MINIMUM PROBLEMS FOR NONCONVEX INTEGRALS

Nicola Fusco

1. INTRODUCTION

Let us consider an integral of the Calculus of Variations of the following type :

(1.1)
$$F(u;\Omega) = \int_{\Omega} f(x,u(x),Du(x)) dx,$$

where Ω is a bounded open set in \mathbb{R}^n , $u : \Omega \rightarrow \mathbb{R}^m$ is a function belonging to $W^{1,p}(\Omega;\mathbb{R}^m)$, p > 1 and $f(x,u,\xi)$ is a Carathéodory function, i.e. measurable with respect to x, continuous in (u,ξ) . The direct method to get the existence of minima for the Dirichlet problem

(P) Inf {F(u;
$$\Omega$$
) : u-u₀ $\in W_0^{1,p}(\Omega; \mathbb{R}^m)$ },

where u_0 is a fixed function in $W^{1,p}$, is based on the sequential lower semicontinuity of F(s.l.s.c.) in the weak topology of $W^{1,p}$.

If m=1, it is well known (see [7],[8],[10]) that the l.s.c. of F is equivalent, under very general growth assumptions on f, to the condition that the integrand is a convex function of the variable ξ . But if m > 1, convexity is no longer a necessary condition. To see this, let us consider a continuous function f: $\mathbb{R}^{mn} \to \mathbb{R}$ such that the functional $\int_{\Omega} f(Du(x)) dx$ is weakly* s.l.s.c. on $W^{1,\infty}(\Omega; \mathbb{R}^m)$. Let Q be a fixed cube containing Ω . If we fix $\xi \in \mathbb{R}^{mn}$, $z(x) \in C_0^1(\Omega; \mathbb{R}^m)$, then, thinking of z as a C_0^1 function defined on Q, we may extend it by periodicity to all \mathbb{R}^n . Let us still denote this extension by z. Then, if $u_h(x) = \xi \cdot x + 2^{-h} z(2^h x)$, $u_h(x) \rightarrow \xi \cdot x$ weakly* and, by the l.s.c. of the integral of f, we get :

$$f(\xi) (\text{meas } \Omega) \leq \lim_{h} \inf_{\Omega} f(\xi+(Dz)(2^{h}x))dx).$$

Since $f(\xi+(Dz)(2^hx))$ converges to $(meas Q)^{-1} \int_Q f(\xi+Dz(x)dx) dx$ in $\sigma(L^{\infty},L^1)$, from the above inequality we deduce that

(1.2)
$$f(\xi) \text{ (meas } \Omega) \leq \int_{\Omega} f(\xi+Dz(x) dx)$$

for any $\xi \in \mathbb{R}^{mn}$ and any $z \in C_0^1(\Omega; \mathbb{R}^m)$. We shall call *quasi-convex* a function verifying the condition (1.2). If m = 1, (1.2) is equivalent to Jensen's inequality, and so quasi-convexity reduces to the usual convexity. But if m > 1, (1,2) is a more general condition as one can see, for instance, in the simple case m = n and $f(\xi) = |det\xi|$. A study of the properties of quasi-convex functions is contained in [12], [13], and [3]. Here we just recall the following result ([2]) :

<u>THEOREM 1.1</u> – Let us suppose $f(x,u,\xi) : \Omega \times \mathbb{R}^m \times \mathbb{R}^m$ is a Carathéodory function verifying

$$0 \leq f(x,u,\xi) \leq a(x) + C(|u|^{p} + |\xi|^{p}) \qquad p \geq 1,$$

where $a(x) \in L^{1}_{loc}(\Omega)$, $a(x) \ge 0$, C > 0. Then $F(u;\Omega)$ is weakly s.l.s.c. in $W^{1,p}$ if and only if for a.e. $x \in \Omega$ and any $u \in \mathbb{R}^{m}$ the function $\xi \rightarrow f(x,u,\xi)$ is quasi-convex. In this talk we shall be concerned with problems of the type (P) in which the integrand f is not quasi-convex. So, by the above theorem, the integral is not l.s.c. and the problem in general will lack a solution. However we shall see that the relaxation methods introduced by Ekeland and Temam ([8]) in the case m=1 can be extended also to integrals depending on vector-valued functions. What they prove in the scalar case (see also [10]) is that if one considers the so called 'relaxed problem'

(PR) Inf {
$$\int_{\Omega} f^{**}(x,u(x),Du(x)) dx : u-u_0 \in W_0^{1,p}(\Omega)$$
}

where for any fixed x and $u, f^{**}(x, u, \cdot)$ is the convex envelope of the function $f(x, u, \cdot)$, then Inf(P) = Inf(PR) and, if f verifies the usual growth assumptions, (PR) has a solution. Moreover its solutions are limit points in the weak topology of $W^{1,p}(\Omega)$ of the minimizing sequences of the problem (P).

In the case m > 1, one can still define a relaxed problem by replacing $F(u;\Omega)$ with the integral of $\overline{f}(x,u,\xi)$, where now for any x and u fixed $\xi \rightarrow \overline{f}(x,u,\xi)$ is the greatest quasi-convex function less than or equal to $\xi \rightarrow f(x,u,\xi)$. We shall see that with such a definition one can prove essentially the same results which hold in the scalar case.

Because of the fact that quasi-convexity is defined by an integral condition, one cannot expect that the formula which represents \bar{f} should have the same simple geometrical character as the formula representing the convex envelope f^{**} of the function f with respect to ξ . But it is interesting to note that in some special cases one can explicitly say how \bar{f} is obtained from f.

The proofs given in this talk are essentially, with some minor changes and simplifications, the ones given in [2] and [1]. However, similar results of relaxation have been also given by Dacorogna in [4], [5] and [6], but his proofs are based on completely different techniques.

2. MAIN RESULTS

Although most of the results given here can be extended to the case in which f is a function depending on (x,u,ξ) , verifying some kind of uniform continuity in u with respect to ξ , for simplicity we shall restrict to the case in which f does not depend on u. So we shall assume $f(x,\xi) : \mathbb{R}^n \times \mathbb{R}^{m,n} \to \mathbb{R}$ to be a Carathéodory function, Ω a bounded open set. We shall say that Ω is *regular* if $C_0^{\infty}(\mathbb{R}^n)$ is dense in $\mathbb{W}^{1,p}(\Omega)$ (for instance if Ω has the segment property) and we shall put

$$F(u;\Omega) = \int_{\Omega} f(x, Du(x)) dx$$

where $u: \Omega \to \mathbb{R}^m$ is any function for which the integral on the right (possibly = + ∞) has sense. Let us denote by $\overline{F}_p(u;\Omega)$ the greatest functional less than or equal to $F(u;\Omega)$ and which is weakly s.l.s.c. in $w^{1,p}(\Omega;\mathbb{R}^m)$. The following result gives a representation of \overline{F}_p . <u>THEOREM 2.1</u> - If $f(x,\xi)$ is a Carathéodory function verifying

$$(2.1) \qquad 0 \leq f(x,\xi) \leq a(x) + C|\xi|^{p}$$

where $a(x) \in L^{1}_{loc}(\mathbb{R}^{n})$, $a(x) \ge 0$, C > 0, $p \ge 1$, then there exists a Caratheodory function $\overline{f}(x,\xi)$ such that for any Ω regular and any $u \in W^{1,p}(\Omega;\mathbb{R}^{m})$

$$\overline{F}_{p}(u;\Omega) = \int_{\Omega} \overline{f}(x,Du(x)) dx .$$

Moreover for a.e. $x \in \mathbb{R}^n$ the function $\xi \to \overline{f}(x,\xi)$ is the greatest quasi-convex function less than or equal to $\xi \to f(x,\xi)$.

In the scalar case this characterization becomes (see [8],[10]) $\overline{f}(x,\xi) = f^{**}(x,\xi)$, since if m=1 quasi-convexity is equivalent to convexity. The above result shows also that in order to represent \overline{f} it is sufficient to consider the case in which f is just a function of ξ . In this case, denoting by Y the unit cube $(0,1)^n$ we can prove the following.

<u>THEOREM 2.2</u> - If $f : \mathbb{R}^{mn} \to \mathbb{R}$ is a continuous function, then the quasi-convex envelope of f is given by

$$\overline{f}(\xi) = \inf \{ \liminf_{h} \int_{Y} f(Du_{h}(x)) dx : u_{h} \in C^{1}(\overline{Y}; \mathbb{R}^{m}), u_{h} = \xi \cdot x \text{ on } \partial Y \\ Du_{h}(x) \rightarrow \xi \text{ in } \sigma(L^{\infty}, L^{1}) \}$$

Although in general this formula is not very easy to handle, it may be used to obtain a sharper characterization of \overline{f} in particular cases. Let us regard now the vector $\xi \in \mathbb{R}^{mn}$ as an $m \times n$ matrix and denote by $X(\xi)$, the vector whose components are the subdeterminants of ξ of highest order. Let N(n,m) denote the dimension of $X(\xi)$. For instance, if $n = m X(\xi) = \det \xi$ and N(n,m) = 1, and if m = n+1N(n,n+1) = n+1 and so on. Then the following result holds (see [1]) : <u>THEOREM 2.3</u> - Let us suppose $m \ge n$ and $f(x,\xi) = \phi(x,X(\xi))$, where $\phi(x,X) : \mathbb{R}^n \times \mathbb{R}^{N(n,m)} \to \mathbb{R}$ is a Carathéodory function such that

 $(2.2) 0 \leq \phi(\mathbf{x}, \mathbf{X}) \leq g(\mathbf{x}, |\mathbf{X}|)$

and $g : \mathbb{R}^{n} \times [0, +\infty) \to \mathbb{R}$ is a Carathéodory function such that for any $t \ge 0, g(\cdot, t) \in L^{1}_{loc}(\mathbb{R}^{n})$ and for any $x \in \mathbb{R}^{n}$ a.e. $g(x, \cdot)$ is a nondecreasing function, then there exists another Carethéodory function $\psi : \mathbb{R}^{n} \times \mathbb{R}^{N(n,m)} \to \mathbb{R}$, still verifying (2.2) such that for any regular Ω and any $u \in W^{1,n}(\Omega; \mathbb{R}^{m})$

$$\overline{F}_{n}(u;\Omega) = \int_{\Omega} \psi(x, X(Du(x))) dx^{*}.$$

Moreover, if m = n or m = n + 1 $\psi(x, X) = \phi^{**}(x, X)$.

From Theorem 2.1 one can prove the following relaxation result : THEOREM 2.4 - Let us suppose f is a Carathéodory function such that

(2.3)
$$-a(x)+|\xi|^{p} \leq f(x,\xi) \leq a(x)+C|\xi|^{p}$$

where $a(x) \in L^{1}_{loc}(\mathbb{R}^{n})$, $a(x) \ge 0$, $C \ge 1$ and p > 1. Let us fix an open regular set Ω and $u_{0} \in W^{1,p}(\Omega; \mathbb{R}^{m})$ and consider the following problems :

(P) Inf {
$$\int_{\Omega} f(x, Du(x)) dx : u - u_0 \in W_0^{1, p}(\Omega; \mathbb{R}^m)$$
 }

$$(PR) \qquad \text{Inf} \left\{ \int_{\Omega} \overline{f}(x, Du(x)) dx : u - u_0 \in W_0^{1, p}(\Omega; \mathbb{R}^m) \right\}$$

Then Inf(P) = Inf(PR). Moreoever, if \overline{u} is a solution of (PR), there exists a sequence (u_h) minimizing (P) which converges weakly to \overline{u} in $w^{1,p}$. Conversely, if (u_h) is a minimizing sequence of (P), there exists a subsequence which converges to a solution of (PR). Using the regularity arguments of [11] and [9], from the above theorem one can easily deduce the following.

<u>COROLLARY 2.5</u> - Under the hypothesis of Theorem 2.4, if $a(x) \in L^{\sigma}$ for some $\sigma > 1$, therefore for any solution \bar{u} of the problem (PR) there exists a minimizing (u_h) of (P) such that $u_h \div \bar{u}$ weakly in $w_{loc}^{1,q}(\Omega; \mathbb{R}^m)$, with $q \in [p,p+\epsilon)$ and $\epsilon \equiv \epsilon(a(x), \sigma, p, c)$.

3.PROOFS

In order to prove the results stated in the previous section, following an idea introduced in [10], we shall look first at the case $p = +\infty$. Let us suppose then that f verifies

(3.1)
$$0 \le f(x,\xi) \le g(x,|\xi|)$$
,

where g is a Carathéodory function, non decreasing in $|\xi|$ and $g(\cdot, |\xi|) \in L^{1}_{loc}(\mathbb{R}^{n})$ for any ξ . If $u \in W^{1,\infty}(\Omega; \mathbb{R}^{n})$ we shall write: $\overline{F}(u;\Omega) = \inf \{ \liminf f (u_{h};\Omega) : u_{h} \to u \text{ weakly}^{*} \text{ in } W^{1,\infty}(\Omega; \mathbb{R}^{m}) \}$. Our main goal is to prove the following

<u>THEOREM 3.1</u> - If f verifies (3.1), then there exists a Carathéodory function $\overline{f}(\mathbf{x},\xi) : \mathbb{R}^n \times \mathbb{R}^{mn} \to \mathbb{R}$ quasi-convex in ξ , such that for any Ω and any $u \in C_0^1(\mathbb{R}^n;\mathbb{R}^m)$

(3.2)
$$\overline{F}(u;\Omega) = \int_{\Omega} \overline{f}(x,Du(x)) dx$$
.

In order to prove this result we shall prove some preliminary lemmas. First, if $u \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ with $\|Du\|_{L^{\infty}(\Omega; \mathbb{R}^m)} \leq r$ let us put $F(r,u;\Omega) = \inf \{\lim_{h} \inf F(u_h;\Omega) : u_h^{\rightarrow} u \text{ weakly}^* \text{ in } W^{1,\infty}(\Omega; \mathbb{R}^m) \text{ and} \|Du_h\|_{\tau^{\infty}} \leq r\}$ <u>REMARK 3.2</u> - By a standard diagonalization argument it is easy to check that the above infimum is actually a minimum and that the functional $F(r,u;\Omega)$ is weakly* s.l.s.c. on the set $\{u \in W^{1,\infty}(\Omega; \mathbb{R}^{m}) : \|Du\|_{L^{\infty}} \leq r\}$. If now $u \in W^{1,\infty}_{loc}(\mathbb{R}^{n}; \mathbb{R}^{m})$, and $\|Du\|_{L^{\infty}(\mathbb{R}^{n}; \mathbb{R}^{mn})} \leq r$, for any Ω we shall denote

$$\Phi(\mathbf{r},\mathbf{u};\Omega) = \lim_{\mathbf{r}' \neq \mathbf{r}} F(\mathbf{r}',\mathbf{u};\Omega) = \sup_{\mathbf{r}' \neq \mathbf{r}} F(\mathbf{r}',\mathbf{u};\Omega) .$$

Then we may prove

<u>LEMMA 3.3</u> - If $u \in W_{loc}^{1,\infty}(\mathbb{R}^n;\mathbb{R}^m)$ and $\|Du\|_{L^{\infty}(\mathbb{R}^n;\mathbb{R}^m)} \leq r$, there exists a function $h_u \in L_{loc}^1(\mathbb{R}^n)$ such that for any Ω

$$\Phi(\mathbf{r},\mathbf{u};\Omega) = \int_{\Omega} \mathbf{h}_{\mathbf{u}}(\mathbf{x}) d\mathbf{x}$$

PROOF: Let us fix u and prove that

(3.3)
$$\Phi(\mathbf{r},\mathbf{u};\Omega) = \lim_{\mathbf{r}' \neq \mathbf{r}} F_0(\mathbf{r}',\mathbf{u};\Omega)$$

where F_{0} is defined by

 $\mathbb{F}_{0}(r^{*},u;\Omega) = \inf \{ \liminf_{h} \mathbb{F}(u_{h}^{*};\Omega) : u_{h}^{\rightarrow} u \text{ weakly}^{*} \text{ in } W^{1,\infty}(\Omega; \mathbb{R}^{m}), h^{n} \}$

 $u_{h} = u \text{ on } \partial \Omega \text{ and } \| Du_{h} \|_{L}^{\infty} \leq r' \}.$

If we fix $\varepsilon > 0$ there exists $\delta > 0$ such that for any $r' \in (r, r+\delta]$

If we fix now $\mathbf{r}' \in (\mathbf{r}, \mathbf{r}+\delta)$, let (\mathbf{u}_h) be a sequence such that $\mathbf{u}_h \rightarrow \mathbf{u}$ weakly*, $\|\mathrm{D}\mathbf{u}_h\|_{\mathrm{L}}^{\infty} \leq \mathbf{r}'$ and $F(\mathbf{r}', \mathbf{u}; \Omega) = \lim_{h} F(\mathbf{u}_h; \Omega)$. Let us take a h compact set $K \subseteq \Omega$ such that

$$\int_{\Omega} g(x, r+\delta) dx < \varepsilon$$

and let ϕ be a $C_0^1(\Omega)$ function such that $\phi(x) \equiv 1$ on K, $0 \leq \phi(x) \leq 1$; if we denote $v_h = u + \phi(u_h - u)$, then $v_h \neq u$ weakly*, $v_h \equiv u$ on $\partial\Omega$ and there exists h_0 such that for any $h \geq h_0 \|Dv_h\|_L^{\infty} \leq r + \delta$. So we have :

$$\begin{split} &\lim_{h \to 0} (\mathbf{r}'\mathbf{u};\Omega) \leq \mathbf{F}_{0}(\mathbf{r}+\delta,\mathbf{u};\Omega) + \varepsilon \leq \liminf_{h \geq h_{0}} \mathbf{F}(\mathbf{v}_{h};\Omega) + \varepsilon \\ & \mathbf{r}' + \mathbf{r} & h \geq h_{0} \\ \\ & \leq \liminf_{h} \left[\mathbf{F}(\mathbf{v}_{h};\Omega) - \mathbf{F}(\mathbf{u}_{h};\Omega) \right] + \mathbf{F}(\mathbf{r}'\mathbf{u};\Omega) + \varepsilon \\ & h \\ & \leq \Phi(\mathbf{r},\mathbf{u};\Omega) + \int_{\Omega-K} \mathbf{g}(\mathbf{x},\mathbf{r}+\delta) \, d\mathbf{x} + 2\varepsilon \quad . \end{split}$$

Then letting $\varepsilon \to 0^+$, we get $\lim_{r \to r} F_0(r^*u;\Omega) \le \phi(r,u;\Omega)$. Since the reverse $r^* + r$ inequality is obviously verified by definition, we have proved (3.3). Now, let us denote by F the class of all the finite unions of cubes of the type $\{a_i \le x_i \le a_i + \ell : i = 1, \ldots, n\}$ and define $\mu(P) = \Phi(r,u;P-\partial P)$ for any $P \in F$. From (3.3) it follows that $\mu(P)$ is finitely additive, since it is easy to verify that $F(r,u;\Omega)$ is sub-additive with respect to Ω , while F_0 is super additive. Let us now extend μ to the class of all Lebesque measurable sets in \mathbb{R}^n . If we denote still by μ the resulting extension, then using again (3.3) it is easy to check that $\mu(\Omega) = \Phi(r,u;\Omega)$ for any open set Ω . Finally, the existence of h_u comes easily from the fact that for any Ω

$$0 \leq \mu(\Omega) \leq \int_{\Omega} g(\mathbf{x}, \mathbf{r}) d\mathbf{x}$$
.

LEMMA 3.4 - If
$$u_1, u_2 \in W_{loc}^{1,\infty}(\mathbb{R}^n, \mathbb{R}^m), \|Du_i\|_{L^{\infty}(\mathbb{R}^n; \mathbb{R}^m)} \leq r, i=1,2,$$

Then for any Ω :

$$\left| \Phi(\mathbf{r}, \mathbf{u}_{1}; \Omega) - \Phi(\mathbf{r}, \mathbf{u}_{2}; \Omega) \right| \leq \int_{\Omega} \omega(\mathbf{x}, 2\mathbf{r}, \| \mathbf{D}\mathbf{u}_{1} - \mathbf{D}\mathbf{u}_{2} \|_{\mathbf{L}^{\infty}(\Omega; \mathbb{R}^{mn})}^{\infty}) d\mathbf{x},$$

where

$$\omega(\mathbf{x}, 2\mathbf{r}, \delta) = \sup \left\{ \left| \mathbf{f}(\mathbf{x}, \xi_1) - \mathbf{f}(\mathbf{x}, \xi_2) \right| : \left| \xi_1 \right| \le 2\mathbf{r} \text{ and } \left| \xi_1 - \xi_2 \right| \le \delta \right\}^{-1}.$$

 $\begin{array}{l} \underline{\mathsf{PROOF}}\colon \text{ Let us take } \mathbf{r'} \in (\mathbf{r}, 2\mathbf{r}) \quad \text{and} \quad (\mathbf{u}_h) \quad \text{such that } \mathbf{u}_h \xrightarrow{\rightarrow} \mathbf{u} \text{ weakly*,} \\ \| \mathrm{Du}_h \|_{\mathbf{L}}^{\infty} \leq \mathbf{r'} \quad \text{and} \quad \mathbb{F}(\mathbf{r'u}_1; \Omega) = \lim_{h} \mathbb{F}(\mathbf{u}_h; \Omega) \,. \quad \text{If we take } \mathbf{v}_h = \mathbf{u}_h + (\mathbf{u}_2 - \mathbf{u}_1) \\ \text{we obtain} \end{array}$

$$F(\mathbf{r}', \mathbf{u}_{2}; \Omega) - F(\mathbf{r}', \mathbf{u}_{1}; \Omega) \leq \liminf_{h} [F(\mathbf{v}_{h}; \Omega) F(\mathbf{u}_{h}; \Omega)]$$

$$\leq \int_{\Omega} \omega(\mathbf{x}, 2\mathbf{r}, \| \mathrm{D}\mathbf{u}_{1} - \mathrm{D}\mathbf{u}_{2} \|_{L}^{\infty}) \, \mathrm{d}\mathbf{x}$$

Then the result follows by changing \mathbf{u}_1 with \mathbf{u}_2 and taking the limit as $\mathbf{r}^* \rightarrow \mathbf{r}^+$

<u>PROOF OF THEOREM 3.1</u> - Let us fix r and consider the class A_r of all linear functions $u(x) = \xi \cdot x$, with $|\xi| \leq r$, $\xi \in \mathbb{Q}^{mn}$. Let us say L the set of all the Lebesgue points for the functions $h_u(x)$ with $u \in A_r$. then for any $x \in L$, $\xi \in \mathbb{Q}^{mn}$ with $|\xi| \leq r$ we may put :

$$\phi_r(\mathbf{x},\xi) = \mathbf{h}_n(\mathbf{x})$$

where u(x) = $\xi \cdot x$. From Lemma 3.4 we can deduce that for a.e. x \in L, $\xi_1, \xi_2 \in \underline{0}^{mn} \quad \text{with} \quad |\xi_1| \leq r$

$$\left|\phi_{\mathbf{r}}(\mathbf{x},\xi_{1}) - \phi_{\mathbf{r}}(\mathbf{x},\xi_{2})\right| \leq \omega(\mathbf{x},2\mathbf{r},|\xi_{1}-\xi_{2}|) .$$

This means that for a.e. $x \in L, \phi_r(x, \cdot)$ can be extended by continuity to the set $\{\xi \in \mathbb{R}^{mn} : |\xi| \leq r\}$. Moreover, using again Lemma 3.4, it is clear that for such an extension of ϕ_r we still have $\phi_r(x,\xi) = h_u(x)$, for any $u(x) = \xi \cdot x$ with $|\xi| \leq r$. If $u(x) \in C_0^1(\mathbb{R}^n; \mathbb{R}^m)$, with $|Du(x)| \leq r$, there exists a sequence (u_h) of piecewise affine functions, such that $u_h \neq u$ and $Du_h \neq D_u$ uniformly in \mathbb{R}^n , and $|Du_h(x)| \leq r$ (see [8], Ch.X, prop.2.1). Then by Lemmas 3.3 and 3.4 and by the definition of ϕ_r we get :

(3.4)
$$\Phi(\mathbf{r},\mathbf{u};\Omega) = \int_{\Omega} \phi_{\mathbf{r}}(\mathbf{x},\mathrm{D}\mathbf{u}(\mathbf{x})\,\mathrm{d}\mathbf{x})$$

for any $u \in C_0^1(\mathbb{R}^n; \mathbb{R}^m)$ with $|Du(x)| \leq r$. So by the weakly* s.l.s.c. of the functional $\Phi(r, u; \Omega)$ on the set $\{u \in W^{1, \infty}(\Omega_{\ell}; \mathbb{R}^m): ||Du||_{L^{\infty}} \leq r\}$, and by the representation formula (3.4), using the same argument as Theorem II.2 in [2], we have that ϕ_r is quasi-convex in ξ , where $|\xi| \leq r$, i.e. for any x_0 a.e., any $\xi \in \mathbb{R}^m$ and any $z(y) \in C_0^1(\Omega; \mathbb{R}^m)$ such that $|\xi| + |Dz(y)| \leq r$

(3.5)
$$\phi_{\mathbf{r}}(\mathbf{x}_{0},\xi) \text{ (meas } \Omega) \leq \int_{\Omega} \phi_{\mathbf{r}}(\mathbf{x}_{0},\xi + \mathrm{Dz}(\mathbf{y})) d\mathbf{y}$$

Finally, if we define for any x a.e. and any $\xi \in \mathbb{R}^{mn} \overline{f}(x,\xi) = \lim_{\substack{r \ge |\xi|}} \phi_r(x,\xi)$, Then by (3.5), \overline{f} is clearly a Carathéodory function quasi-convex in ξ . Moreover (3.4) implies that \overline{f} verifies (3.2).

<u>REMARK 3.5</u> - Since \overline{f} is quasi-convex in ξ , then (see [2]) the functional $\int_{\Omega} \overline{f}(x, Du) dx$ is weakly* s.l.s.c.. So from Theorem 3.1 it is clear that it is the greatest functional defined on $C_0^1(\mathbb{R}^n; \mathbb{R}^m)$ which is weakly* s.l.s.c. and less than or equal to $\int_{\Omega} f(x, Du) dx$. <u>LEMMA 3.6</u> - For a.e. $x \in \mathbb{R}^n \xi \neq \overline{f}(x,\xi)$ is the greatest quasi-convex function less than or equal to $\xi \neq f(x,\xi)$

<u>PROOF</u>: Let us fix Ω . Using the same argument as in the proof of Theorem 3.1, we deduce that for a.e. $x_0 \in \Omega$ there exists a continuous function $g_r^{(x_0)}(\xi)$ such that for any $u \in C_0^1(\mathbb{R}^n; \mathbb{R}^m)$ with $|Du(x)| \leq r$ $\int_{\Omega} g_r^{(x_0)}(Du(x)dx = \sup_{r'>r} \inf \{\liminf_h \int_{\Omega} f(x_0, Du(y))dy : u_h \neq u \text{ weakly}^*$ and $\|Du_h\|_{L^{\infty}(\Omega; \mathbb{R}^mn)} \leq r'\}.$

Since f is a Carathéodory function, for any $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \in \Omega$ such that f is continuous on $K_{\varepsilon} \times \mathbb{R}^{mn}$ and meas $(\Omega - K_{\varepsilon}) < \varepsilon$. Let us put $g_r(x,\xi) = g_r^{(x)}(\xi)$ for any $x \in K_{\varepsilon}$ and any ξ . By the uniform continuity of f on the bounded subsets of $K_{\varepsilon} \times \mathbb{R}^{mn}$ it follows that $g_r(x,\xi)$ is continuous on $K_{\varepsilon} \times \{\xi: |\xi| \le r\}$. So, because of the arbitrariness of ε , we may define $g_r(x,\xi)$ for a.e. $x \in \Omega$. Moreoever g_r will be a Carathéodory function. Then if we define for a.e. $x \in \Omega$ and any $\xi \in \mathbb{R}^{mn}$

 $g(x,\xi) = \lim_{r \ge |\xi|} g_r(x,\xi) ,$

from the Remark 3.5 it follows that for a.e. $x_0 \in \Omega$ the functional $u \neq \int_{\Omega} g(x_0, Du(x) dx$ is the greatest functional on $C_0^1(\mathbb{R}^n; \mathbb{R}^m)$ which is weakly* s.l.s.c. and less than or equal to $u \neq \int_{\Omega} f(x_0, Du(x)) dx$. This implies that $\xi \neq g(x_0, \xi)$ is the greatest quasi-convex function less than or equal to $\xi \neq f(x_0, \xi)$. So $g(x_0, \xi) \geq \overline{f}(x_0, \xi)$. But also $\int_{\Omega} g(x, Du(x)) dx$ is weakly* s.l.s.c., since g is quasi-convex in ξ . So by the Remark 3.5 it follows that for any $u \in C_0^1(\mathbb{R}^n; \mathbb{R}^m)$ $\int_{\Omega} g(x, Du) \leq \int_{\Omega} \overline{f}(x, Du) dx$, which implies $\overline{f}(x, \xi) \geq g(x, \xi)$ for a.e. x and ξ . This inequality, combined with the previous one shows then that $\overline{f} = g$, thus proving the Lemma.

<u>PROOF OF THEOREM 2.1</u> - From the Theorem 1.1 we have that the functional $\int_{\Omega} \overline{f}(x, Du) dx$ is weakly s.l.s.c. on $W^{1,p}(\Omega; \mathbb{R}^n)$. So

(3.6)
$$\int_{\Omega} \overline{f}(x, Du) dx \leq \overline{F}_{p}(u; \Omega) \quad \text{for any } u \in W^{1, p}(\Omega; \mathbb{R}^{m}) .$$

But if $u \in C_0^1(\mathbb{R}^n; \mathbb{R}^m)$, from Theorem 3.1 it follows that for any $\varepsilon > 0$ there exists a sequence (u_b) such that $u_b \rightarrow u$ weakly* and

 $\int_{\Omega} \overline{f}(x, Du) \, dx \ge \lim_{h} \inf_{\Omega} \int_{\Omega} f(x, Du_{h}) - \epsilon \quad . \text{ From this we get } :$

$$\int_{\Omega} \overline{f}(x, Du) dx \ge \liminf_{h} \overline{F}_{p}(u_{h}; \Omega) - \varepsilon \ge \overline{F}_{p}(u; \Omega) - \varepsilon .$$

This inequality, together with (3.6), proves the theorem when u is a C_0^1 function on \mathbb{R}^n . The general case, when Ω is a regular open set, follows easily by approximation.

<u>PROOF OF THEOREM 2.2</u> - Follows at once from Theorem 3.1 and the proof of Lemma 3.6

<u>PROOF OF THEOREM 2.4</u> - If \overline{u} is a solution of (PR), then for any h there exists a $C_0^1(\Omega; \mathbb{R}^m)$ function v_h such that $\|Dv_h\|_W^1, p \leq \frac{1}{h}$ and $\left|\int_{\Omega} \overline{f}(x, D\overline{u}(x)Dx - \int_{\Omega} \overline{f}(x, D\overline{u}(x) + Dv_h(x))dx\right| \leq \frac{1}{h}$. If we apply Theorem 3.1 and the formula (3.3) to the function $K(x, \xi) = f(x, D\overline{u}(x) + \xi)$, we may say that for any h there exists $w_h \in W^{1,\infty}(\Omega; \mathbb{R}^m)$, $w_h \equiv 0$ on $\partial\Omega$ such that

$$\left|\int_{\Omega} \overline{f}(x, D\overline{u}(x) + Dv_{h}(x)) dx - \int_{\Omega} f(x, D\overline{u}(x) + Dw_{h}(x)) dx\right| \leq \frac{1}{h}$$

and $\|v_h - w_h\|_L^{\infty} \leq \frac{1}{h}$. So if we put $u_h = \bar{u} + w_h$, then obviously $u_h \neq \bar{u}$ in $L^p(\Omega; \mathbb{R}^m)$. Moreover from (2.3) we have also that $\|Du_h\|_L^p \leq \text{constant}$, so we may suppose that (u_h) converges weakly in $W^{1,p}$ to \bar{u} . And by construction we have also

$$\int_{\Omega} \overline{f}(x, D\overline{u}) dx = \lim_{h} \int_{\Omega} f(x, Du_{h}) dx .$$

This proves that Inf(P) = Inf(PR) and also that for any solution \overline{u} of (PR) there exists a minimizing sequence of (P) which converges to the solution \overline{u} weakly in $W^{1,P}$. The converse is then obvious

REFERENCES

- Acerbi, E., Buttazzo, G., Fusco, N., Semicontinuity and relaxation for integrals depending on vector-valued functions, J. Math. Pures et Appl. 62 (1983), 371-387.
- [2] Acerbi, E., Fusco, N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Vol. 86, 125-145, 1984.
- [3] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337-403.
- [4] Dacorogna, B., A relaxation theorem and its application to the equilibrium of gases, Arch. Rational Mech. Anal., 77 (1981), 359-386.
- [5] Dacorogna, B., Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. of Funct. Anal., 46 (1982), 102-118.
- [6] Dacorogna, B., Minimal hypersurfaces problems in parametric form with nonconvex integrands, Indiana Math. J., (1982)

- [7] De Giorgi, E., Teoremi di semicontinuită nelcalcolo dell variazioni, Inst. Naz. Alta Mat., Roma (1968-1969).
- [8] Ekeland, I., Temam, R., Convex analysis and variational problems, North Holland, Amsterdam, (1976).
- [9] Giaquinta, M., Giusti, E., Quasi-minima, Ann. Inst.H.Poincaré, Anal. Non. Lin., 1(1984), 79-107.
- [10] Marcellini, P., Sbordone, C., Semicontinuity problems in the calculus of variations, Nonlinear Anal., 4(1980), 241-257.
- [11] Marcellini, P., Sbordone, C., On the existence of minima of multiple integrals of the calculus of variations, J. Math. Pures et Appl., 62 (1983), 1-9.
- [12] Morrey, C.B., Quasi-convexity and the semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53.
- [13] Morrey, C.B., Multiple integrals in the calculus of variations, Springer, Berlin, (1966).