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ERROR ESTIMATES FOR A FIRST KIND INTEGRAL EQUATION AND AN 

ASSOCIATED BOUNDARY VALUE PROBLEM 

W. McLean 

1. INTRODUCTION 

This paper deals with an integral equation method for obtaining 

numerical solutions to the two-dimensional interior and exterior 

Dirichlet problem 

(l.la) /:::,.U 0 on m\r 

(l.lb) u g on r 

(l.lc) U(X) 0 (1) as lxl + oo • 

Here 

X 

00 

is the Laplacian, r is a simple closed C curve in the plane, and 

g is a given function on r . It will sometimes be necessary to 

refer to the bounded and unbounded components of 
2 

lR \r , and these 

will be denoted by n+ and n respectively. Also, V(Y) denotes 

the unit normal at Y E r pointing into n+ 1 and 0 denotes the arc 

length measure on r . 

The boundary value problem (1.1) can be reduced to an integral 

equation on r by seeking a representation·· of the solution in the 

form of a single layer potential 

(1.2) U(X) = ~ fr log(,X:Y,) V(Y) dO(Y) + W, 
2 

X E lR I 

with v an unknown function on r and w an unknown constant. If 

v E L (r) for some p > 1 then the formula (1.2) defines a function 
p 
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U which is harmonic on JR2\r and continuous on m2 , hence (l.la) 

and (l.lb) are satisfied if the pair (v,w) is a solution of the 

first kind integral equation 

(1.3a) g(X) ' x € r . 

Also, U is bounded at infinity (l.lc) iff 

(1.3b) 

in which case 

(1.4) U(oo) = W • 

Methods for the numerical solution of (1.3) have been investigated by 

various authors including [1], [3], [4], [5], [6] and [7]. 

An alternative and more traditional approach is to represent the 

solution to (1.1) using double layer potentials 

.!_ J \J (Y) • (X - Y) v + (Y) dO (Y) , 

1T r Jx-YJ 2 -

This has the advantage of leading to integral equations of the second 

kind which are easier to handle numerically than (1.3), but on the 

other hand the single layer potential (1.2) yields a much simpler 

representation for the gradient of U , namely 

1 J Y- X VU(X) = - 2 v(Y) do(Y) , 
1T r JY-xJ 

Moreover, if v is Holder continuous then the boundary values of the 

gradient 

lim VU(Z) , x € r 
Z-+X, Z€1""2± 

exist (classically) and are given by the formula 

(VU) ±(X) [ 1 f y--- X :P v(X) \J (X) + -1T f --- V(Y) dO (Y) IY -XJ 
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where f indicates a Cauchy principal value integraL In particular 

·the normal derivatives of U are 

(1.5) (~0L<x) +v(X) + .!_ f V(X)•(Y-X) V(Y) d<J(Y) 

n r IY-xl2 
and here there is no need for a Cauchy principal value because the 

function 

(X, Y) I-+ V (X) • (Y -X) 

IY- xl2 

2. THE INTEGRAL EQUATION ON THE TORUS 

The one dimensional torus 

T = JR/2TI21L 

is the group of real numbers under addition modulo 2TI , and we shall 

usually think of the elements of T as points in the interval between 

0 and 2TI . Parametrize r co 
using a C diffeomorphism 

and note ·that the derivative y satisfies 

!y(tll -:f 0 for all ·t • 

Let 

(2.1) u(t) = v[y(t) l Jy(t) I f (t) g[y(t) l 

then (1.3} can be rewritten as 

lf27f 
(2. 2a) :;r 

0 log(ly(x) :y(t) 1] u(t) dt + w f(x) , 0 :o; X :o; 2TI 

f207f u(t) dt 0 0 

In the special case where r is the unit circle one can take 

y(t) 
it 

e 0 :o; t :o; 2TI , 
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and then 

Jy(x) - y(t) J = zlsin(x;t) I 

In the general case we use the decomposition 

.; log(~) = A(x -t) + k(x,t) 

where 

(2.3) A(t) 1 [ 1 ) TI log 2Jsin(t/2) J 

is singular but 

k(x,t) 

llo [±in[Yll] 
'IT g \Y(X) -y(t) I if x ~ t (mod 2rr) 

-log-~-l ( 1 ] 
'IT \.Y<t> I 

if x = t (mod 2'IT) 

satisfies 

(2. 4) 

Define the integral operators 

Au(x) A*cu(x) = J:'IT A(x-t) u('c) dt 

Ku(x) f2'IT 

0 
k(xutl u(t) dt 

then (2.2) can be written 

(2.5a) (A +K)u + w f on T 

(2. 5bl 

In section 5 we shall present a numerical method for obtaining 

approximate solutions to these equations, and will then carry out an 

error analysis. The latter relies on existence, uniqueness and 

regularity results which are proved in section 4 and which involve the 

function spaces to be introduced below. 
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3. BESOV SPACES 

The books [2] and [10] are suitable background references for the 

material of this section, and our notation is consistent with them. 

00 

Since T is a one dimensional C manifold the Sobolev spaces 

S E ~ , 1 < p < oo 

and the Besov spaces 

SEJR, l<p<oo, lsq:S:"' 

can bFl defined in terms of the corresponding spaces on the real line, 

but they can also be described directly as follows. 

Denote the norm on L (T) by 
p 

llull = (J2
7f lu(t) IP dt) l/p 

p 0 

a.11d let D be the operator of differentiation in the sense of 

distributions on T . F'or integers s ~ 0 the space 

of those distributions u on 'f' for which the no:r:m 

is finite, whereas for integers s < 0 

sup{ l<u,cp>l 00 

(jl E C (T) and 

consists 

With respect to these norms is a reflexive Banach space (note 

p ~ 1,00 ) , and satisfies the duality relation 

( 3 .1) 
1 1 :p+p;=l. 

The Besov spaces arise naturally by real interpolation of the 

Sobolev spaces, with 

(3.2) 
s s 

(W 0 W 1) 
P ' P S,q 
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for integers s 0 t s 1 , and 

s= (l-8)s0 +es1 , o < e < 1 

In order to write down a convenient norm for B5 (T) we need some pq 

more notation. Let 

fi 
m fo

21T e-imt 
u(t) dt , 

and define the function em by 

e (t) 
m 

imt 
e 

then the Fourier series for u is 

u 1 ~ fi e 
21T mdtt m m 

mE- z 

For any distribution u on T , the sum converges in the sense of 

distributions and can be decomposed into 

(3.3) 

where 

One can now put 

u = 1 ; ~(j) u 

21T j=O 

{ 
" 

~(j) u 
uo eo 

~ 
A u e 

l . 1 . m m 
2J- sjmj<2J 

{ 

(j~O (2sj ll~(j) ullprr/q 

sup 25 j ll~(j) ull 
j~O p 

if j 0 

if j t 0 

if 1 ::; q < 00 

if q 00 • 

If t is any of the above spaces of distributions on T , then 

we shall write E for the closed subspace of E consisting of those 

distributions u having zero mean value on T , in other words 

E = {u E E : u0 = o} 



229 

Also, the notation 

J: E """ F 

will indicate that J is an isomorphism of E onto F in the 

category of Banach spaces. 

4. SOLVABILITY OF THE INTEGRP,L EQUATIONS 

In this section \oJe first study A as 2n operator on the Besov 

spaces introduced above, aild then deduce ·the required y·esul ts for the 

in·tegral equation (2. 5). 

Observe that the derivative of ·the function (2.3) is 

Dfi(t) cotan (t/2) 11 

hence the operator A is related to the Hilbert ·transform 

l f21T r··t- x' 
Hu(x) = --. · co'can -~-1 u(t) dt 

2'IT1. Q l. L , 

by 

( 4.1) DA iH 

a fact which makes it easy to prove the following. 

4.1 Theorem. (i) For s E IR, l < p < oo and 1 $ q $ 

A 
cs 
B (~') 
pq 

(ii) For m E z and u a distribution on T , 

where 

A m 

(Au) A 

m 
A u 
m m· 

if m 0 

if m # 0 . 



Proof. (i) It suffices to show 

A '<" Ws+l(T) 
p 
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l<p<co 

since the result then follows by interpolation (3.2). Moreover, A 

has a symmetric kernel so by duality (3.1) it suffices to consider 

integers s ~ 0 Finally, because D comutes with A and satisfies 

D W5 ('1') 
p 

one has only to use (4.1) and the well known result [11, p.l59] 

H : L (T) ""' p ('!') ' l<p<oo 

(ii) By a familiar property of convolutions, 

a~d hence A = A 
m m 

(Au)" 
m 

'A u 
m m 

Using ·the change of variable z = 

J2
'IT J\(t) dt = Re(2

1 . I -~log( =lJ dz) 
0 Til !zl=l z z 

while for m > 0 the change of variable 
-it 

z = e gives 

so 

therefore A 
m 

im A 
m 

(DJ\) A 

m 
1 f m-1 z + 1 

i 21ii." I z I =1 z z-:1 dz 

i l res zm-l z +l = i 
2 z=l z -1 

Finally, since 1\ is an even func·tion 

1/(-m) for m < 0 

Introduce the opera·tor 

A(u,w) = (A +K)u + w 

so that the integral equation (2.5) can be written 

A(u,w) = f 

A 

0 ' 

A and 
m -m 

0 
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(4.2b) 0 • 

Let lK denote either the real or complex number field, then the main 

result for this section can be stated as follows. 

4. 2 Theorem. For s E JR, 1 < p < oo and 1 ,:; q ,:; oo 

A 

Proof. Decompose A 

Bs (T) x IK;:. 
pq 

A = A + K 
1 

where Au + w and 

K(u,a) Ku , then A1 is an isomorphism by 4.1 and K is compact 

because K has a smooth kernel (2.4). Thus, A is a Fredholm 

operator with zero index, and it suffices to show A is one-one. 

Suppose A (u,ct) = 0 with u0 = 0 , and le'c v be the corresponding 

function on f satisfying (2.1). It follows from 4.1 that v is 

smooth, so the function U defined by (1.2) solves the homogeneous 

Dirichlet problem, i.e. (1.1) holds with g = 0 . Since U is 

bounded at infinity the maximum principle applies on the exterior 

region n as well as on the interior region n+ , hence U = 0 on 

m2 • By (1.4), this means w 0, and finally by (1.5), 

2v 0 on r . 

5. A NUMERICAL METHOD 

We shall now analyse a Galerldn method for obtaining numerical 

solutions to the integral equation (4.2). 

Denote the space of trigonometric polynomials of degree ,:; n by 

T 
n 

span {e 
m lml ,:; n} ' 

and denote the normalized L2 inner product by 

0 
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1 f21T <~lul = 2TI 0 ~(t) u(t) dt , 

0 

then look for (un ,wn) E T n x lK satisfying the Galerkin equations 

(5.1) ( ~ I (A + K) u + w ) = ( ~ I f) 
n n 

Since 4.l(ii) implies 

if we write 

(5.2) u 
n 

for all ~ E T n 

e 
m z

m A. 
m 

then the unknowns z±1 , ••• ,z±n and wn must satisfy the 

(2n+l) x (2n+l) linear algebraic system 

1!1.1 :;; n • 

The inclusion of the factor 1/A.m in the mth term of the expansion 

(5.2) guarantees that the !1.2 condition number of the coefficient 

matrix is bounded as n + oo • 

If the operator 

is the orthogonal projection onto the subspace Tn , then the Galerkin 

equations (5.1) are equivalent to 

Noting that 

P [ (A + K) u + W ] P f 
n n n n 

Pu-...!.. ~ \l e 
n - 21T lml:>:n m m 

is just a truncation of the Fourier series for u , it is clear p 
n 

commutes with A and satisfies Pnl = 1 • Therefore, if the operator 

A is defined by 
n 

A (u,w) 
n 
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0 

then the Galerkin solution (un, wn) E Tn x lK must satisfy 

(5. 3) A (u ,w ) = P f • 
n n n n 

In the error analysis which follows, the generic constant c is 

independent of n and (u,w) • 

5.1 Theorem. For s E IR, 1 < p < oo and 1 s; q s; oo • the solutions 

of (4.2) and (5.3) satisfy the asljrrrptotic error estimate 

llu -ull + lw -wl s; ell (I -P )ull s 
n Bs (T) n n B- (T) 

pq pq 

Proof. First note 

(A - Al (u,w) = (P - I)'Ku , 
n n 

then observe that since K has a smooth kernel (2.4), 

0 • 

(This can be proved easily using 5.2 below.) Hence, A converges to 
n 

A in the operator norm and the stability estimate 

follows immediately from 4.2. Now use the identity 

A (u -u, w - W) 
n n n 

(P -I)Au 
n 

A(P -I)u 
n 

and the inequality 

IIA(Pn- I)ull s+l s; 
B pq 

ell (I -P )ull 
n 8 s 

pq 

In order to deduce the rate of convergence of the Galerkin 

solution (un ,wn) , we shall now estimate 

1 
(I -P )u =-

n 27T 
A 

u e 
m m 

which is just the tail of the Fourier series of u . 

CJ 
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5. 2 Theorem. FoP -co < s < r < oo , 1 < p < oo and 1 ~ q ~ oo 

II (I -P lull 
n Bs ('l'l 

pq 

Proof. The imbedding Bs c Bs means that it suffices to consider pl pq 

q = 1 . Given n ~ 1 1 let ~ be the unique integer satisfying 

2~-l ~ n < 2~ 1 then 

0 if 0 ~ j ~ ~-1 

lll:(jl (I -P lull 
n p 

II l: ~ e II 
n<JmJ<2~ m m p 

lll:(jl ull 
p 

The Marcinkiewicz multiplier theorem [91 implies 

with c independent of n 1 and therefore 

"" 2sj lll:(j l II (I -P lull ~ c l: 
n Bs j=~ pl 

( 00 2 (s-rlj) ~ c l: 
j=~ 

~ 
s-r 

llull c n 
Br 

poo 

6. CONCLUSION 

Let vn be the function on f satisfying 

u (tl = v [y(tl] Jy<tl I I n n 

if 

if 

ull p 

sup 
j~~ 

and denote the corresponding single layer potential by 

Un(Xl = ~ fr log(Jx=YJ) vn(Yl dcr(Y) + wn 

j ~ 

j ~ ~+1 • 

2rj lll:(jl ull p 

The function Un furnishes an approximation to the solution U of 

[] 
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the Dirichlet problem (1.1), and the results of the last section will 

now be used to estimate the error U - U 
n 

We write 

where a (a1 ,a2 ) is an ordered pair of nonnegative integers. 

6. l Lemma. If u is the solution of the Dirichlet problem ( 1.1), 

then the boundary values of its partial derivatives satisfy 

for s > 0, l_< p < oo and 1 s q s co 

Proof. Since U is bounded at infini'cy the two dimensional Kelvin 

transform reduces the problem to estimating This is done 

using the trace -theorem [10, 4. 7.1] 

a s c ~a u" 11 , 
B8 + p (rl ) 
pq + 

s > 0 

~ull I I Bs + a +1/pm l 
pq + 

and the regularity theorem [10, 5.5.2 (including Remark l*ll 

6.2 Theorem. For 1 < p < co and 

s c II g~ 
Bs+lalcn 

pq 

1 r > lal + -, 
p 

D 

Proof. Since ()a (U - U) is harmonic on m2 \f 
n 

S'l u S'l and is bounded 
+ 

at infinity, -the maximum principle implies 
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In the appendix we give an elementary proof of the imbedding 

(6.1) 

which means 

Bl/p (f) c C (f) , 
pl 

0! 
ell[() (U -UJJ)Il/ 

n - B p (f) 
pl 

Now put g = u If and apply 6 .l ·to the function u -u 
n 

to ob-tain 
n n 

,; c II g -gil I 0! I + 1/ 
n B 1 p(f) 

p 

Finally let s = lal + 1/p , then by 4.2, 5.1 and 5.2 

,; c 
(s-1) - (r-1) 

n llull r-l 
B (T) 

poo 

Thus, the uniform rate of convergence of ()au is limited only 
n 

by the smoothness of the data g . Moreover, the next result shows 

that away from f the convergence is faster than any power of 

even when the data is far from smooth. 

6. 3 Theorem. Fix o > o and let 

Q0 ={X E JR2 : dist(X,f) > o} 

then for -oo < s < r < oo 3 

where c depends on o ~ a , s 3 r and p • 

-1 
n 

0 
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(X, Y) f-+ log[-
1 

- 1-
1
1 

X- y ) 

co 
is C for I X - Y I > o ·, and consequently 

c(llu-ull 1 +jwn-wj) 
n Bs-_ (T) 

s-r 
n 

pq 

0 

We have been content ·to present here these basic error estimates, 

and refer to [8] for a discussion of some practical aspects of 

.implemerd:ing the nu.'tlerical method such as quadra·ture errors and fast 

Fourier transforms. In conclusion, I vJish to express my ·thanks to 

Professor H. 'I'riebel for a number of conversat:ions which were helpful 

in ·the preparation of this paper. 

APPENDIX 

Here is a proof of the i1nbedding (6.1). 

Lemma. If l :s: p :s: q s co then there is a constant c such that 

llull S c nl/p -l/q llull 
q p 

Proof. Denote ~che Dirichlet kernel by 

then for u E T 
n 

d (t) 
n 

imt 
e 

u = d *u 
n 

and hence by Young's inequality 

!lull S lid II !lull 
q n p p 

for all u E T 
n 

l sin [ (n + ~) t] 
2Tr sin (t/2) 
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When p q the result is trivial, thus it suffices to show 

for p > 1 . 

If p = 00 then 

and since 

lid II n co 
d (0) 

n 

I d <t> I n 
1 ,; 

2t 

2~ ( 2n + 1) ::;; c n , 

O<t<n, 

if 1 < p < oo then 

f2
1T ld (t) lp dt 

0 n 

Theorem. For l < p < oo there are imbeddings 

Proof. Since 

and therefore 

Bl/p- l/q(T) c L (T) 
pl q 

I:(j) T , 
U E 2 J the 1ewna implies 

::;; c 2 (1/p -l/q) j III:(j) ull 
p 

co 

!lull ::;; .1:_ I: lll;(j) ull 
q 2 7T j=O q 

00 

::;; c l; 
j=O 

2(l/p- 1/q)j lil;(j) ull 
p 

= c !lull l/ -l/ 
B p q(T) 

p1 

0 

In particular, if U E Bl/p(T) 
pl 

then the sum (3.3) converges uniformly 
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and since each ·term L:(j) u is continuous it follows that u is 

continuous. 
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