} 

c(A:Ro,n} 2 
I dg I 2/3 ~ 2 . A R2 . 

c 0 
(2.8.23} 

In particuLar, the HoLder norms of the corresponding ChristoffeL symboLs are 

bounded in terms of AR0 and n . 

Proof Let x be a basepoint, U = (u1 , ••• ,un} be an orthonormal base of 

TxX , and denote by L (z} = (~1 (z}, ••• ,~n(z)) the corresponding vector 
X X X 

valued almost linear function. Finally, put 

We now want to estimate !grad v(x) - grad v(y) I for v(z) The 

claim then follows from (2.8.12) and Lemma 2.8.2. 

Let x,y E B(p,R) , m be the average of x,y , i.e. that point on the 

geodesic arc joining x and y with equal distance to both of them, and 

1/3 2/3 
p = c•d(x,y) •R , where C will be chosen later. 

As in the proof of Lemma 2.7.5, we obtain 

(2.8.24) w I grad v(x) -grad v(y) I ~ lim if {(v(z) - v(x)) 6bx(z) 
n E+Q B(m,P)\B(m,E) 

- (v(z) - v(y)) 6b (z)} dzl + if (bx(z) - b (z)} ~v(z) dzl 
y B(m,p} y 

+ if (b (z}- b (z)} <grad v(z), do>l 
oB(m,p} X y 

+ if {(v(z} - v(x)) <grad bx(z}, do>- (v(z) - v(y}) 
oB(m,p) 

·<grad b <z>, d0>} I 
y 

=: I + II + III + IV • 

First of all, by Lemmata 2.7.4 and 2.8.2 
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(2. 8. 25) 

2 2 
clll\ R A2 2 

I $ OR p • 

6b - /l,b 
X y 

(Note that we do not exploit the difference in I, since we 

control only the absolute value of 6b , as we do not want to admit 

dependence of the estimates on curvature derivatives.) 

Choosing w.l.o.g. x and y close together and C suitably, 'V<Je can 

assume 

(2.8.26) Sd(x,y) :S p d( ) 1/3 2/3 c· x,y R s oR • 

We then split II into 

(2.8.27) 
JB(m,Sd(x,y)) + JB(m,p)\B(m,Sd(x,y)) 

(2.8.15), (2,8.17) and ·the definition of b give 

(2.8.28) 

For IIb, we write 

(2.8.29) 

II 
a 

+ 9., (z) [ 1 
Y d(x,z)n 

and use Lemma 2.6.2 and (2.8.15), (2.8.17) to get 

(2.8.30) 
cl2 1\2 2 1 

IIb :S --- ____B_ d(x,y) a p -a 
1-a (oR) 2 

taking d(x,z), d(y,z) 2: d(x,y) on B(m,P)\B(m,Sd(x,y)) into account. 

Similarly, we get 

(2. 8. 31) 

2 2 
cl31\ R -1 

III :S --0~ d(x,y) •p 

Finally, we write the integrand of IV as 

(v(z) - v(x)) (grad b z- grad b z) - (v(x) - v(y)) grad b (z) • 
X y y 
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If we use the splitting of (2.8.29), then the only nontrivial expression to 

estimate is 

I grad !1- (z) - grad !1- (z) I • 
X y 

For this purpose, let y(t) be the geodesic arc from x to y and let Pt 

be the parallel transport along geodesics emanating from y(t) • Then from 

(2.6.2) 

Moreover 

Thus 

ld\(t) (z) - Pt •u(t) (z) I 
2 

~ c14 d(Y(t),z) • 

IPt•u(t)(z)- P,•u('!)(z) Is c15 d(y(t),z)•d(y(t),y(T)). 

I grad !1- (z) - grad !1- (z) I 
X y 

for z E dB(m,p) • 

Altogether, we get 

(2.8. 32) 

2 2 
cl7~ R 2 2 1 

IV s oR (~ p + d(x,y) ·p- ) 

Putting everything together, and using p = Cd(x,y) 113 R213 

c A2R2 

I + II + III + IV s 1802 (A2R2C2 + %] R-5/3 d(x,y) 2/3 

This is just the right power of R , since grad v contains the second 

derivatives of the coordinate functions hi This finishes the proof. 

q.e.d. 

Moreover, we note that once having proved Thm. 2.8.2 or Lemma 2.8.2, 

(2.8.14) in conjunction with linear elliptic theory implies 

THEOREM 2.8.2 Let R s R0 ~ whe~e R0 is chosen as in Thm. 2.8.2, and let 

g = (gij) be the met~c tenso~ of the co~~esponding ha~onic coo~dinates on 

B(p,R) , If the Riemann curvatu~e tenso~ on B(p,R) is of class 0~ 

ck+S (k E IN, S E (0,1) , then g E ck+l+a (fo~ every a E (0,1)) 0~ 

k+2+S . h . . f g E c , ~esp.~ -z-n t e -z-nte~1-o~ o B(p,R) • The co~~esponding estimates 
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depend in addition to the quantities mentioned in Thm. 2.8.2 on the 

ck+S_norm, resp., of the curvature tensor. 

or 

That harmonic coordinates possess best possible regularity properties 

was first pointed out by de Turck-Kazdan [dTK]. The explicit construction 

implying the existence of harmonic coordinates on fixed (curvature controlled) 

balls and the explicit estimates of this section are due to Jost-Karcher [JKl]. 

Finally, for later purposes, we need still another construction of 

coordinates. We want to introduce coordinates with curvature controlled 

Christoffel symbols in a neighbourhood of a point q E B(p,M) , without using 

any information of the geometry outside B(p,M) • We suppose again that 

M < 2: , M < i (p) . In case d(p,q) :::; tM , we taken an arbitrary orthonormal 

base 

.p. 

ofT Y 
q 

(B(p,M)CY, dim Y = n) • If d(p,q) > tM , we choose 

in such a way that i: e. l. 
is tangent to the geodesic from q to 

We now want to show that the geodesics exp (t•e.) 
p l. stay inside B(p,M) 

for t :::; t 0 , where t 0 > 0 can be estimated from below in terms of w M , 

and n Indeed, by the Rauch-Toponogow Comparison Theorem (cf. [GKM], 

p.l94f), 

d(p, exp t•e.) :::; dw(p, exp-t•e.) , 
q l. q l. 

where the right hand side is the distance in the comparison triangle in the 

plane of constant curvature 2 with dw(p,ci) = d(p,q) e. having the -w , , 
l. 

same angle with the geodesic form q to p as e. has with the geodesic 
l. 

from q to p • Consequently 

cosh(Wd(p, expqtei}) :::; cosh wt • cosh(Wd(p,q}} - ~sinh Wt • sinh(Wd(p,q)) 

< h t . h WM l . h t . h - COS W • Sl.n - n Sl.n W • Sl.n WM 1 

if t :::; !-M 

:::; cosh WM , 

if t :::; t , say. 



Then, for t :<; t 
0 

min(t,±Ml 
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d (p ,exp te.) :s: M , and consequently the 
q l. 

geodesics expqtei stay inside B(p,M) for t :s: t 0 

LEMMA 2.8.4 In a neighbourhood B{q,T) n B(p,M) of q E B(p,M) ·, we can 

define local coordinates for which the Christoffel symbols are bounded in 

absolute value and T > o is bounded from below, both in terms of w , K , 

k () 1 (d2 (s. t ) d 2 ( )) i s := 2to . expq 0 ei - s,q . 

Proof By Lemma 2.3.2 

(2. 8. 33) 
WM ulM 

coth 
t 0 2 

if d(s,q) :<; tM , and 

(2. 8. 34) is an isometry , 

n 
where k = (k1 , .•• ,kn) : B(p,M) -+ JR • 

This easily implies a lower bound T for the radius of the set on which k 

is injective. Furthermore, the Christoffel symbols are given by D2k (cf. 

(2.8.2)), and hence the bound on the Christoffel symbols follows from 

(2.8.33). 

q.e.d. 


