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FLOW BY MEAN CURVATURE OF CONVEX SURFACES 

INTO SPHERES 

In this talk we consider a uniformly convex n-dimensional (n ~ 2) surface 

M , •~hich is smoothly imbedded in lRn+l • Let us assume that M is locally 

given by a diffeomorphism 

Then we want to find a whole family of 

the evolution equation 

F ( •, 0) F 0 

+ xEU 

F(•,t) satisfying 

(1) 

lihere L1t is the Laplace-Beltrami operator on the manifold Mt , which 

is given by F(•,t). We have 

+ + 
-H(x, t) •'J(x, t) 

where H(o,t) is the (positive) mean curvature and v(~,t) the (outer) 

unit normal on : The surfaces Mt are moving along their mean curvature 

vector. Since problem (1) is parabolic, we know that it has a smooth 

solution at least on some sho1t time interval, 
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In our case the mean curvature is positive and the surfaces are 

contracted in direction of their inner normal. We want to show that tht;; 

shape of Mt approaches more and more the shape of a sphere. In particular, 

no singularities will occur, before the surfaces Mt shrink down to a single 

point in finite time: 

THEOREM 1 Let n;;; 2 and assume that M0 is uniformly convex, i.e, 

the eigenvalues of its second fundamental form are strictly positive everywhere. 

Then the evolution equation (1) has a smooth solution on a finite time interval 

0 :'i: t < T and the surfaces Mt converge to a single point (!; as t + T. 

If we hornothetically expand the surfaces around l1.l such that the new 

surfaces Mt have constant area JM0 J , then Mt converges to a sphere of 

area \M0 \ in the C00-topology, 

REMARK 

(i) The one dimensional for convex curves in has 

been solved recently by Gage and Hamilton, see 

(ii)Motion mean curvature is used to model grain boundaries in annealing 

pure metal. The inte:rested reader should l.ook at Brakke's book, [1], where 

grain boundaries and motion by mean curvature are studied from the view point 

of geometTic measu.Te theoryo 

The approach to Theorem 1 is by Hamilton's paper on 'Three-manifolds 

with positive Ricci curvature', [3]. There the metric of a compact three 

dimensional Riemannian manifold with positive Ricci curvature was evolved 

in direction of the Ricci tensor and a metric of constant ive curvature 

was obtained in the limit. 111e evolution equations for the curvature 

in our problem turn out to be similar to the equations in [3] and 111e can use some 

of the methods developed there. 

In the following we sketch the proof of Theorem 1 
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Evolution equations 

Let us denote by g = {gij} and A 

fundamental form on Mt : 

{h .. } the metric 
lJ 

->- + 
-~ (CIF (x) ~F (x) } g .. (x) 

:l.J ax. Clx. 
l J 

-;: E U c l?.n 

') -> 
+ + a"'p (x) . 

hij (x) (v(x) 
' dX. dX. ) 

l J 

the second 

Then (1) determines the evolution of g and A. Using the GauS-Weingarten 

relations one can compute 

LEMMA 1 We have the evolution equations 

(i) 

(ii) 

(iii) 

(iv) 

b) Preserving convexity 

-2H•h .. 
:l.J 

From Lemma 1 (iii) and the maximr1m principle one concludes imJnediately that the 

mean curvature stays strictly positive for all time. Now let us use the 

notation T ij ::;; 0 if all eigenvalues of a symmetric tensor T = {T .. } 
lJ 

are 

non-negative. Then the assumption of Theorem 1 implies that there is some 

::: > 0 such that 
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(2) 

holds at time t = 0. Using a maximum principle for parabolic systems which 

is proved in [3] we conclude from Lemma l(ii) that inequality (2) (i.e. 

uniform convexity) remains to be true with the same e: > 0 as long as a 

solution of .(1) exists. 

c) The eigenvalues of A. 

In this step we consider the quantity 

I 1 2 
hij- n Hgijl 

which measures how far the eigenvalues of the second fundamental form diverge 

from each other. We show that the eigenvalues approach each other at least 

at those points where the mean curvature becomes large: 

THEOREM 2 There are constants o > 0 and C < oo depending only on M0 

such that 

holds for all times where the solution of (1) exists. 

To prove Theorem 2 it is enough to show that with some small o the quantity 

is bounded for all times. The proof of this bound is very technical and 

depends heavily on the fact that estimate (2) holds for all time. Using (2) 

and Lemma 1 one derives the following inequality £or the time derivative of f 0 
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We have 

a f ~ M 2(1-o)<v 'cl" f > 
3t 8 -0 + ~ i"''i 0 

Now it is not possible to 

1 2 - ·IVHI + 
H2-o 

apply the ma.ximum since the 

absolute term in this is positive, But the negative gradient 

term on the hand side can be exploited by the divergence theorem 

and from the Sobolev inequality and an iteration method developed by De Georgi 

and Stampacchia one is led eventually to Theorem 2. 

d) Comparing Hmax to Hmin 

In order to compare the maximum value of the mean curvature Hmax to the 

minimum value Hmin on Mt , one derives the following gradient bound for 

the mean curvature from Theorem 2 in much the same way as the gradient estimate 

for the scalar curvature was derived in [3], 

THEOREM 3 For any n > 0 there is a constant C(M0 , 11) such that 

lm'l2 < H4 C( M ) vn ~ ll1 + ll, O 

Now let (O,T) be the maximal time interval where the smooth solution of (1) 

exists, Then we ~ust have that 

? 
max I A r- becomes unbounded as t + T 0 (3) 

Mt 
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Otherwise it would be possible to show the existence of a smooth 

limit surface My and to further extend the solution of (1) in contradiction 

to the maximality of T. As IAI 2 <=H2 , h . t" 1 th we ave ~n par ~cu ar at 

becomes unbounded as t + T. 

Then, since estimate (2) implies a lower bound on the Ricci curvature of the 

surfaces Mt, one may use Theorem 3 together with Meyer's theorem as in [3] 

to compare the mean curvature at different points of the surfaces and derives 

THEOREM 4 H /H . ---+- 1 max mn as t + T. 

Once this is established it is obvious from (3) that the diameter of the 

surfaces Mt goes to zero for t + T , thus proving the first part of Theorem 1. 

By Theorem 4 we have Hmin + 00 as t + T and thus we conclude from Theorem 2 

that the eigenvalues of the second fundamental form approach each other for 

t + T. Having made this observation one derives the second part of Theorem 1 

with some~straight forward interpolations. 
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