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ON AN ELLIPTIC BOUNDARY VALUE PROBLEM WITH MIXED
NON-LINEAR BOUNDARY CONDITIONS

A.J. Pryde

1. INTRODUCTION

E. Tuck has made a study of airflows (assumed to be irrotational
of an inviscid incompressible fluid) under a thin body at a non-uniform
small clearance from a plane ground surface. (See [6]). The problem

is relevant to vehicle aerodynamics, especially for racing cars.

J. van der Hoek and the present author have begun an investigation
whose immediate aim is to establish existence, uniqueness and regularity
properties for the model used by Tuck. This paper is a report of

some of that work.

We take the body to be fixed and the flow to have a uniform velocity
at infinity of 1 in the positive x-direction. The plan form of the
body is assumed to be a bounded convex domain § in R? which is
symmetric with respect to the x-axis and has a smooth boundary o0 .

The height of the body above the ground surface is given by 2z = a(x,y)
where a is a positive smooth function on satisfying ‘
a(x,y) = alx,-y) . Let o(x,y,z) be the velocity potential of the
flow so that o¢{x,y,z) = x at infinity. For points g € 90 let

v{g) be the outward pointing unit normal to 9802 and 7T(g) the
clockwise pointing unit tangent. The boundary decomposes in the form

N = FL U r.u {p,p} where I (the leading edge) and FT (the trailing



edge) are connected relatively open subsets of 0f) separated by
transition points p,B' which are symmetrically positioned with respect to

the x-axis. See the diagram.
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Tuck shows that with u(x,y) = ¢(x,y,0) the following boundary

value problem arises

(1.1) div a grad u = 0 in
u=1x on FL
[Vu] =1 on TT

together with the supplementary condition
(1.2) = =-%— at p,p .

The problem is to determine the transition points p,E as well as
the funtion u € Cl(ﬁ) . We work in Sobolev spaces HO(Q) , O real,
defined as in Lions and Magenes [2] for example. Recall the Sobolev

embedding theorem which gives HO(Q) C Cl(§5 for 0> 2 .

Remarks

l_.
(1.3) If u €C () satisfies the two boundary conditions of

(1.1) then at p,p we have
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so that g%—: * g%— and the supplementary condition simply picks out

the second alternative.

(1.4) If a(x,y) = aly) on Q  then u(x,y) = x defines a
solution of (1.1), (1.2) whenever p,EA are on the wing tips of
0 (that is, the set of points q € 9 of maximal distance from
the x-axis). The interesting case is a(x,y) # a(y) , whereupon
the velocity under the body may increase, the pressure therefore

decreasing and adding to the stability of the body.

(1.5) Some supplementary condition is needed. Without it we

could take FT= g, PL= M ,p=p = Py the point (x,0) € 9

QO
with maximal x , and obtain a unique solution u = Uy €C () .

However, the underlying physical problem demands that the trailing
edge FT be non-empty. This is assured by condition (1.2) if we
make the interpretation p = §'= po when FT= # . 1Indeed by the

Hopf maximum principle (Gilbarg and Trudinger [1]) g%o(po) >0

so that (1.2) is not satisfied.

2. LINEARIZATIONS
Tuck considered the linearization obtained by setting v = u-x and

. 2 . s
taking Igrad vl ~ 0 on FT . Dropping the supplementary condition
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and setting A = div a grad, this gives

(2.1) Av = -a_ in
x
v =0 on TL
ov
-5;-—0 on FT .

Pryde and van der Hoek [3], [5] have looked at problem (2.1) with p
treated as a parameter, and obtained various existence, uniqueness

and regularity results.

In this paper we consider a different linearization and we use it
to obtain an existence result related to problem (1.1), (1.2). Again
treat p as a parameter, and for sufficiently smooth functions

f,9,h consider the more general problem

(2.2) BRu=f in Q

u=g on T

L
AEY

h on FT .

We shall see later (proposition 2.16) that under certain natural
conditions on £,g there is a unigue non-zero constant K such that

the following problem has a solution 1 € HO(Q) for sufficiently small

g>2 :
(2.3) Al = £ in €
=g on FL
o
Y = K on FT .
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3 ~ 2
Setting v = u-U , B = 2K g%- + 2 5%—_5%- and h =h - [Vul ’

we find that u satisfies (2.2) if and only if v satisfies

(2.4) Av = 0 in §

v =0 on FL

Bv |2

]

-|w|® + h on FT .

In section 3, for appropriate choices of £,g,h, we shall use the

following linearization of (2.4) or (2.2)

(2.5) Av =f_  in Q

Associated with (2.5) is an adjoint problem. Indeed, define

ow ] a ou 2 .
v " 3T (K g w) . Then for v,w € H () the following

Green's formula is valid

Cw = a

(2.6) (av,w) - (v,Aw) = {Bv, %w) -{v,Ccw

where (°,¢) and (°,¢) denote the Lz(ﬂ) and L2(89) inner products

respectively. The associated (homogeneous)adjoint problem to (2.5) is
(2.7) Aw = 0 in
w =0 on PL

Cw = 0 on FT .

To see more closely the relationship between (2.5) and (2.7)
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consider the operator

g 0=2 o-4 -1k
By B @) - B Frp) x BTVAT)  aefined by

g
(A’YL'BT)Uu = (Au,YLu,BTu) for u ¢ H_%Q) ; 0> 2 , where

_ )
YLu = u/I'L and BTu = Bu/I'T . The spaces H (9Q) , for 0 real,

are defined in [2] and the spaces HO(T) s for T = FL or FT , are
the spaces of restrictions to T of distributions in HO(BQ)
together with the natural infimum norm. The following result is

proved in Pryde [4] :

THEOREM 2.8. For sufficiently small o > 2 the operator @, /B

is injective with closed range of codimension 2.

The range of (A,YL,BT) is identified via the adjoint problem

2~-0 Z-G(Q)

(2.7). Por this, let HA (2) denote the space of u € H such

that Au € Lz(Q) , provided with the graph norm. Then Cm(ﬁ) is dense

in Hi_o(ﬂ) for all real O . Moreover, YL and CT , defined by

YLw = w/l"L and CTw = Cw/l"T on smooth functions, extend to bounded

operators

P - 1
1z 1) ama c Hi @ »ur®

Yp,3 Hi—G(Q) -+ H - (FT) . We use these

operators to give meaning to w/I'L and Cw/l"T when w ¥ Cldﬁ) . It

is also proved in [4] that

- L N -
(A,YL,CT) : Hﬁ %) > LZ(Q) x le Q(TL) x H? 0(I‘T) is surjective with kernel

of dimension 2 for sufficiently small 0 > 2 . 1In particular

PROPOSITION 2.9 For sufficiently small o > 2 the space of solutions

HZ—U

w € Q) of problem (2.7) has dimension 2.
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It is also the case that the null spaces of the proposition all
coincide for sufficiently small O > 2 , and that their members all
belong to LZ(Q) . See [4].

For O real and T = FL or FT , we introduce the spaces EO(F)
defined as the subspaces of HO(BQ) consisting of distributions with
support in T . Then HO(F) and g-c(F) are mutually dual with respect

to the pairing given by the extension of the L2(F) inner product on

the dense subspaces of smooth functions. Let (- , -)r denote this

T
~12 Ol~0 c s
natural pairing on 1 l/2(1"T) x H (FT) and (- , ’)F the pairing
N L -
1 Ol
on H0 é(TL) x H? 0(PL) . It follows from Green's formula (2.6), theorem

2.8 and proposition 2.9 that

COROLLARY 2.10 For sufficiently small o > 2 , and

o-1%

- -1z
(£ /hy) € 2@ x 8% 2(l"L) X H (T,) . the problem (2.5) has a

191

. o . . a
solution v € H (Q) <if and only if (£,,w) = (hl, EE-w) - (gl,cW)F

I-IT L

for all solutions w € 2@ of problem (2.7). Moreover, when a

solution exists it is unique.

We now take account of the symmetry of our original problem. A
continuous function v on S =0 , o0 , FL or TT will be called even
if v(x,y) = v(x,~y) , odd if v(x,y) = - v(x,~y) , for all (x,y) € S .
So a continuous function v on S is even (odd) if and only if
js vp = 0 for all smooth odd (even) functions ¢ on S . We define
a distribution v on S to be even (odd) if (v,0) = 0 for all odd
(even) test functions ¢ on S , where (¢} here denotes the pairing

between distributions and test functions.

The height function a is even and the operators A , YL R BT ’
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CT all preserve even-ness and odd-ness. In particular, if fl’gl'hl

are even, so is the unique solution of (2.5) when it exists. Moreover,

it is proved in [4] that

PROPOSITION 2.11  For sﬁfficiently small © > 2, the space of solutions

H2-0

w € (Q) of problem (2.7) has a basis consisting of an even function

Vo and an odd funetion ‘T:C .

COROLLARY 2.12 For sufficiently small o > 2, and an even triple

o-1%

- -1
(£1,9;,0y) € 272 x u1° 2(I"L) X H Ty the problem (2.5) has a

solution v € u°(@Q) if and only if (£ ,w ) = (hy, = gdp = {gy ,Cu)p
T

L
where Ve is a non-zero even solution in L> Q) of problem (2.7).

We return to problem (2.3). It can be considered as a special
case of (2.5) with coefficients 2Kk and 2 §B~ in B replaced by

3T
1 and O vrespectively. 1In place of the dual problem (2.7) we have

(2.13) Aw = 0 in Q
w =0 on FL
40w _
vl 0 on FT .

From corollary 2.12 we obtain

COROLLARY 2.14 For sufficiently small 0>2 , and an even triple

o-% o-1%

(£,9,6) € 2@ x 1973w x WOVA(r ), the problem (2.3) has a

solution 1 € 1 () if and only ©f (f,w ) ={K,aw ), - (g,a _3ye>
e e FT v FL

where v is a non-zero even solution in L(Q) of problem (2.13).
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Consider now problem (2.3) with (£,g9,k) = (0,0,1) . By the
Hopf maximum principle, for 0 > 2 there is no solution

u € HG(Q) C Cl(ﬁ) . Indeed if U € Cl(ﬁ) were a solution then

A
v

we conclude that (1, a we)T £ 0 .
T

> 1 at a point where | achieves its minimum. By corollary 2.14

g 53
OE(r )

In particular, for a general even pair (£,g) € HO_Z(Q) x H L

-1 ow
= —e
we can set Kk ={1, a We)FT [(f,we) + (g, a v )FL

2.14, problem (2.3) has a unique solution U € HG(Q) . Moreover, K

1 and by corollary

. . . . . . g
is the unique constant for which there is a solution in H (Q) .

Finally, suppose in addition that (£f,g) satisfies the condition

(2.15) either £ = 0 and max{g(q) : g € FL}

g(p)

or b

IA

0 and min{g(q) : g ¢ Tﬁ} =g(p) .

For example, (£,9) = (0,x) , as in the introduction, satisfies condition
(2.15). Then, by the maximum principle, U achieves its maximum
(or minimum) or the boundary 092 and therefore at a point g € f& .

9
By the Hopf maximum principle K = 5% (g) >0 (or < 0) . So

PROPOSITION 2.16 For sufficiently small o© > 2 and an even pair

1
o-%

(£,9) € B°°%() x © (T,) satisfying condition (2.15), there is a
unique constant K # 0 for which problem (2.3) has a solution
o€ 5 (Q) . Moreover, the solution U , when it exists, is unique and

even.
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3. AN EXISTENCE THEOREM

We obtain an existence result for a non-linear problem closely
related to problems (2.2) and (2.4). ?his is done using the contraction
mapping theorem and knowledge of the solvability of the linearized problem

(2.5) as given by corollary 2.12.

L.
For sufficiently small o' > 2 , let £ € HO ~2(Q) and

g'-%

g € H (FL) be even functions satisfying condition (2.15). Apply

proposition 2.16 to obtain a constant K # O such that (2.3) has a

unique solution U € #° () . Let B and C be the boundary operators

determined by K as in section 2, and wc € LZ(Q) a non-zero even

solution of (2.7). Let O € (0,0'] be sufficiently small that the

g-1%

conclusions of corollary 2.12 are valid. Let h € H (TT) be an

even function and set h = h - qulz .

Recall that H°(Q) is an algebra for s > 1 with [ww] < c|v]| v .

' ~1%
In particular, if v € HO(Q) with o > 2 , then ‘Vvlz/’TT e 12(I'T) .
~ - ;’
so hen”VEr .

With constant B to be chosen, we define a closed subspace V

of HO(Q) by V= {v ¢ HC(Q) : v is even, Av is constant,

(o}
YV =0, lv:B8 Q)| = B} and a (non-linear) mapping T : V + V by
Tv = w , where
(3.1) Aw = A (constant) in

w =0 on FL

Bw

—leIz +h on FT .
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By corollary 2.12 and the Hopf maximum principle (l,wc) # 0 .
Hence by corollary 2.12 there is a unigue constant, namely
>F , for which (3.1) has a solution
o T
w € H () . Moreover, w is even and unique.

. -1 o~ IZ a
A= (l,wc) (n - |wW|®, 5% Yo

To show that w € V it only remains to verify the norm condition.

For this

| o} o=~2 o-%
w s 5@ = cp (awe “@| + flyw ; & 2T
0= |
+ 3w s BRI

(by corollary 2.12 , since the set of even functions in any of these

Sobolev spaces is a closed subspace)

~ —1/
sc, (Al + |n - ivVlz; 50 Ve(r

5 b

T

o~1%

1A

c, I - [vw]® &5 )

2
=c, 8
~ -1k
(provided |h ; 7 lz(FT)H < 62)
=B
. 1
(provided B = —=— ) .
Cq

Furthermore, T is a contraction for sufficiently small B .

Indeed suppose vj €V for j=1,2 with ij= wj and ij = Aj .
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v, - v, + & @)]

; 5@

flw, - w,

. 2 2 o-1%
< cz(lxl - x2| s AAZY I o RS- Sl 6 )

o-1%

1A

2 2
ey Moy = (9w, 12 5 w7 )

1A

o-1 o-1,
Co Vv = v) 5 B @] Vv +v,) 5 B @)

; HG(Q)N

1A

Ce B llvy = v,

a
5 ”Vl -V, s H@

A

(provided B = 2 )
2C6

By the contraction mapping theorem, T has a unique fixed point in

V . So we have proved

THEOREM 3.2 Given o' > 2 and even functions f ¢ HG'—z(Q) '

1
g € HUl é(FL) satisfying condition (2.15) there exists B > 0 ,

-1k
o€ (2,0'] and u ¢ HO(Q) such that if h ¢ w° 12(I‘T) 18 an even

o-1%

function with |h - ]Vulz ; H (FT)H < g% than there exists a unique

constant A for which the problem

Au = f+A on

=]
il

g on FL
2

IVuI h on FT



189

has a solution u € H () satisfying |lu-u ; HG(Q)” < B . Moreover,

the solution u when 1t exists is unique.

Of course this theorem is only a preliminary step towards our
goal of proving existence, uniqueness, and regularity for problem
(1.1), (1.2). In it, the supplementary condition has been suppressed.
But it is our conjecture that for certain choices of (£,g,h) ,
including (f,g,h) = (0,x,1) , the constant A = A(p) will be 0 for
appropriate choice of p € 32 , and that the supplementary condition will
then hold. Numerical evidence for this conjecture is provided in Tuck

(el.
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