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THE INHERITANCE OF CONCAVITY BY 

SOLUTIONS OF BOUNDARY VALUE PROBLEMS 

A.U. Kennington 

A significant proportion of the literature dealing with boundary 

value problems is concerned with regularity inheritance results: under 

appropriate regulari-ty assumptions for the data of 'che problem (the 

boundary, boundary function, differential opera·tor and "force" function) 

one attempts to demonstrate the regularity of the solution. Very little, 

however, has been published concerning the inheritance of various 

concavity-like geometrical properties. In this paper, a very brief 

and incomple·te history of the topic is outlined, after which a recent 

result of the author is ske·tched. 

2. DEFINITIONS 

The concept of a-concavity permits a unified presentation of 

concavity inheri-tance results. It is adapted from a definition of 

Brascamp and Lieb ([1]). 

Let K be a convex subset of :1ft , and u be a positive 

real-valued function on K. Then for a > 0, u is said to be 

a-<Joncave when 
a 

u 

way, one says that 

is concave. Extending this definition in a natural 

u is a-concave for a < 0 when ua is convex, 

and a-concave (or log concave) when log (u) is concave. As a further 

extension, one may say that u is (-oo)-concave (or pseudo-concave) 

when 
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u(x) ~ min(u(y) ,u(z)) for all x, y, z in K for '"hich 

x E [y,z] { (1-A.ly + Az; o ;; A.;; 1} 

and that u is (-tool-concave when "min" is replaced by "max" in the 

(-oo)-concave definition. Clearly, only constant functions are (+oo)-concave. 

The naturalness of the defini·tion of a-concavity is indicated by 

·the fact that if K is open, a is real, and u is t;dce differentiable, 

posi·tive and non-constant in K, then u is a.-concave if and only if 

-2 
a :S 1- sup{u(x)u88 (x)u8 (x) ; x C: K, 6 E sn' and ue(x)J"O}, 

\tJhere s = { t E 
n 

lR; It i = 1} , and denote r·espectively 
n 

the first and second derivatives of u in the direc·tion 8 . This is 

easily verified by calculating 
Ct .. 

(u lee and (log(u)) 8e 

A function u is pseudo-concave in a convex set K if and only 

if its upper level sets, {x E K; u (x) > c} , e.re convex for all c. 

But all a.-concave functions are 6-concave for all 8 ;; a 

Hence all a-concave functions are pseudo-concave, whatever the value 

of a. 

In this paper, domain will mean a non-empty open set. 

.~ 3 .. HISTORY 

In 1931, Gergen ( [ 3]) showed that if !J is a domain in 1R3 , 

starlike at X E n ' and denotes Green's function for the Laplacian 

on r2 >vith pole at X , then the upper level sets of a 
"x 

are starlike 

a'c x. In 1955, Gabriel [2]) showed the same result with "starlike at x" 
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replaced by "convex". Thus Green's function is pseudo-concave when fJ 

is convex. Makar.:..Limanov ( [4]) showed in 1971 that if u solves 

~u + 1 0 in Q , u 0 on 30. , 

where n is a bounded convex domain in u is pseudo-concave. 

In fact, it is now known that a very minor addition to the proof indicates 

that u is !-concave. This result is sharp, as is shown by the case 

where Q is an equilateral triangle. 

In 1976, Brascamp and Lieb ([1]) demonstrated the log-concavity of 

the first eigenfunction of the Laplacian on a bounded convex domain in 

Fn, for n ~ 1. A few other results published in the last ten years 

show that solutions of various boundary value problems are either pseudo­

concave or log-concave. 

4. A RECENT RESULT 

THEOREM On a hounded com•ex domm:n Q in Fn for n ~ 2, let u 

be the solution of 

~u + f o in Q, u o on 30. , 

where f is a non-negative 6-concave function on n for some 8 ~ L 

Then u is a-concave on n , if a = B! (1+28) Thus if f is constant~ 

so that f is (+oo)-concave~ then u is ~-concave as in the Makar-

Lirnanov result. 

'I'o prove this theorem it is necessary to have a means of ·testing 

whether a function is a-concave. A function u is constructed which 

is identical to u if and only if u is a-concave. For a > 0 and 

x in define 
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u(x) sup 
a a 1/a 

((1-/,)u(y) +Au(z) ) , 

where the supremum is taken over all y and z in S'i and A 

in [0,1], such that x = (1-A)y+Az. Clearly u(x) ;;; u(x) for all 

in Q. 

Suppose u is not a-concave. Then u(x) > u(x) for some 

x in Sl. So for a small enouqh E > 0, (1-E)u - u achieves a 

positive maximum at some x in Sl (as u is upper semicontinuous) . 

L\u does not necessarily exist, bGt by using- a suitable generalisation, 

i·t is found from the classical maximum principle tha·t 

> -Lu (x) f (x) 

as f (x) > 0 unless f is identically zero. It can be shm·m that 

there exis·t y and z in n wi'ch 
a a 1/a 

u(x) = ((1-A)u(yl +Au(zl I · , 

and a Cc!lculation shmvs tha·t for such y and z, whenever 1 $; a < 1 
3 2 lf 

'i'l.7here B = Ci/(1-2a).. The resultin•:J cont:ra.diction Vlhen f is S-concave 

completes the proo:£. 
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