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THE DIRICHLET PROBLEM 

FOR THE MINIMAL SURFACE EQUATION 

Gmham Wi Uiams 

0. INTRODUCTION 

In this paper we consider the Dirichlet problem for the minimal 

surface equation. We assume that n is a bounded open set in ~n 

with c2 boundary an and that ~ is a continuous function on an 

Then we consider the problem : 

{P) Find u E c2 {Q) n c0 {i'i) such that 

{i) u = ~ on an 

{ii) U SatisfieS the minimal SUrfaCe equatiOn in n 1 that iS 1 

n 

I in n 
i=l 

We shall consider two aspects of this problem : firstly, whether or 

not solutions exist and, secondly, the regularity of solutions. 

!.EXISTENCE 

A rather complete answer was obtained for the existence question 

by Jenkins and Serrin in 1968. 

THEOREM 1 [JS] 

{i) If an has nonnegative mean cur-vature ever-ywhePe then thePe 

is a solution to {P) foP evePy ~ E c0 cam . 

(ii) If an has striatly negative mean cur-vature somewhePe and 

E > 0 then there exists ~ E c 0 {an) with I ~ I ::;; E suah that thePe 

is no solution to (P). 
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It should be noted that in the case n = 2 , where the condition 

that an has nonnegative mean curvature is equivalent to the convexity 

of n , the above results were known eaflier {See [B 1 , [F] • ) 

We shall be concerned with the case where an has negative mean 

curvature at some points. The above Theorem shows that we cannot expect 

to solve {P) for every continuous $ However there are some functions 

$ for which there is a solution ; for example $ = 0 has solution 

u = 0. Thus we may expect that if $ is sufficiently close to 0 in 

some norm then there should still be a solution to {P). This is indeed 

true provided we use an appropriate norm. We shall consider which norm 

is the most appropriate. 

The first result in this direction was obtained by Korn in 1909. 

THEOREM 2 [K] 

If ll$11 2 ,a is suffiaient"ly smaU there is a solution to {P). 

Korn's method of proof is to use the c2 'ct estimates for solutions of 

Poisson's equation together with the contraction mapping principle. 

Using weak solutions and c1 'ct estimates the same method shows that it 

is sufficient to assume ll$1\ 1 ,a sufficiently small. It should be 

noted that the result of Jenkins and Serrin above shows that it is not 

sufficient just to have ll$11 0 small 

One of the consequences of the results to be given below is the 

following theorem which has also been proved independently by Chi-ping 

Lau in his thesis at the University of Minnesota. 

THEOREM 3 twl] , [LA] 

{i) If 1\$1\ 0 1 {= sup l$1 + Lipschitz constant of $) , an 
is suffiaiently small then {P) has a solution. 
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(ii) If o <a:< 1 and s > o then thePe is a funetion cp 

with 11¢11 < s such that (P) has no solution. o,a 

Thus the 1 nol:1!! is the correct one to ;vork with. However 

it is in fact not crucial for exis·tence that this norm be small. Indeed 

although I cp j mus'c be s..mall the Lipschitz constant of ¢ , Lip(¢) , 

may be quite large. 

THEOREM 4 [Wll 

(i) 

a:nd 

Given K < - 1-·- there is 
/n-1 

K such that if !<PI ~s 

solut·ion. 

s > 0 depending on. n • n 

and Lip(¢) ~ K then (P) has a 

(ii) G·iven K > - 1- a:nd s > 0 thePe ·is a function rjJ 
ln-1 

with I rP I ~ s and Lip ((jl) ~ K such that there is no solution 

of (P). 

'fhe proof of (i) uses a barrier construction and the proof of (ii) 

involves a reduction to the consideration of positive solutions for 

Poisson"s equation in conical domains. Strong use is made of an idea 

of Leon Simon [S] which involves the consideration of any solution as 

a graph over the boundary cylinder. 

The resul·ts have been generalized, in joint work with Friedmar 

Schulz [SW] , to include a wide class of elliptic equation (including 

·those of minimal surface type) with the same sharp dependence on the 

Lipschitz constant again appearing. 

2 .REGULARITY 

For the remainder of the paper we shall assume that an has 

nonnegative mean curvature and so by the results of Jenkins and Serrin 

we know that (P) has a solution for any rjJ E c0 (CJQ) • We shall consider 
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the smoot~hness of the solution u. It is knovm that u is analyt:ic 

in i:he in·terior of and so we will be interes·ted in t.he smoot.hness 

Up 1:o ()Q • I·t is tO be expected that: the SrtlOo·thness of U up to Cl\l 

should increase as the smoothness of · ¢ is increased and this is 

indeed t.he case. For example if ¢ E ,Ci ( ast) with k 2: 2 then the 

result.s of Jenld.ns and Serrin [JSj plus standard them.-y show tha:t 

uE (see [GT]). ~1ore recently Lieberman [Ll] and Giaquinta. 

and Giusti [GG] have shown that if ¢ E c1 'ot (ClQ) ·then u E c1 'o. 

~'he remaining cases to be considered are when ¢ E ,a (3Q) • Some 

resul·ts in ·this case have been given by Giusti in 1972 [G] (for more 

general equations see [L2]), 

THEOREM 5 [G] 

(i} an has positive mean cuPvature and 

</> E { Cln) , 0 < a ;;; 1 then u E 

(H) If ()Q has nonnegat:-ive mean curvature and 
0 "l 

cp E c '~ (Cist) 

then there exists c1. > o such tha-I; o a -
u E c ' (S1). 

Giusti also produced an example where an has stric·tly positive 

mean curvature, bu:t: u ~ for any Thus 

(i) above is bes·t possible. 

In [\i/2] and [W3] tJ:1ese results are improved and generalized. For 

example i·t is sho1on1 that if the mean cu:rvature of an grows like 

lk near a poin·t J"'o E an and q) E c0 'a.((lstj then u sa·tisfies 

a Holder condition at wi·th exponent ot/k+2. This result is shown 

to be best possible a.nd also corresponding results mce shown using a 

general modulus of continuity rather than a Holder condition. 
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At. ·this stage it should be no·ted tha·t a small change in the 

regularity of ¢ may result in a large change in ·the regulari"cy of u. 

For example changing the regularity of ¢ from 
,.s 

to 
,1 

changes 

the known :t"e:gula:city of u from ,E 
to '~ {at bes·t) The next 

result sho~?s ·that the regularity of u does depend con.tinuously on the 

regularity of 4> provided ~·le take the Lipschi·tz cm1s·tan:t of ¢ into 

account. 

(i) .8uppose 3n has nonnegaM,ve mean CUl'"Uature and o < I.Y. <. L 

:l'hen the:x•e ex?:sts a constant K(n,a) such that Lip(¢)< K(n,a) 

then 

(ii) Fo1~ any K > K(n,a) ·there ex·ists ¢ with Lip(¢) ;;; K 

but such that (\\le assume here that 

in the case of strictly positive mean cm::vature or 

in the gene:r:·alizai:ion mentioned above) " 

a>! 
2 

1 
a> i:+2 

'Ihe proofs of ·these resul·ts are all by bar:cier constructions 

som.etimes using the idea of I.,eon Simon mentioned above. 

(i) Tb.e constan·ts K(n,a) :way be given explici'cly. For example if 

n = 2 , K (2 ,a) = cotangent ( 1T~) . I·t should be noted tha·t they do not 

depend on n at all. 

(ii) It is no"lrl' possible to determine the bes'c ex. for Giusti's 

Theorem 5 ( ii) . It will be ·the best of 

such tha'c Lip(¢)< K(n,Cl). 

1 
k+2 

(k as above) and a 
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(iii) In all these results (including the existence questions) 

it is not really the Lipschitz constant of ~ which is the crucial 

quantity but rather the size of any an9,les in the graph of ~ • Thus 

if ~ = ~1 + ~2 where ~ 1 

1 .. , 

is a C function then we may use the Lipschitz 

constant of ~2 instead of ~ 
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