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EXISTENCE VIA INTERIOR ESTI~lATES FOR 

SECOND ORDER PARABOLIC EQUATIONS 

John van der Hoek 

In memory of a forn1er student of .LH. Michael, t:he late 

Robin Wittwer (17th February 1954 - 26th May 1984) 

1. PR.ELifnNP.RIES 

Our problems •.·!ill be solved on subse·ts of :!Rn+l with n 2 1 . We 

label points X in 
n+l 

JR by (x,t), X E IR11 , ·t E JR, the (n+l) -th 

component being often associated wi'ch ·time in physical problems. For 

X= (x,t) , \11e call iXI = (ll1cll 2 + ltl)~, the parabolic length of X, 

if For 
i=l 

n+l 
X,Y E IR d(X,Y) IX-YI 

denotes the pa:cabolic distance between X and Y Let ::l be a domain in 

n+l 
IR A point X in the topological boundary ():;t of 0, belongs to the 

parabolic boundary PQ of Q if for some y E n ' ·there exists a 

continuous pa·th connecting X and Y , aiong v;hich the '"cime" coordinate 

is non-decreasing. If X E ::l , then d 51 (x) dEmotes 

inf{d(X,Y); Y ~ (y,T) E Pi:l, T::;; t} if X is the point (x,t) . 

2. LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 

Linear parabolic partial differen.·tial operators will be defined on 

funci:io:ns u defined on domains Q to have ·the following form: 

Lu(X) 
n 

CJ 2u 
n 

~(X) 3u 
- :8 a .. (X) Clx.ax. (X) + :E b. (X) + c(X)u(X) - -(X) 

i,j=l :LJ i=l 
1 ax. 3t 

:L J 1 

for X E S1 , a. . , b; , c , 
lJ ~ 

being real valued, locally Holder continuous 
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on n with expon~1t a E (0,1] , the matrix [a .. (X)] being symmetric 
~) 

positive definite for all X E Q We shall here be concerned with a 

certain class of such operators. 

In this class, denoted by t , we shall assume the follm11ing: there 

exist 0 < \) :;;; A ' 0 < E: < 1 so that for all X E n ' 1 :;;; i,j :;;; n the 

following are true 

for all t;, 

Ia .. (X) I ::::A , lb. (X) I :>: Ad(X)£-l , -Ad(P)£-2 s c(P) ::::A • 
1] l 

3. SPECIAL DOMAINS 

A non-empty domain Q in n+l 
JR belongs to class A (admissible 

domains) if for each 0 < \J :::: A , there exists a function 

1jJ E C (l'i) n C 2 ' l {[l) , Q deno·ting the closure Of Q , SO that 

(i) 1jJ (X) = 0 if X E Prl 1jJ(X) > 0 if X E Q 

and, in addit:ion, for each bounded open subset G of n ' ·there exists 

p > 0 ' M > 0 ' 0 < y < 1 ' A > 0 ' A > 0 so that 

(i.il 1jJ (X) ?; pd2 (X) for all X E G ' d - d n ; 

(iii) 1jJ (Y) :o; Ml);(X) wherever X,Y E G d(X,Y) < yd(X) 

(iv) l.~=l (~(X) lj!z 
.axi J 

:::: A1P (X) d(X) 
-1 

for all X E G ; 

(v) for ;my symmetric constant matrix [aijl which satisfies 

n n 
2 !: t;,il;j :2: ~ ~- for all t;, (t;,l, ••• ,~n) JRn \) 

·~i = E 

i,j=l i=l 

and I aij I :::: A ' 1 :::: i,j :;;; n then for all X E G ' 
n 2 

- 21(xl ~ a .. ~(X) :::: - A~J (X) c). (20 -2 
~J Clx. Clx. Cit 

i, j=l l J 

For n E A , 0 < \J :::: A , the corresponding function whose existence has 
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just been asserted will be called a (V,fl.) barrier for Q . Some 

properties of A are given in Section 7. 

4. BOUNDARY VALUE PROBLEMS 

We wish to solve Dirichlet problem fox: operators in L and domains in 

A . 

4.1 THEOREM. Given a bounded Q E A ~ L E L , f locally HI:JZder continuous 

on Q wUh exponent a (as in Section 2), satisfying for some B > 0 $ 

If (Xl I £-2 
f01' aU Q being the that ·in the :<;; Bd(X) X E ~ E same as 

def·lnition of L E L , and cjJ cont-inuous on m • there exists 

U E ' 1 (Q) n c cri) so that 

Lu(X) f (X) for X E Q 

u(X) qJ (X) for X E ffi . D 

Further interior regularity of u can be deduced from the interior 

Schauder <theory. The theory underlying< this theorein and i<ts generalizations 

to operators L with unbounded and degenerating coefficients generalizes 

'.rork done by J .H. Michael for elliptic equations [1], [2], [3] and is given 

in [4] o The t<heory is based on using only interior Schander-type es<tima<tes. 

5. OUTLINE OF THE PROOF OF THEOREM 4.1 

One first notes that it is sufficient <to consider the case when ¢ :: 0 

( [4]' 84-88). With 0 < a , l ' Q E A ' 1jJ a (v,!t) barrier for n ' 'ltle 

define the fcllov;ing Banach spaces x2+a (i:l,1j!) and Ya (Q,~J) For 

sufficiently smooth functions u defined on n ' put 
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lu(X}- u(Y)I d(X 1 Y}-a; X1 Y E n1 X~ Y}. 

we say that u E x2+a<n~w> if and only if 

(1} [()u) + HCI. [()u) < co + N2 ()tj 2 ()t 

(2} 

The expressions in (1} 1 (2} define norms for these spaces. Let 

0 < v ~ 1 ~ A 1 E > 0 be the parameters associated with L • Then there 

exists a (\! 1 A} barrier for n which satisfies for some /.. > 0 1 B > 0 

(3} Lw<x> < -t..w<x> d(x>-2 if X E n 

(4} W(X} > Bd(P}E • 

We shall use this (V 1 A} barrier in our definition of x2+a 1 Ya 

now possible to show that if u E x2+a then Lu E YCI. and that there 

exists a constant C > 0 I independent of u and a. so that 

(5} 

and conversely if Lu E Y 
a I U 

X E Pn 1 then u E x2+a and 

(6} 

with u(X} 0 for 

It is 
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This last inequa.li·ty is our interior Schander-type estimate" We note that 

under t:he condi·tions of Theorem 4.1 and our choice of 1p (see ( 4) ) , 

f E 

Th.e Perron procedure is used to show that if f E 

exists u E X .. , 
.2-ra 

so that 

n 
Hu(X) - 2: 

i=l 

dU(X) 
Clt 

f (X) 

, then there 

for all X E Q (and u = 0 on PD. ) • lls the details of this procedure 

(in the form we require) does not seem to be given in full in the 

literature w·e present this in Section 6" 

The "method of continuation" is used to obtain the existence for L • 

'l'hat is, >,ve show ·i:hat 

T 

is both open and closed in [0,.1] using· (5) and (6). Here 

:;: tL + (1-t)H As 0 E T , T = [0,1] 

6. PERRON PROCEDURE 

The aut.hm: thanks Professor Gary Lieberman for discussions at the 

Cen-tre for £,1athematical Anctlysis on "che version of the Perron procedure 

described below. In [4] a weaker version was given, lllhere it seemed 

necessary to consider only "'expanding domains". Ak8 [5] gives another 

method which also avoids this restrictimL 

6" 1 LE~l1~A: Let T > o ~ 8 > o and 

{ (x,t) E JRn+l Ox~ < 8, 0 < t < T} • 

If' ¢ is uniformly continuous on PQ = {(x,t) ED.: either t = 0 or 

0 < t < T and llxll = 8} , f is locally Holder continuous on Q , there 
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e:x:i8t8 a funation u € c2 
I 
1 em n c en) equaZ to <P on Pn and Hu = f in 

n . Write u = tP. 
<P 

Proof: This result can be deduced from [6]. 

6.2 LEMMA: Let G be an open domain in lR.n ~ T > o and Zet u be an 

upper semiaontinuous funation on n ·~ n = G X (O,T) with u ~ 0 on m ~ 

Hu ~ 0 on Q ~ then u ~ 0 on 11 • 

Proof: Suppose to the contrary that uex> > 0 at some point 

X = e~,T) € n I then U attainS a positiVe maximum On n 1 
'[ 

n, = {(x,t); t ~ T} n n at some point X. Clearly X t Pn, by 

assumption, and by the strong maximum principle e£6], Theorem 1, page 34), 

0 

X t n, - m as lim sup { u eY> ; y € n, I y + z} ~ 0 for each z € m, D 

We will assume henceforth that n E A,~ is as in Section 5. Let 

cen> denote the set of all cylinders of the form 

u { ex,t) € lR.n+l,. II II " X- XO < u, 

for some lR.n+l 
€ I o > o, n > o SO that U n n ~ ~ 1 bUt 

u n m = ~ . 

We call a sub-temperature in n any function u satisfying the 

following conditions: 

ei) -oo ~ u < oo, u > -oo on a dense subset of n 

(ii) u is upper semicontinuous on n ; 
(iii) u = 0 on m ; 

eiv) if v € cen> I <P is uniformly continuous on n n Pv I u ~ <P on 

n n Pv I then H; ~ u on n n v • 

Let S denote the set of all sub-temperatures. 
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6.3 LEMMA: 

(a) S f. ¢ 

{b) If u,v E S then max{u,v} E S • 

Proof: From Sectio.n 5, {3), 1jJ E c2 ' 1 {r2) n c(Q) satisfies 1jJ 0 on Pn 

and Hlji{X) ~ -AljJ{X) d(X)-2 for X € r2 • Put 

{7) A-1 {1 + llflly )$ , 
Cl. 

then -v0 E S . Let u,v E S , then clearly max{u,v} satisfies {i)-{iii) 

for the definition of a subtemperature. Let V E C(r2) , ~ uniformly 

continuous on n n Pv , max{u,v} ~ ~ on Pv n n , then u ~ ~ , v ~ ~ on 

n n Pv < Hv so u,v - ~ on n n v • 

6.4 LEMMA: Let u E S , v E C{r2) 

C{Q) conVePging pointwise in Q 

to Q n PI/ • Put v m = H; , then 
m 

c{nnv) convePging to a function 

to 

IJ 

Let {u } be a decPeasing sequence in 
m 

u , and ~ the PestPiction of u m m 

{v } is a decPeasing sequence in 
m 

v 7JJhich is 

(a) uppeP semicontinuous on n n v , 

{b) Hv = f in r2 n V , 

{c) v = u on n n PI! 

FuPthermoPe, v on the set n n v does not depend on the paPticuZaP 

sequence {u } 
m 

Proof: As u € S , vm ~ u on Q n V • The sequence {v } 
m 

is decreasing 

by virtue of the maximum principle. Let v be defined on n n V by 

for all X € r2 n V 

v{X) = lim v {X) 
nr+<"m 

Then v is upper semicontinuous on n n v , v > - 00 

on a dense subset of n n v as v ~ u on v n n , v < +"" as v ~ vl 
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By applying a par.:tbolic version of Harnack • s second theorem ( [6] , page 89) 

·to the sequence {v -
m 

, \I>Je conclude that: Hv = f on Q n V Part (c) 

is immediate.. No1N let be another decreasing sequence in C 

converginq· pointwise on i:i to u , <l.nd. the rest.riction of to 

Put = HV then again 
lJ!rn 

.is a decreasing sequence in 

c We claim that w ~ v ~ 
m 

that. H (v -~ 

u - ~J s 0 on Q n Pv 
m 

so by Lemma 6.2, v ·· 

0 in Q n v 

so 011 Qnv 

, then 'lfl satisfies (a), (b), (c) and 'AI 2 v on Q n v . 
m . .....;.o<".Jo 

Like\'Jise 'AI :S V on S/. ll V • 

If 

6.5 DEFINITION: Let u E V E (Q) . We define the of u 

on V (by analogy with [7], page 24), v1ritten 

u (X) if X E ?hv 

(X) v(X) if X E ro n v 

00 f v(xl} if X E am n V) 

where v is given in r~ernma 6. 4 and 

v(x) lim sup{v(Y); Y E Q n v, 

for each X E Cl m n V) • Note that: LV (X) 
u 

u(X) for X E S'l n Pv . 

6. 6 REMARK: With the nota·tion hi 6. 5' let w E c m n V) and suppose that 

0 

in in on Apply Lemma 

6.2 teo - w • 

6. 7 LEMMA (Propert-ies paY'abolic lift). Let u,v E S , v E C (Q) ~ then 

(a) LV 
u 

2 u 1:n Q 

(b) LV E s 
u 

(c) if u;:: v on S'i3 then ;:: LV on n 
v 

Proof: Property (a) is immediate from the construction of For (b), 
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v ,,, = ,L 
u 
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then satisfies (i) - (iii) of the defini t:ion of sub-

t;emperat·t:rte.. NOV\Y let 'f/1 E C {Q) r q) be uniformly continuous on ~ n P\\f 1 

w s; ¢ 

u s; ¢ 
w 

H¢ 2 

on ~~ 

(l) v 

on f2 

w 

n Pw 

c lr? 

n Pw 

on Q 

liJe show t:ha't 

By definition of 

' so 
V<l 

H¢ 2: u on 

n w 

'~'lw 
'¢ ?.: w on Q n w Consider foux cases~ 

Y.J , ·;l! 
_, 

u on Q n (W\V) and hence 

Q n ~'V A,pplying Lemma 6 o 2 in V , 

(2) W c V o This case follov.JS from the maximum principle applied in 

[j n w 

handled as above. 

on (fi n Wl \ 

Lerruna 6 .. 20' so \'? ~ 

the Remaxk 6.6, 
cif 

H¢ 

(4} W n V 

For: (c) , let 

Clearly w 2 u , so 
!J;J 

H 2 u on (p i:i n liil and hence 

On 
v1J 

n V n W r w - H¢ satisfies the asst1Ii1ptions of 

2 on n n v n w 

Then u on Q n v 

{u } , {v } be decreasing sequences in C(Q) converging 
m m 

poin,twise in 0 to ti,v respec'tively o Let w = min{u , v } then 
m m m 1 

{w } 
m 

is oc decreasing sequence in C d'll converging poin,twise on fi to v. Le't 
I , , 

A- . '"'denote 
'+'m"''+'m 

respec,tively the restrictions of u 
m 

to Le-'c u lim Hv 
m->«> !J>m 
fi n v - ' v v v 

v = l::;_m H on S'i n V , then u 2 v follmvs from Hcb > H on 
m~reo l/Jm 'm - 1/lm 

lfle conclude the proof by considering the 'three cases in the defini'tion 

the parabolic lift, 

6.8 LEMIVU\: For each u E S , u s; v 0 on n u Prl ( v given in (7)). 
0 

of 

Proof: Let U E S 'then u -v0 is upper semicontinuous on l'i , equal 'tO 

D 

0 

on PQ • Suppose that there exists X = (i;,T) E ll so that (u- (X) > 0 • 

Then u- attains a positive maximum on n, (see Lemma 6.2, proof) at X 

say. There exists v E C(rl) ' v c n so that and 

sup{ (u -v0 ) (X); X E V} • 
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In V , 

H f- ;;:: p > 0 

\vhere p depends on V, l~ as in Sect;ion 3 (ii) . Hence by ( [ 6] , Lemma 1, 

page 34) 

(u -

{ v . } < sup L (X) - v0 (X) 1 x E Pv 
u 

sup{u{X) - (X); X E Pv} 

s sup{ (u- (X); X E \J} 

a contradiction. o 

6.9 THEOREM: Lei u be defined by 

u(X) sup{v(X); v E S} 

for each x E Q u Pn • Then u E c(Q u PQ) n ' 1 mJ and Hu f in Q 

"Lui th u ~ o on Pn . 

Proof: By Lemma 6.2 (the proof) and Lemma 6.8, juj s v0 on Q u PQ To 

prove the rest of the theorem i·t suffices to show that. Hu ~ f .El I] I,e·t 

v E C (m , v c Q , X ~ (i;,T) be the cen·tre point of v By Lemrna 6. 3 (b) , 

there exists an increasing sequence {u } 
n 

in S so that u (X) '' lii!l u (X) 
n 

n+oo 

Let u 
n 

then is an increasing sequence in S and bounded 

u=limu 
n 

above by v 0 and so by [6], page 89 the function 

satisfies Hu ~ f in v Since 

u (X) :::; u(X) [Lemma 6.7 (n)], so 
n 

u :::; 
n 

u (X) 

' u(X) 

u(X) 

n-too 
s u(x) But 

Let y (x,t) be an 

arbitrary point in v with t :::; T and suppose that {v } is an increasing 
n 

sequence in s so that u(Y) = lim (Y) Let vn,v be defined as above. 
n-too 

Then Hv = f in v and v(Y) = u(Y) Let 'W = max{v ,u } 
' then {w } 

n n n n 

is an increasing sequence in s . Let be as above. Since w ;;:: u 
n n 
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w :?: u (Lem_ma 6.7 (c)) and hence w 2 u Bu·t as w ~ u ' n n n 

w<x> ~ u(X) = il<x> ' so w<xl = U:<xJ . We have w :?: u on v ' H(w -ill = 0 

in v and <w ·-ul <xl = 0 ' whence w u in v, =V n { (x,t); t ~ T} 
' by 

t:he strong maxim1.lln principle ( [6], page 34). As it can also be shown that 

w(Y) v(Y) we conclude that u(Y) = u(Y) . But Y E VT was arbitrary, so 

Hu = f in v 
T 

As V was arbitrary, Hu f in 

7. SOME PROPERTIES OF CLASS A 

EXAMPLE 

(1) The set 

{(x,t) E IRn+l t > 0 llx- X II < o} 
' 0 

is in A , for any o > 0 , x 0 E IR11 • For 0 < \) ~ A , 1/! defined by 

1/J(X) ) ]13/2 

where K = (nA)/(2Vo 2 ) is a (V,A) barrier for Q for any 0 < S < 1 • 

(2) A is closed under non-empty finite intersections. 

0 

(3) If G is a domain in IR11 (n 2 1) which is "elliptic" admissible 

in the sense of J.H. Michael ([1], page 4), then GX (O,T) E A for any 

T > 0 • w·e can use examples in [1] to generate examples in A This 

includes the case where G is a bounded domain in JRn with a c2 boundary. 

(4) A is closed under c2 ' 1 diffeomorphisms of JRn+1 

8. CONCLUDING REMARKS 

The above theory has been used to study the Dirichlet problem for 

operators with unbounded coefficients on special domains extending the 

results of J.H. Michael to parabolic equations (see [4]). These results 

'"ill be published else'•There. 
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