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HARMONIC MORPHISMS ONTO RIEMANN SURFACES
— SOME CLASSIFICATION RESULTS

Paul Baird

1. INTRODUCTION

Let ¢ : M > N be a mapping between smooth Riemannian manifolds.
Then ¢ is called a harmonic morphism if £ o¢ is harmonic on _¢"1(V)
for every function £ harmonic on an open set V © N . Such mappings were
first studied in detail by Fuglede [8] and Ishihara [10]. They established
an alternative characterization as follows.

For a point x € M at which d¢(x) # 0 , let VxM denote the
subspace of TxM given by ker d9(x) , and let HxM denote the orthogonal
éomplement of v M in TM . Say that ¢ is.horizontally conformal if
is conformal and

the restriction mapping d¢(x) s HXM - T

o)

surjective. Letting g,h denote the metrics of M,N respectively, this

H M
X

means that there exists a number A(x) such that
A(x)2 g(X,¥) = h(dd(xX), dp(¥)) for each x € M with d¢(x) # 0 and for

all X,Y € HxM . Let C¢ ={xeM |d¢(x) = 0} denote the critical set of

6
A : M+ IR called the dilation of ¢ . 1In general A is not smooth,

¢ , and set A =0 on C Then we obtain a continuous function

although clearly Az : M > IR is a smooth function.

(1.1) Amap ¢ : M+ N <8 a harmonic morphism if and only if it is both

harmonic and horizontally comformal [81, [10].

It follows therefore that if ¢ is a harmonic morphism then
dim M 2 dim N . If dim M = dim N , then in the case when dim M = 2 , the

harmonic morphisms are precisely the weakly conformal mappings between
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surfaces. If dim M = dim N = 3 , then any harmonic morphism must be a
homothetic map. It is easy to check that the composition of two harmonic
morphisms is also a harmonic morphism.

If ¢ : M >N is a harmonic morphism, then the critical set C

¢

forms a polar set in M [8]. At points where C is a submanifold this

¢
means that codim C¢ 2 m-2 , where m = dim M . In certain circumstances,

when M is the Euclidean space Iﬁn, the critical set forms a minimal cone
in B£n [1]. Fuglede has shown that in the case when the vector field VAZ

is bounded away from the horizontal then C is empty [9].

¢
Independently, harmonic morphisms have been studied by Bernard,
Cambell and Davie [4]. They show that a mapping between open subsets of
BEuclidean spaces is Brownian path preserving (in the context of stochastic
processes) if and only if it is a harmonic morphism. That characterization
of Brownian path preserving functions is due to P. Levy. They study in
detail the case when M is an open subset of ]R3 and N a domain in the
complex plane @ . One of the problems they pose is to classify all such
harmonic morphisms. That classification is outlined below. One of the
properties they observe of such mappings is that the fibres are straight

lines. That ties in with results shown in [3], where the following is

established.

(1.2) If ¢ : M+~ N <Zs a harmonic morphism and n = dim N , then
(a) ©f n =2 the fibres over regular values of ¢ are minimal
submanifolds of M ,
() 2f n =z 3, the fibres are minimal submanifolds if and only if

sz ie vertical.

From the above we see that the case when N 1is a Riemann surface is
special. Indeed any conformal transformation of the range N will yield

another harmonic morphism. One of the aims in the classification outlined
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below is to factor out such conformal transformations, restricting our
attention to the structure of the fibres.

I would like to thank J. Eells, J. Jost and J.C. Wood for their
helpful comments and correspondence.

I am especially indebted to the Centre for Mathematical Analysis,

Canberra, for their support during the preparation of this work.

2. The classification of harmonic morphisms from an open subset of
S-dimensional Euclidean space onto a Riemann surface.
We obtain the classification in outline only, referring the reader to

[2] for a detailed proof. Our aim is to establish the following theorem.

(2.1) THEOREM: If ¢ : M + N <s a harmonic morphism from an open subset

M of ng

onto a Riemann surface W . Then ¢ <is the composition,
¢ =1rgey , where Yy : M > P 18 a harmonic morphism onto P c s? and
T : P >N is a weakly conformal map between Riemann surfaces. Fuvthermore

the fibres of vy have the form
s > sy + c(y)

for each v € P , where s ranges over suitable values, and ¢ 1is a
conformal vector field over P .
Conversely, any conformal vector field c on an open subset P of

g2 ytelds a harmonic morphism Y as above.

Qutline of proof

Step 1. Assume the critical set C¢ is empty. This is a convenient
assumption which we will be able to remove later (Step 6).
Step 2. The map ¢ factors. Thus ¢ = T o$ , where 5 : M+ 8,

¢ : ¥+ N and N is the space of connected components of the fibres of

¢ . Furthermore N can be given the structure of a Riemann surface with
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respect to which $ is a harmonic morphism with connected fibres and (
is a conformal map between Riemann surfaces.

This follows since for each x € M , d(x) HXM :HxM > T¢(x)N is an
isomorphism. Thus if W is a slice about x , that is a 2-dimensional
submanifold of M which is everywhere bounded away from the vertical, then
¢|W : W+ N is locally a diffeomorphism by the inverse function theorem.
Therefore W can be used to parametrize the points of N , and we can pull
back the differentiable and conformal structure of N to N , thereby
giving the above factorization.

Step 3. Suppose that ¢ : M+ N is a harmonic morphism from an open
subset M of nfn onto a connected Riemann surface N . From Step 2 we
can assume that the fibres are connected. From (1.2) the fibres are
minimal in M .

In addition we will assume they are totally geodesic, so that the
fibres are parts of (m=~2)-planes in n€“. We define the 'Gauss map'

Y : M-+ G(m-2, ngn)' where G(m-2, Bf“) denotes the Grassmannian of
oriented (m-2)-planes in Dfn, by v(x) = VxM for each x ¢ M . Then Y

is constant along the fibres of ¢ and we obtain the commutative diagram

for some map Y : N + G(m-2, ﬂfn). In fact, writing
Yly) = e, (y) A ... Ae (y) for each y e N, where e (¥)s -e0s e (y) is
an orthonormal basis for the (m-2)-plane Y(y) , the fibre of ¢ over

has an expression

m
(Sgr ey 8) z s.e (y) + cly)
r=3

for suitable s where c(y) satisfies {(c(y), er(y)) = Q

eees S
37 " "m
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(r = 3, ..., m) with respect to the Euclidean inner product { , ) on an.
Step 4. The map Y defined above is holomorphic with respect to the
natural complex structure on G(m-2, R .
The Grassmannian G(m-2, E§5 is equivalent to the Grassmannian
G(2, 355 of oriented 2-planes in nfn. This can be identified with the

m=-1

complex quadric hypersurface of CP from which it inherits a

Qm—2
natural complex structure [5]. The proof that U is holomorphic is given
in [2] and follows from the horizontal conformality of ¢ .

Step 5. The case when m = 3 .

The Grassmannian G(1, ]R3) is biholomorphic to the 2-sphere s2 .

Writing P = P(N) < 82 , we gave the commutative diagram

Now for each y € N , the vector c¢(y) is perpendicular to the line

P(y) . Thus c(y) can be regarded as a vector in T 82 . Otherwise

U(y)
said ¢ is a section of the bundle w_lT 82 . The two important results
are
(i) V¥ s injective.

(ii) ¢ can be regarded as a conformal vector field on P .

See [2] for a detailed proof of these two statements. In fact, since
P is holomorphic it is a branched covering map onto P. Removing branch
points, the fibres over different sheets of the covering locally £ill out
open subsets of M . As we extend globally it is impossible for these open
subsets to intersect in M . Thus M is the disjoint union, M = U Mi ’

i

of open sets corresponding to the number of sheets of the covering. Since

any harmonic morphism is an open map, the image ¢(Mi) is open.
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Furthermore ¢(Mi) n ¢(Mj) is empty since the fibres of ¢ are connected.
Thus N is the disjoint union of open sets. The statement (i) now follows
from the connectedness of N .

Statement (ii) is a result of the horizontal conformality of ¢ .

Step 6. Reintroduce the critical set C¢ .

The image of the critical set under ¢ consists of isolated points in
N [8]. From the injectivity of ¢ and the compactness of 52 , it
follows that P has finite energy on deleted discs. By a Theorem of Sacks
and Uhlenbeck [11], | extends over isolated points. Thus vy extenés over

C also.

¢

The above steps complete an outline of the proof of Theorem (2.1).

3. AN EXAMPLE
. 2 . . i6
Every point ¥ € S~ has an expression v = (cost, sint e ) , where

te [0, m/2] , © ¢ [0, 2m) . Let ¢ be the vector field given by

c(y) = sint(0, i eie)

. . . 3
at the point y (regarding 82 as the unit sphere in TR) . In fact ¢
. . 2 .
ig a Killing vector field corresponding to rotations of S about an axis.

The corresponding harmonic morphism Y : M - P has domain M given by

M = ]R3\K, where K = {(x,v,z) ¢ IR3l x = 0, vz + 22 > 1} , and range P

given by the upper hemisphere (or lower one). The fibres twist through the

hole x = 0O, y2 + 22 <1.
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Fibres over the equatorial circle C = {(0, e ) € 87; 8 ¢ [0, 2m }
intersect in K . The boundary of K 1is the envelope of these fibres. In

fact the point of tangency of the fibres to the boundary of K is given by

Each point of M lies on the fibre over a point of the upper
hemisphere, and on a fibre over a point of the lower hemisphere. In this
sense Yy can be regarded as a multiple valued map. We now proceed by
analogy to the construction of the Riemann surface of a multiple valued
énalytic function [12].

Take M and cut it along the set K . Points (x,V,2) € IR3, where
x = 0, y2 + z2 > 1 , can now be said to lie on one of two sheets. For a
point p of the fibre over a point of C , say that p lies on the lower

sheet if s < 0 and on the upper sheet if s > 0 . Thus fibres over C

pass from the lower sheet to the upper sheet.

Notice now that distinct fibres never intersect.

We now take two copies of the cut manifold and join along‘the edges
created by the cuts, in such a way that fibres over corresponding points of
C are identified. We thereby obtain a c®-manifold ¥ homeomorphic to

2 . . . .
S” XIR. The harmonic morphism <Y now extends to a continuous single
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valued mapping ¥ : M - §? . The map 7Y sends the interior of one of the
cut manifolds to the upper hemisphere and the interior of the other to the
lower hemisphere. The edges, which are identified, are mapped onto the
equatorial circle.
4. The classification of harmonic morphisms from an open subset of S3
onto a Riemann surface.

There is a one-to-one correspondence between harmonic morphisms.
V: Q-+ N where Q is an open subset of S3 , and harmonic morphisms
¢ : M+ N , where M is an open subset of IR4 and ¢ has totally
geodesic fibres which extend through the origin in BR4. This is given by
defining M to be the set n§+Q = {dx € BR4| %x €Q, A> 0}, and writing
¢ =vem , where T : M+ Q is given by m(x) = x/|x| . As before we have

the commutative diagram

where Y : N > G(2, IR4) is holomorphic. Since the associated vector field
¢ is identically zero, { must be injective and hence a biholomorphic map
onto its image. Otherwise said, ¥ is a holomorphic curve in the
Grassmannian G(2, ]R4). Conversely, given such a curve V| , we can
construct a corresponding harmonic morphism ¢ : M > N , with totally
geodesic fibres which extend through the origin in 2R4. We therefore

obtain the following classification.

(4.1) THEOREM: If .v : @ > N <s a harmonic morphism from an open subset
o of 53 onto a Riemann surface N , then Vv 1is the composition,

V==Cop, where p : Q + P ig a harmonic morphism onto P < G(2, IR4) and
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T : P >N <8 a weakly conformal map between Riemann surfaces. Furthermore

P 4is a holomorphic curve in the Grassmannian G(2, IR4) .

We consider the problem of which harmonic morphisms are defined
globally on S3 . A necessary condition is that the fibres of V must not
intersect in S3 . This condition can be rephrased as follows.

The Grassmannian G(2, IR4) is biholomorphically equivalent to

2,2 . ) _ 2.2
ST X8” . Write the corresponding holomorphic curve Y : N - S~ Xg as
Y = (wl, wz) . Then wl, wz are harmonic maps. A detailed calculation

verifies that the condition of non-intersecting fibres implies the strict

inequality

e(wl) > e(\bz) (oxr e(wl) < e(wz))
on the energy densities of wl and wz [21.

(4.2) THEOREM: If v : s® » s% is a harmonic morphism from the Euclidean
3-sphere onto 52 s then up to a conformal transformation of 82 sV 18

the Hopf fibration.

Proof: The Hopf fibration arises from the holomorphic curve

@ H S2 - 82 st given by @(x) = (x, (1,0,0)) for each x € 82 [27.

2
Now wi : Sz-+s is harmonic. But any harmonic map from

52 onto a Riemann surface is holomorphic [6].

Thus wi : 52 - 82 is a branched covering. Furthermore, since e(wi) > 0,
and e(wl) > e(wz) , we cannot have e(wz) = 0 anywhere. Thus wl has no
branch points and is a conformal diffeomorphism having degree 1 .

Any holomorphic map is an absolute minimum for the energy functional
in its homotopy class. Since e(wz) < e(wl) , the energy of wz is
strictly less than the energy of wl . But wz is holomorphic, from which
we conclude that wz has degree 0 and hence is constant. Thus, up to an

. 2 2
isometry of S XS , Y is the holomorphic curve $ .
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