
UNCERTAINTY PRINCIPLES AND INTERFERENCE PATTERNS 

John F. Pr-ice 

The classical Heisenberg uncertainty principle 

(l) Lq/J.p ?: n/2 

has been one of the key rela·tionships in quantum mechanics for over 

fifty years. It does have a number of v1eaknesses, however, 

particularly related to the fac·t that the standard deviations Lq and 

lip only give very general information about the spreads of the 

probability density func'cions of position and momentum respectively. 

This paper surveys a number of recent inequali·ties which describe more 

subtle relationships between posi·t.ion and momentum or, in mathematical 

terms, between a func·tion and its Fourier transforrn. For example, 

local uncertainty principle inequalities assert 'chat if the uncertainty 

of momentum Lp is small, then not only is the uncertainty of 

posit.ion Lq large, but the p:wbabili'cy of the system being localized 

at any point is also small. 

So as ·to add a li·t·tle more interest, I have applied in turn each 

of the inequalities, starting with (l), 'co the proposition by Niels 

Bohr ·that in the double-sli·t experiment you can have an interference 

pattern or know the paths of the particles, but not both. In some 

ways I could no·t have chosen a worse test-case since it turns out that 

for this example they are all out-performed by Poisson summation. 

Never'cheless it does provide an opportunity to display and contrast 

some of their features. Also in the end we arrive at a rigorous 

justification of Bohr's original argument which a_pparently is new. 
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I am grateful to J.B.M. Uffink and J. Hilgevoord of the 

University of Amsterdam for sending me a copy of their preprint [3]. 

It aroused my interest in the Einstein-Bohr debate, particularly in 

the area of the two-slit experiment. Also they first pointed out the 

significance of the notions of w- and w-widths discussed later. 

QUANTUM MECHANICAL BACKGROUND 

In the Schrodinger interpretation the states of a one-dimensional 

quantum mechanical system are given by complex-valued functions 

The position and momentum operators are 

q f H- xf and p : f I-+ -ihf' 

respectively, where h denotes Planck's constant and ~ = h/2TI • The 

probability density functions (pdf's) of position and momentum are 

and 

respectively, where 

F(y) = J f(x) exp(-2Tiixy) dx 

is the Fourier transform of f (The Fourier transform is extended 

from L1 (lR) to L2 (lR) in the usual manner. Also, unless stated 

otherwise, all integrals are over lR.) 

The expected values of position and momentum are 

<q> = J xlf(x) 12 dx and <P> = J (y/h) IF(y/h) 12 dy 

and their standard deviations are 

b.q = <J (x-<q>> 2 lf(x) 12 dx)~, 

/:,p = (J (y-<P>l2 h-l IF(y/h) 12 dy)~ 

whenever <P> and <q> exist. (If need be, <q> will be defined as 

<q> =lim J xlf(x) 12 dx , 
a~ lxl:>:a 
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and similarly for <P> .) 

It is now evident that the classical uncertain-ty principle 

inequality (l) is a simple consequence of the inequality 

(2) f x 2 [f(xl[ 2 dx J / [F(yJ[ 2 dy 2 (l61T2)-l (f [f(xl[ 2 dx) 2 

for all f E L2 (JR) • (For a proof see [5, p.ll7].) 

SINGLE SLIT EXPERIMENT 

The first weakness of (l) is that for quite reasonable states f , 

~q and ~p can be infinite. For example, consider the classical 

experiment in which there is a parallel stre&~ of particles passing 

through a single slit as in Figure l. If the slit has width 2a, the 

state function of the system (in the vertical direction) is 

-1< 
f = (2a) 2 1[-a,a] , 

where lE denotes the indicator function of E Hence 

h 
F(y) = (2a) 2 (sin 2Tiay)/2Tiay 

figure l 

This means that the probability fQnction of momentum is 

(3) 2a [sin 27Tay/h) 2 

h , 2nay/h 
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so that /J.p = 00 Hence, given /J.p , (1) tells us nothing about the 

uncertainty of position. (Of course, in this case it is trivial to 

calculate directly that -~ /J.q = 3 a .) 

In this and related cases, ad hoc measures are often employed to 

quantify the "widths" or "spread" of the relevant distributions. For 

example, the width of the momentum pdf is frequently defined as 

A= h/2a , this being the wavelength of the function sin2 (2Tiay/h) 

Hence 

an impoverished analogue of (1). 

! h/(2.3 ), 

The crux of the problem is that the weight 2 y grows too rapidly 

in the definition of /J.p forcing it to be infinite. With this in 

mind, and in an attempt to provide a more uniform approach, in 1982 

Michael Cowling and I obtained the following generalization of (1) [4, 

Theorem 5.1]. (Let t # = 2t/ (t-2) • ) 

THEOREM 1. Suppose p,q E [1,00] and. 8,¢ ~ 0 • There exists a 

constant K such that 

for all tempered distributions f with the property that f and F 

are locally integrable functions if and only if 

(i) 8 > 1/p# , ¢ > 1/q# and a satisfies 

OR (ii) (p,8) (2,0) and a = 1 , 

OR (iii) (q,¢) = (2,0) and a = o 

(If both the last cases occur, a is arbitrary.) 

.. 
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DOUBLE SLIT EXPERIMENT 

Suppose we have the situa·tion described in Figure l but with two 

slits each of width 2a with centres distance 2A apart v;here A > a 

Suppose also that there is a screen situated at distance d from the 

diaphragm which detects the arrivals as in Figure 2, 

'=L I , lz3j 
Po 2:.11. 

diaphrBJgm 

Figure 2 

X 

detecting 
screen 

The state func'cion for the vertical component of the incoming 

particles is 

f 
-~ (4a) (l + 1 ) 

[-A-a,-A+a] [A-a,A+al 

Hence the probabili'cy density functions of position and momentum are 

(4a) -l (1 + 1 ) , 
[-A-a,-A+a] [A-a,A+a] 

h- 1 \F(y/h) \ 2 = (4a/h) sinc2 2nay/h cos2 2TIAy/h 

respectively, where sino 8 = (sin 8)/8 for 8 t 0 and 1 for 

8=0, Notice·that L:lq=(a(3A2 +a2 )/3A)~ and /J.p=oo 

Denote the horizontal momentum of each of the particles by p 0 

For simplici·ty assume tha'c the particles passing through the slits 

leave from ·the centres of the sli·ts. This means that when a particle 
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arrives at the detecting screen we know that it has followed one of 

two paths. As we shall see, the period of the interference pattern is 

hd/2Ap0 so this assumption will have a negligible effect on the 

pattern if hd/Ap0 >> a 

The time taken for each particle to cross from the diaphragm to 

the screen is md/p0 , where m is the mass of the particle. Hence 

the pdf of the arrivals of the particles at the screen is 

<l>(x) 

(4) 

(8a/'Tf) (sinc2 8a(x +A) cos2 8A(x +A) 

+ sinc2 8a(x-A) cos2 8A(x-A)) 

where 8 = 2'TfP0/hd • We are principally interested in the cosine 

terms since it is these which describe the interference pattern 

characteristic of the double-slit experiment. This phenomenon was 

first demonstrated by Thomas Young in 1803. In practice A >> a • 

Suppose we modify the experiment by first closing one slit and 

then the other. If we average the two resulting pdf's we obtain from 

(3) 

(5) ':l'(x) = (8a/2n) (sinc2 8a(x+A) + sinc2 8a(x-A)) 

Notice that the interference terms are no longer present. 

By only having one slit open at a time we are imposing conditions 

which enable us to know through which slit each particle passes. This 

suggests the conjecture that "the interference pattern appears if and 

only if we cannot determine the paths of the particles". It is 

interesting to note that, as predicted by the theory, the interference 

pattern has been observed even when the time interval between the 

arrivals of individual particles was around 30,000 times longer than 

the time for an individual particle to pass through the system [1]. A 

modern variant uses two lasers instead of two slits [9]. 
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The remainder of the paper is an analysis of a procedure 

suggested by Einstein to disprove the above conjecture. It will also 

be seen that this conjecture is, at least qualitatively, equivalent to 

Heisenberg's uncertainty principle. 

FIFTH SOLVAY CONFERENCE 

Suppose that we have a way of keeping ~ as the pdf of the 

arrivals of the particles but still knowing which slits the particles 

passed through. In this case the pdf of position of the particles at 

the diaphragm gives 

-~ tJ.q = 3 a , 

the standard deviation for the single slit. experiment. In other words, 

the uncertainty of position has been reduced, and substantially if 

A >> a • Since the form of <P is a consequence of the dist:t·ibution 

of momentum at the diaphra~n, this means that the uncertainty of 

position has been reduced without changing the pdf of momentum. 

Although this does not defeat the uncertainty principle inequality (1) 

as it stands (since in this case tJ.p = co ) it certainly undermines the 

spirit of the general principle. 

The above argument was appreciated by ZUbert Einstein as early as 

October 1927 for at that time he presented it to the Fifth Physical 

Conference of the Solvay Institute in Brussels. FurtheL-more, he put 

forward a method, a mind-experiment, for resolving the ambiguity of 

the slits. He suggested that a very delicat;e mechanism be attached to 

the screen that v1as capable of measuring the vertical impulses or 

kicks of the arriving particles. (Actually his suggestion was to 

attach it to the diaphragm but the resulting argument is the same.) 

It is to be so sensitive that it can detect the difference between the 
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momentum of a particle coming from the top slit and one coming from 

the bottom. In other words, by virtue of this mechanism we can detect 

the paths of the particles. 

As was so often the case during this period, it was Niels Bohr 

who supplied the counterargument. Its general thrust is that if we 

can measure these minute impulses so precisely, the uncertainty of 

momentum of the screen must be very small. But then, by (1), the 

uncertainty of its positron must be large, so large, in fact, that it 

would obliterate the interference pattern. (This is just one of a 

series of mind-experiments put forward by Einstein in an attempt to 

locate weaknesses in the quantum theory. For a fascinating account, 

see Bohr [3]. Another highly-readable introduction to some of these 

experiments is contained in [7].) 

We shall see, however, that this conclusion cannot be inferred 

from (1) since ~q is too general a measure of spread. Other 

inequalities will then be brought to bear on the problem with the 

final conclusion that Bohr was correct, the interference pattern would 

be lost. 

MOMENTUM AND PROBABILITY 

Suppose that the state function of the screen in the vertical 

direction is g • Denote the pdf of momentum by 

where G is the Fourier transform of g • Suppose that a particle 

coming from the bottom slit hits the detecting screen at a height x • 

(The height-measuring scale is assumed to be rigidly fixed with 

respect to the diaphragm. It is separate from the screen.) The 

reading of the strength of the impulse should be (x+A)p0/d since 
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the time taken to crass from ·the diaphragm is md/p0 , m being the 

mass of an individual particle. But if it is nearer to (x -A) p0 /d 

tha·t is, if the reading is less ·than Xf>0 /d , then it will be 

interpreted as coming from the top slit. Thus the probability of 

incorrectly de-termining ·tha·t this particle comes from the top slit is 

fxp0/d _ f-Ap0/d 
ll(Z ·-(X +A)p0 /d) dz : ll(Z) dz • 

-CO -00 

Similarly, if the reading exceeds xp0/d the particle will be judged 

as coming from the bottom slit: the probability of ·this being in 

error is 

r](z) dz • 

(This decision rule is plausible given t.hat vile do no·t have any further 

information on n . It always favours ·the correct conclusion when n 

is even with n(x) decreasing for positive x .) Thus the probability 

of corJ~ec·tly interpreting the readinsr as to the path of the particle is 

This means t-J1at correct judqements are made wi·th probability one if 

<md only if 

(6) 

From now on we assume that this is the case. Also 6q and 6p will 

denote the uncertainties of position and momentum of the screen. (We 

assuine <ci> and <p> exist.) 

DETECTED PATTERN 

We now calculate ·the pdf of arrivals at the screen in the case 

that ·the pdf of the position of the screen is I g 12 . Suppose the 
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screen is displaced a distru1ce u The probability of an arrival 

exceeding X is r ljl(s) ds Hence, in general, 
x-u 

I 2 <[_u prob(arrival 2: x) lg(u) I if>( s) ds) du 

I lg(u) 12 ( [ ljl(s- u) ds) du 

Hence the pdf of arrivals on the detecting screen is 

(7) 

It is emphasised ·that this pdf is with respec·t to a scale on the 

screen. The problem is to show that under ·the above assumption (6), 

ljl equals, or is at. least close to, '¥ as defined in ( 5) • 
g 

I. CLASSICAL UNCERTAINTY INEQUALITY 

Under assumpt.ion (6) 

- <P>2 ,; I 
' 

2 2 
z n(z) dz < (Ap0/d) 

and hence from (1) 

(8) t:,q > hd/4TrAp0 . 

The usual response to this is tha·t since ·the right side of this 

:i.nequali·ty is of the same order as the period hd/2Ap0 of the 

interference pattern, ·then the pa·ttern will be obliterated. (See, for 

example, [3], [2], [7] and [8].) But standard deviations give us 

meagre informa-tion about the fine de-tails. For example, it could be 

that, as depicted in Figure 3, n consists of two peaks far from the 

origin but is very small elsewhere. In this way (8) can be satisfied 

and if the distance between the peaks is a multiple of the period 
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+---multiple of hd/2Ap 
0 

figure 3 

A J 

I . -~ ... ~ ~ 

hd/2Ap0 , then there would be no essential effect on the interference 

pattern. Something stronger is needed to uphold Bohr's conclusion. 

II. LOCAL UNCERTAINTY PRINCIPLE INEQUALITIES 

Local uncertainty principles assert that .if the uncertainty of 

momentum .is small, then not only is the uncertainty of position large, 

but the probability of being localized at any point is also small. A 

number of inequalities supporting this principle are developed and 

applied in Faris [6]. Recently I have extended two of these: 

THEOREM 2 [10]. Suppose that 1 $ t $ oo and 8 ~ o. 

(i) Let (t,8) satisfy 1/t# < 8 < 1/t' (1uhere t# = 2t/(t-2) 

and t' = t/(t-1) ) or (t,8) = (l,Ol or (2,0) There exists a 

constant K such that 

<f IF(y) 12 
h # 

II I X - b 18 f II t dy) 2 $ Km(E) 8-l/t 

E 

for aU f E L 2 (IR) and measurable E _so IR. 

(ii) If 8 ~ 1/t' [except for (t,8) = (1,0) ] or 8 $ 1/t# 

[except for (t,8) = (2,0) ], no such inequality is possible. 

THEOREM 3 [ll]. Suppose E EO IR is measurable and e > \ • Then 
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for all f E L 2 (lR) and b E lR where 

and K1m(E) is the smallest possible constant. I.f 6 ~ ~ no such 

inequality is possible. 

Proof. In the one-dimensional situation the most important inequality 

is that of Theorem 3 with 6 ~ 1 • Fortunately, as communicated to me 

by Henry Landau, it has a very simple proof. Standard completeness 

arguments show that it is enough to establish the inequality for 

f E S , the Schwartz space of rapidly decreasing func<tions. Given 

y E lR, 

fy 

• -co 

and hence 

(FF' + F'F) 
- fco 

(FF' + F'F) 
y 

I IFF' I 

(The las-t inequality must be strict since f E S • ) Thus 

f IF(y) J 2 dy ~ m(E) IIFII: < 21Tm(E) lifll 2 lltfl\ 2 , 
E 

as required. The full proofs of Theorems 2 and 3 are given in [10] 

and [11] respectively. 

The fact that Kf!(E) is -the best constant in Theorem 3 can be 

shown in the following way. Define 

where a(6) e;r < l/26J r (l-l/2!:l l . 

Simple calculations show that 
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[lglli (e<.(6) 2/8) B(l+l/28, l-1/28), 

8 2 2 
llltl gll 2 = (a(8) /6) B(l+l/28, l-1/26) 0 

Define gn = ng(n •) for Then is an approximate 

identity with 

L 1Gnl2 

( IG 12 
II 11 2-1/8 

11 1 t I 8 g 11 ; 18 
Kl 0 

)E n 
gn 2 n -

As n -+ oo 

' Gn (y) _,_ l- for each y so that L IG 12 + m(E) by the 
n 

dominated convergence theorem, demonstrating the sharpness of the 

constant K1m(E) (Of course vle can have equality in Theorem 3 in a 

trivial sense by supposing that E has infinite measure.) 

Discussion. In general, local uncertainty principles are stronger 

than global ones. For example, it follows from Theorem 3 with 8 = l 

that 

IIFII~ 

-2 2 
< 4Tib llfll 2 llxfll 2 + b llyFII 2 

Se'cting 

gives 

\•;hich has the same general fomt as (3). 

Theorem 3 wi·th 8 = 1 applied to the double-slit experiment under 

ass~mption (6) gives 

where g is the state function of the screen. Hence, if g is as 



depicted in Figure 3, the bases of the triangles would have to exceed 

This does no·t help much since hd/Ap0 >> 1 in practice 

so that the period of the interference pattern hd/2Ap0 greatly 

>, 
exceeds (hd/2TIAp0 ) 2 • 

We can do better with Theorem 2. Taking t 2 , e ~ and E 

the base of one of the triangles, 

"" (JE 
Jg\2)~ k k 

(~) 2 "' ~ Km(E) 4 11\y\4 G\12 

;!,; k 
~ Km(E) 4 (Ap0/hdl" 

since supp G s [-Ap0/hd, Ap0/hd] . This implies 

4 -1 
rn (E) <: (4K ) hd/Ap0 

In other words, the lengths of the bases of the triangles in Figure 3 

areof the same order as the period of the interference pattern so, at 

least, the pattern would be markedly reduced. (One estimate for K 

-k 
is 1+2(1-26) 2 when t ~ 2[10].) 

') 

However, this whole approach becomes less useful if \ g \ ·· is 

made up of many low peaks separated by integer multiples of the wave-

length of the interference pattern. 

III. CONSTANCY VERSUS CONCENTRATION 

The essence of the family of inequalities in ·this section is that 

the more a function is concentrated, the less variable is its 

transform. Suppose that f is a one-dimensional state. Given 

a E: (0,1) , define 

while for S E (0,1) define 

w = w (F) ~ min{v 
13 

a} ' 

S} . 
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Uffink and Hilgevoord [14] and myself [12] independently obtained 

lower bounds for the product Ww ••• with the physicists getting the 

sharper result! Work is under way for a paper containing all the 

details but the central result is: 

THEOREM 4. Suppose a,S E (0,1) • Then 

for aZZ states f provided 2a > S+l . Further, if 2a ~ S+l • there 

is no positive constant K BO that Wa(f) WS(F) ~ K for all states, 

Returning to the double-slit experiment, replace f by G , 

where g is the state function of the screen. By letting a + 1 and 

observing that 

Supp(h-ljG(•/h) j2 J S [ A /d A /d] - - Po ' Po ' 
we arrive at 

w6 (g) ~ ( (1- Sl /2) ~ hd/TIAp0 

for S E (0,1) • This means, for example, that g cannot have 

support in disjoint intervals (En):=l where 

(i) m(En) ~ Ahd/7TAp0 for all n with 0 < A < 1//2 , 

(ii) the distance between adjacent pairs of intervals exceeds 

For if we had such a fm1ction, letting 2 i3 "' l- 2A 

In particular, the pdf of position j g 1 2 cannot be supported in 

intervals of length Ahd/TIAp0 with centres hd/Ap0 , the period of 

the interference pattern, apart. 

Ho'VJever, it; is clear that we are still a long way from 

0 ' 

establishing that the interference pattern is destroyed. This will be 

done in the next section using Poisson suromation. 
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IV. POISSON SUMMATION 

As before, g is the state function of the screen and we assume 

that supp n s [-Ap0/d, Ap0/d] , where n is the corresponding pdf of 

momentum. Hence 

(9) supp G s [-Ap0/hd, Ap0/hd] . 

Define g# by 

~ lgl 2 (x +nhd/2Ap0 ) • 
nEZ 

Considering g# as a function on # 1 
[O, hd/2Ap0 1 , g E L [O, hd/2Ap0 1 

since I 2 1 
g I E L (JR) • Its Fourier coefficients are: 

fhod/2Apo 
(2Ap0/hdl 

(2Apo/hdl J lgl2<xl 

In view of (9) it follows that 

exp(-4Tiixk Ap0/hd) dx 

Furthermore, lgl 2" 
is continuous since lgl 2 E L1 so that it is 0 

Hence ck = 0 for all integers k ~ 0 with the 

consequence that 

(almost everywhere) 

Hence, modulo the period of the interference pattern, hd/2Ap0 g is 

a constant almost everywhere. In general terms this means that g 

kills off the interference terms 
2 cos (2TIAp0 /hd) (x +A) and 

2 cos (2TIAp0/hd) (x -A) announced in (4). 

A stronger statement of this phenomenon is obtained by letting 

a + 0 • As explained above, the pdf of arrivals at the screen is 

given by (7), namely Suppose that the rate of 
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particles passing through the slits is 

density distribution of arrivals at the screen. In other words, the 

expected number of arrivals in a set E is J a-14> 
E g 

Working 

within s• , the space of tempered distributions, we show that 

(10) 
-1 lim a 4> g = 2p0/hd (= lim 

a+O+ a+O+ 

for all states g satisfying (6) The effect of letting a tend to 

0 is to remove the influence of the sine-terms in 4> since 

sine (21fp0/hd)a (x ±A) + 1 as a+ 0 Thus 

-1 2 2 
a 4> + (2p0/hd) (cos (21TAp0/hd) a(x+ A) + cos (21TAp0/hd) (x -A)) 

as a+ 0 • Next, since -1 2 
F (o -b + 200 + obl = 4 cos 1fbx , where 0 c 

is the point measure at c , the Fourier transform of the preceding 

limit is 

Hence 

F-l((lim a-14>)A lgi2A) 

1 2A 
(p0/hdl F- (cos 21fAy(o_2A /hd + 200 +o2A /hd> lgl > • 

Po Po 

0 for lxl ~ 2Ap0/hd and lgi 2A(O) = 1 so that 

lim a-14>g = (p0/hdl F-1 (2o0 > 
a+O 

as asserted. Thus in the limit as a + 0 , we see that Bohr was 

correct when he asserted that knowledge of the paths of the particles 

precludes the appearance of an interference.pattern. 
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