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THE DIRICHLET PROBLEM
FOR THE MINIMAL SURFACE EQUATION

Graham Williams

0.INTRODUCTION

In this paper we consider the Dirichlet problem for the minimal
surface equation. We assume that (! is a bounded open set in o
with C2 boundary 92 and that ¢ is a continuous function on 09§ .

Then we consider the problem :

()  Find uec’ (@ Nc®@) such that
(i) u= ¢ on 30 ,

(ii) u satisfies the minimal surface equation in § , that is ,

n D.u

D. = ]= 0 in Q .
izl T 1+!Du|2J o

We shall consider two aspects of this problem : firstly, whether oxr

not solutions exist and, secondly, the regularity of solutions.
1.EXISTENCE

A rather complete answer was obtained for the existence question

by Jenkins and Serrin in 1968.

THEOREM 1 [Js]
(1) If 939 has nonnegative mean curvature éverywhere then there
is a solution to (P) for every ¢ € CO(BQ).
(i2) If 30 has strictly negative mean curvature somewhere and
€>0 then there exists ¢ € c® a0y with |9 e such that there

is no solution to (P).
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It should be noted that in the case n = 2 , where the condition
that 02 has nonnegative mean curvature is equivalent to the convexity

of § , the above results were known ea;lier (see [B1, [F].)

We shall be concerned with the case where 00 has negative mean
curvature at some points. The above Theorem shows that we cannot expect
to solve (P) for every continuous ¢ . ’However there are some functions
¢ for which there is a solution ; for example ¢ = 0 has solution
u = 0. Thus we may expect that if ¢ is sufficiently close to 0 in
some norm then there should still be a solution to (P). This is indeed
true provided we use an appropriate norm. We shall consider which noxrm

is the most appropriate.

The first result in this direction was obtained by Koxn in 1909.
THEOREM 2 [K1]

If ”¢”2,a is sufficiently small there is a solution to (P).

Korn's method of proof is to use the Cz'a estimates for solutions of
Poisson's equation together witﬁ the contraction mapping principle.
Using weak solutions and Cl'a estimates the same method shows that it
is sufficient to assume “¢”1,a sufficiently small. It should be
noted that the result of Jenkins and Serrin above shows that it is not‘

sufficient just to have H¢HO small

One of the consequences of the results to be given below is the
following theorem which has also been proved independently by Chi-ping

Lau in his thesis at the University of Minnesota.

THEOREM 3 [w1l, [ra]

(i) If H¢”0’1 (= gap |¢| + Lipschitz constant of ¢)

is sufficiently small then (P) has a solution.
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(ii) If 0<a<1 and €>0 then there is a function ¢

with ||l <e such that (P) has no solution.
0,0

Thus the CO'1 norm is the correct one to work with. However
it is in fact not crucial for existence that this norm be small. Indeed
although |¢| must be small the Lipschitz constant of ¢ , Lip(¢) ,

may be quite large.

THEOREM 4 [w1)]

(i) Given K<—— there is € > 0 depending on § , n
Vn-1
and ¥ such that if |¢|<e and Lip(9) <K then (P) has a

solution.

(ii) Given K> and € >0 there is a function ¢

n-1
with |¢] S € and Lip(9) SK such that there is no solution

of (P).

The proof of (i) uses a barrier construction and the proof of (ii)
involves a reduction to the consideration of positive solutions for
Poisson's equation in conical domains. Strong use is made of an idea
of Leon Simon [S] which involves the consideration of any solution as

a graph over the boundary cylinder.

The results have been generalized, in joint work with Friedmaxr
Schulz [SW], to include a wide class of elliptic equation (including
those of minimal surface type) with the same sharp dependence on the

Lipschitz constant again appearing.

2 .REGULARITY
For the remainder of the paper we shall assume that 90 has
nonnegative mean curvature and so by the results of Jenkins and Serrin

we know that (P) has a solution for any ¢ ECO(BQ) . We shall consider
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the smoothness of the solution wu. It is known that u is analvtic

in the interioxr of and so we will be interested in the smoothness
up to 90 . It is to be expected that the smoothness of u up to 30
should increase as the smoothness of - ¢ is increased and this is
indeed the case. For example if ¢ ¢ Ck'(x(BQ) with k22 then the
results of Jenkins and Sexrin [JS] plus standard theory show that

u€ Ck'u(ﬁ) (see [GT]). More recently Lieberman [L1l] and Giaquinta

l,OL(S':Z) i

and Giusti [GG] have shown that if ¢ Ecl‘a(BQ) then u€cC
The remaining cases to be considered are when ¢ € CO'OL(BQ) . Some

results in this case have been given by Giusti in 1972 [G] (for more

general equations see [L2]1).
THEOREM 5 (]

(1) If 9 has strictly positive mean curvature and
o€c® %0, 0 <as 1 then ue cO%2@@)
(ii) If 99 has nonnegative mean curvature and ¢ € e

then there ewists 0.>0 such that uwec'®(@).

Giusti also produced an example where 02 has strictly positive
mean curvature, ¢ € Co'l(BQ) but u ¢Co’a(ﬁ) for any u3>%-. Thus
(i) above is best possible.

In [W2] and [W3] these results are improved and generalized. For
example it is shown that if the mean curvature of 90 grows like

k . 0,0 R
Ix—XO! near a point xOE 9 and ¢€C'T(dNR) then u satisfies
a Holder condition at xO with exponent 0/k+2. This result is shown

to be best possible and also corresponding results are shown using a

general modulus of continuity rather than a Holder condition.
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At this stage it should be noted that a small change in the

regularity of ¢ may result in a large change in the regularity of u.

1, 0,1

For example changing the regularity of ¢ from C to C

. i,€
the known regularity of u from C°' to CO'i

changes
(at best). The next
result shows that the regularity of u does depend continuously on the
regularity of ¢ provided we take the Lipschitz constant of ¢ into

account.

THEOREM 6 [w21
(i) Suppose 80 has nonnegative mean curvature and . 0 <o < 1.
Then there exists a constant K(n,a) such that if Lip(¢) <K(n,q)

O,a(ﬁ)-

then u€ C
(i1) For amy X >K(n,0) there exists ¢ with Lip(¢) £ K
but such that u qco'a(ﬁ). (We assume here that ai>%

1

in the case of strictly positive mean curvature or o> Py

in the generalization mentioned above).
The proofs of these results are all by barrier constructions

sometimes using the idea of Leon Simon mentioned above.

REMARKS

(i) The constants X(n,0) may be given explicitly. For example if
n =2, K(2,0) = cotangent (—7%-) . It should be noted that they do not

depend on 8 at all.

(ii) It is now possible to determine the best o for Giusti's

Theorem 5 (ii). It will be the best of E%E (k as above) and o«

such that Lip(¢) <K(n,0).
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(iii) In all these results (including the existence questions)
it is not really the Lipschitz constant of ¢ which is the crucial
quantity but rather the size of any ang}es in the graph of ¢ . Thus
if ¢ = ¢1 + ¢2 where ¢1 is a leuné£ion then we may use the Lipschitz

constant of ¢2 instead of ¢ .
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