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FLOW BY MEAN CURVATURE OF CONVEX SURFACES

INTO SPHERES
Gerhard Huisken

In this talk we consider a uniformly convex n-dimensional (m22) surface
1-

M , which is smoothly imbedded in R™"'. Let us assume that M is locally
given by a diffeomorphism

1

F, : UCR" — FO(U)CMCR’” .

0

Then we want to find a whole family of diffeomorphisms F(°,t) satisfying

the evolution equation

] » 4 -
5 F(x,t) AtF(x,t) , X€U

(1)
F(-,0) =

i
1]

where At is the Laplace-Beltrami operator on the manifold Mt , which

is given by F(-,t). We have
AF(X,t) = -H(X,t)*V(X,t)

where H(°,t) 1is the (positive) mean curvature and \)(g,t) the (outer)
unit normal on Mt : The surfaces Mt are moving along their mean curvature
vector. Since problem (1) is parabolic, we know that it has a smooth’

solution at least on some shoit time interval.
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In our case the mean curvature is positive and the surfaces Mt are
contracted in direction of their inner normal. We want to show that the
shape of Mt approaches more and more the shape of a sphere. In particular,
no singularities will occur, before the surfaces Mt shrink down to a single

point in finite time:

THEOREM 1 Let n22 and assume that My is uniformly convex, i.e.

the eigenvalues of its second fundamental form are strictly positive everywhere.
Then the evolution equation (1) has a smooth solution on a finite time interval
0=t <T and the surfaces Mt converge to a single point O as t-+T.

I1f we homothetically expand the surfaces Mt around O such that the new

surfaces M_ have constant area ]M

» then Mt converges to a sphere of

ol -
area IMOI in the Cw-topology.

REMARK

(1) The corresponding one dimensional problem for convex curves in ]Rz has
been solved recently by Gage and Hamilton, see [2].

(ii)Motion by mean curvature is used to model grain boundaries in annealing
pure metal. The interested reader should look at Brakke's book, [1], where
grain boundaries and motion by mean curvature are studied from the view point

of geometric measure theory.

The approach to Theorem 1 is inspired by Hamilton's paper on 'Three-manifolds
with positive Ricci curvature', [3]. There the metric of a compact three
dimensional Riemannian manifold with positive Ricci curvature was evolved

in direction of the Ricci tensor and a metric of constant positive curvature

was obtained in the limit. The evolution equations for the curvature quantities
in our problem turn out to be similar to the equations in [3] and we can use some
of the methods developed there.

In the following we sketch the proof of Theorem 1
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a) Evolution equations

Let us denote by g = {gij} and A = {hij} the metric and the second

fundamental form on Mt :

> JF(X)  OF(X)

gij (X) = (B-X s ij )
X€ycr"
2. >
> > 97F (x)
hlJ (X) - (\) (X) ] axiaxj )

Then (1) determines the evolution of g and A. Using the GauB-Weingarten

relations one can compute

LEMMA 1  We have the evolution equations

(i) g—t gy; = -2Heh,

(ii) it-hij = thy - 2H hikg’““hmj + |A|2-hij
(iii) 2oH =+ A%

() 218l = alal? - 2val® + 2)a]?

b) Preserving convexity

From Lemma 1(iii) and the maximum principle one concludes immediately that the
mean curvature stays strictly positive for all time. Now let us use the
notation Tij 20 if all eigenvalues of a symmetric tensor T = {Tij} are
non-negative. Then the assumption of Theorem 1 implies that there is some

€>0 such that
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> coHe

hij 2 e°H gij 2)
holds at time t = 0. Using a maximum principle for parabolic systems which
is proved in [3] we conclude from Lemma 1(ii) that inequality (2) (i.e.
uniform convexity) remains to be true with the same €>0 as long as a

solution of (1) exists.

¢) The eigenvalues of A.

In this step we consider the quantity

1 2
ij - Heysl
which measures how far the eigenvalues of the second fundamental form diverge

from each other. We show that the eigenvalues approach each other at least

at those points where the mean curvature becomes large:

THEOREM 2 There are constants §>0 and C <« depending only on My

such that

holds for all times where the solution of (1) exists.

To prove Theorem 2 it is enough to show that with some small § the quantity

is bounded for all times. The proof of this bound is very techmical and
depends heavily on the fact that estimate (2) holds for all time. Using (2)

and Lemma 1 one derives the following inequality for the time derivative of f6
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LEMMA 2  We have

In

2(1-8)
£g S Bfg + THToKVH,V £

2
3t 6 8

2, 1,

2 2
- VH|“ + 8°|A|
HZ-G

ofG

Now it is not possible to simply apply the maximum principle since the
absolute term in this inequality is positive. But the negative gradient

term on the right hand side can be exploited by the divergence theorem

and from the Sobolev inequality and an iteration method developed by De Georgi

and Stampacchia one is led eventually to Theorem 2.

d) Comparing Hmax to Hoon

In order to compare the maximum value of the mean curvature Hmax to the

minimum value Hmi on Mt , one derives the following gradient bound for

n
the mean curvature from Theorem 2 in much the same way as the gradient estimate

for the scalar curvature was derived in [3].
THEOREM 3 For any n>0 there is a constant C(My,n) such that
|2

va|® < nat + conMy)

Now let [0,T) be the maximal time interval where the smooth solution of (1)

exists. Then we must have that

max]A[2 becomes unbounded as t-+T . 3)
M
t
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Otherwise it would be possible to show the existence of a smooth
limit surface MT and to further extend the solution of (1) in contradiction

2

to the maximality of T. As |A12§I{ » we have in particular that H .

becomes unbounded as t-T.

Then, since estimate (2) implies a lower bound on the Ricci curvature of the
surfaces Mt’ one may use Theorem 3 together with Meyer's theorem as in [3]

to compare the mean curvature at different points of the surfaces and derives

THEOREM 4 H _/H

3 — = °
ax! Bnin 1 .as t T

Once this is established it is obvious from {(3) that the diameter of the

surfaces Mt goes to zero for t~T , thus proving the first part of Theorem 1.

By Theorem 4 we have Hmin +® as t*T and thus we conclude from Theorem 2
that the eigenvalues of the second fundamental form approach each other for
t—-+T. Having made this observation one derives the second part of Theorem 1

with some straight forward interpolations.
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