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THE SOLUTION OF SYSTEMS OF OPERATOR EQUATIONS

USING CLIFFORD ALGEBRAS

Alan McIntosh and Alan Pryde

1. INTRODUCTION

Our aim is twofold. We develop a functional calculus for commuting
m-tuples of Banach space operators, and then use this functional calculus
to solve a system of operator equations and obtain estimates for the

solution. The new ingredient is the use of Clifford algebras.

As a corollary we obtain results on the perturbation of the spectral
subspaces of commuting self-adjoint operators. In particular we answer an
open question, stated for example on p. 221 of [5], on the spectral

perturbation of self-adjoint matrices.

Our idea of using Clifford algebras is derived from the work of
R. Coifman and M. Murray [10]. The functional calculus for several operators
is a generalization of that developed in S. Kantorovitz [7] and I. Colojoara
and C. Foias [4] for a single operator. Our results on systems of operator
equations extend results of R. Bhatia, Ch. Davis and A. McIntosh [2]
concerning single equations. Thanks are due to J. Picton-Warlow with

whom we have had several stimulating discussions.

Banach spaces X and Hilbert spaces H and K are defined over the
field IF , where T denotes either the real field R or the complex field

t

2. OPERATOR EQUATIONS

To motivate our discussion of the functional calculus, we state here

our results on systems of operator equations.

Throughout this section, A = (A .,Am) and B = (B

1ree
denote commuting m-tuples of bounded self-adjoint operators defined on
Hilbert spaces H and K respectively. The joint spectrum of A 1is

denoted o(A).
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THEOREM 1.  Suppose § = dist (o(A) , 0(B)) > 0 and let Wj € L{K,H)

for j = 1,2..,m . Then the system of operator equations
AJ.Q-C)BJ,:IAIj for j =1,2,..,m
has a solution Q ¢ L(K,H) if and only if

c.,m o

AW, - WB =AW -WB for jk=1,2

In this case the solution Q 1is unique and satisfies

lall = o 87" Il gypym -

The constant cm is defined by

c, = inf(2m) ™ J lg(g)]aE

where the infimum is taken over all functions g :R" > B{m, each
component gk of which is the Fourier transform of an L1—function and
l—-2

satisfies g (x) = xk]x ir ixl > 1-g for some € > 0 .

k
We remark that 1 < ¢ <o |

m

The Fourier transform being used is the following:
~ ~i<x E>
2 = [ e

with the Fourier inversion formula

£(x) = (ZTﬁ'mJ‘ei<X’€>%(€)d€

In the special case when o(A) C E(O,K) and o¢(B) N B(O,Kk+¢§) =¢
for some K 20 , the above result has been proved by Bhatia and Davis

with Cm replaced by 1.
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Theorem 1 will be proved in section 7 after the functional

calculus has been developed.

Corollary 1. Let H = K , and for closed subsets X and Y of H{m,
let Ey and Fy denote the corresponding spectral projections of A

and B respectively. Suppose ¢ = dist(X,Y) > 0 . Then
-1
|ExFyll = cmG ”ﬁ“§”H+Hm

Proof. Let Hy = Ey(H) , H

y=F

v, Q= EXIH; Ly, Hy)

wj = EX(Aj—Bj)FY S L(HY,HX), and apply theorem 1. =

The following corollary can be deduced from the first as in the proof

of theorem 5.1 of [2] for the case m = 1

Corollary 2. Suppose that H = K = ¢N for some N < «, that A has
joint eigenvalues g1,...,gN € ]Rﬂz and that B has joint eigenvalues

e ™. 1f la - BII = %. then there exists a permutation O

ByoeeesBy

m
of the index set {1,2,...,m} such that Iuk - B <€ for k=1,2..,N .

o(k)I

3. CLIFFORD ALGEBRAS, T,

The vector space R is embedded in a Zn-dimensional algebra JE(n)

over IF as follows. Let eo, €1y-r5€) be the standard basis of H%n+1

and denote the basis vectors of IF(n) by ey » where S 1is a subset of
1,254 n} . Make the identifications e, = e and e. = e_. for
{y ’ ’ 0 ¢ J {J}

1 £j $n, and define the multiplication on :F(n) by taking e, as

the unit 1,

o
"
1

o
1
|

-

)

©]

i

-

A

.

LN

n}

e e, --cey =@ if 123, <3, <...<jg $n and

S = {j1,j2,...,js}_
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The product of two elements A = ; AaCa XSG IF, and
S

M= Z“TeT » Hp € ]F,.ls AU where

AU = A e,
" szT HresT

Note that e.e.. 1is again a basis vector of ]F(

S°T n)

The Clifford algebras IR and BY2) are the complex numbers

(1)
and the quaternions respectively. Basic properties of Clifford algebras

can be found in Brackx, Delanghe and Sommen [3].

An involution A + A is defined by A= Z XS;S where XS is the
S
complex conjugate of AS and éS = % €g » the sign being chosen so that

eSeS = eSeS =1 .

Not all elements of E}n) are invertible. One important reason

for using Clifford algebras, however, is that non-zero elements x¢€ R
n
do have inverses, namely x| = lx[—z x = () sz)-1 (xo—x1e1-x262....—xnen) .
0
4, CLIFFORD ANALYSTS
Let § be an open subset of‘IR‘rH1 . A function f: Q *ﬁF(n) is

n
) . _ _ il
called left monogenic if Df = 0. Here D = g 325 ej and
afg .
- el SN = ) fe_ for functions f 3 -~ TF . Much
Df = jZO g ij ejes when g 3% s
of the theory of analytic functions in complex analysis generalizes to

results concerning left monogenic functions. See [3]. In particular

there is an analogue of Liouville's theorem:

THEOREM 2. If f: ]ZRn+1 > ]F(n) is a bounded left monogenic function on

mn+1

all of then f 1is constant.

It is not hard to verify that the functions g defined for

Z
2,% € ]R:n+1 by
-n-1 %z

gz(x) = lx—z| (x-2

are left monogenic for x # z .
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5. FUNCTIONAL CALCULUS

Let T =(T,,...,T ) be a commuting m-tuple of bounded operators,
~ 1 m

each acting on a Banach space X over IF. We define a kind of joint
m

spectrum O(T) by o(T) = {re r™: Z(Tj-Xj)z is not invertible
~ ~ 1

in L(X) } . This defines a compact subset of R™ which may reasonably
be called a joint spectrum for a large class of m-tuples I . In
particular, if the Tj are self-adjoint operators on a Hilbert space,
then 0({) is the usual joint spectrum. For a single operator, o(T)

is the intersection of the spectrum with the real line.

m
For n 2 m , we identify IR with the span of €19€55 0 in
n+1
i: . Then ]BmCl'ﬁm'1 c IF (n)- We also form the Banach space

m
=:X = = H X i = (
&m ®EM) {u Z@fs'ue } and define T ?Tff L (X

S (n)

by T(u) =.2 T.(us)e.,eq . It is then possible to prove the following
J»8°3 787378 :

)

result.

' THEOREM 3. o(T) = {x¢ R™ : (T - AI) is not invertible in L(X(n))} .

In the following, for an algebra A of functions on r"™ , let

A0 denote the subspace of functions f with compact support, sptf .
For a compact subset K of r" , let H(K) denote the space of IF-valued
functions which are real analytic in a neighbourhood of K , taken with its

usual topology. For f € AO and g € H(sptf) , let Mf(g) = fg .

We say that T has a functional calculus (T,A) based on Rr"

if the following conditions hold:

A is a topological algebra of functions from Rr™ to IF, with
addition and multiplication defined pointwise, and T : A > L(X) is

a continuous algebra homomorphism such that
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(a) c’;(mm)cA ;

(b) if f € AO » then M. : H(sptf) - A 1is continuous;

(c) T has compact support;

(d) T(OP) = p(T) for all polynomials p : Rr™ » ¥,

where O € C:(B%m) is 1 on a neighbourhood of sptT .

The support of T , sptl , is the smallest closed set K such
that T(f) = 0 for all f¢ AO with KN sptf = ¢ . The support is

well-defined in view of condition (a).

Let A(n) be the algebra of functions f : r™ > E%n) of the
form f=) fgeg where f ¢ A . The homomorphism T extends in a
S
natural way to a homomorphism T : A(n) > L(X(n)) . Indeed

T(r) = ) I(fs)es , and T has the same support as T .

In the case of a single operator, the following result is due to

Foiag [6].

THEOREM 4. If T has a functional calculus (I,A) based on R™
then
o(T) = sptT

Proof. It is easy to show that o(T) c sptT . We shall préve that
sptT < o(T) , which is what we require for the proof of theorem 1.
Let f € AO with sptf N o(I) = ¢ . We have to show that
T(f) =0

Let n be an odd integer, n 2 m , and recall the embeddings
r™ ¢ IRn+1 C ]F(n) . For 2z ¢ ]Rm'1 , define functions hz : R® > T
and g, * mmw{z}+ﬁ

(n)

(n) BV B (x) lx-z|n_1(x—z) and

i

-n-1,__
g, (x) = | x-z (¥=z) . If V¢ AO , then by condition (a) above,

Ph, € A, and if =z § spt¥ , ¢gZ€ A . s h, is a polynomial, h (T)
is defined and, by theorem 3, is invertible when =z f o(T) . Also

gzhz = 1 except at =z
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Construct a function F : Bin+1 > L(X(n)) as follows. If z ¢ sptf ,
define Flz) = T(fg ) , while if z § O(T) , define F(z) = b (1) T(f)
It is straightforward to check that F 1is well-defined. It takes
somewhat more work to check that, for all u ¢ X(n) and v € X¥ |
<F(z)u,v> is a left monogenic function of 2z which converges to zero

at infinity. By theorem 2, F(z) , and hence also T(f) , is zero. ]
6. OPERATORS WHICH GENERATE BOUNDED GROUPS

In this section IF = T and I is an m-tuple of commuting operators
Tj € L(X) which satisfy Hexp(isTj)H £ M for all s ¢ R and some

M >0 .

v

Such T have a functional calculus (T , L (R™)) based on

1

™ and defined as follows. The algebra L1(Him) is the space of

R

inverse Fourier transforms f = é of functions g ¢ L1(H%m )

~

So g =f and we take |f] = (ZTr)_mHgHL which makes L, (R™)
1

9 a

Banach algebra under pointwise multiplication and addition. The
homomorphism T : L (m™)

] = L(X) 1is defined by

T(£) = (2m™™ J T8 fryar .
T BT

Verification of condition (c) of the previous section can be
accomplished by an adaptation of the proof of theorem 4 using an

approximation argument. Alternatively, it follows from a Paley-Wiener

argument as used by Taylor [11] and Anderson [1].

Note that T(f) is given by the same formula, where f = ZfSGg ,
- S

M m 2 .vaA

fg € L(B™) anda f _Zé,fses .
m

If 0 ¢ oT) , then, by theorem 2, T :}:Tjej is invertible in
~ 1

L(X(n)) . We then have the following formulae for T—1



where g(x) =|x|72% = -|x|™%x on a neighbourhood of o(r) in R"

and ék € L1(H%m)

T PROOF OF THEOREM 1

We are now in a position to indicate a proof of theorem 1 concerning

the system of operator equations
AJ,Q--QBj = wj for j=1,2,00.,m

where é and § are commuting m-tuples of bounded self-adjoint operators
defined on Hilbert spaces H and K respectively. We write this system

as

T(Q) = W

m -

m
where W = ) W.e, € X with X= LKH and T = ) T.e.€¢ L(X, )
1 n) 1JJ (

i3 n)
with T.(Q) = A,Q-QB_ .
J J J

We solve this equation for Q € X(n) and then determine when the

solution is in X (that is, when Q = Qoeo)

Consider first the case =T . Note that the operators Tj

commute and that

iT.s iA.s -iB.s
e J(@=e I ge Y for s € IR

Hence the operators e J are unitary. So the preceding section can be

applied to construct a functional calculus (T, 1 ' ) for T based on

r" .
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The next task is to find 0(T). It will be shown in a fuller
version of this paper [8] that O(T) = o(4) - 0(B) . Since we have
assumed § = dist(o(A) , o(B)) > 0 , it follows that o(T) N B(0,8) = ¢ .

So T 1is invertible, and

m
-1 2.-1 o
T = - (; TOTT = Tleggy)
=1 =1 -2 .
where g(s)(x):é g(§ 'x) and g(x) = -|x| x for |x|>1-e

(for some € > 0) and %E H(m% for 1 £k<m.

The solution of the operatorequation T(Q) = W is thus
-1
Q=T (W)
o2y T.W)

- - . e.e

= -»(g 7,97 L %%
4 2,-1 g

(It ) T ) - ] (TW) - T (W))e.e
it k=1 ¥ K 1gi<ksm k k3o

- So Q belongs to X precisely when Tj(w ) = Tk(wj) for all j,k . This

k

is the compatibility condition Ajwk - kaj = Akwj - ijk stated in the

theorem.

It remains for ||Q|| to be estimated. If § =1 and the compatibility

condition is satisfied, then

Q=aq, ="[n™ J ei<3’€>g<g)(W)dg]O

0

the subscript 0 denoting the scalar part (coefficient of eo) . So

JA<T,E ?

Q=- (zm™ J
k=1

gk(i)(wk)di

Hence,
lall s em ™™ Jlé<£>ld£ Il m

For other values of § the required estimate follows from a scaling of this

one.
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This completes the proof for spaces defined over IF = L. The result
for IF= IR 1is obtained by complexifying X to obtain XE and observing

that the operators T and T i L((X), ) preserve the subspace X -8
T’ (n) (n)

8. EPTLOGUE

The technique developed in this paper can be applied in the study of
more complicated equations (as long as the dependence of W on Q is
linear). We can also consider m-tuples of commuting operators A and B
which themselves have a functional calculus based on R™ , without Aj and
Bj necessarily being self-adjoint. Further we can take symmetric norms on
Q and W different from the operator norm. Such results will be presented
in more detailed papers [8,9]. Also included will be a spectral mapping

theorem and a comparison of o(T) with other definitions of joint spectrum.

REFERENCES

[1] R.F.V. Anderson, The Weyl Functional Calculus, J. Funct. Anal. & (1969),

240-267.

[2] R. Bhatia, Ch. Davis and A. McIntosh, Perturbations of spectral subspaces

of normal operators, Linear Algebra and its Applications, 52/53 (1983),45-67.

[3] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Research
Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston,

London, Melbourne, 1982.

[4] I. Colojoara and C. Foia§, Theory of Generalised Spectral Operators,
Mathematics and its Applications Vol..9, Gordon and Breach, New York,

London, Paris, 1968.

[51] Ch. Davis, Perturbation. of spectrum of normal operators and of
commuting tuples, Linear and Complex Analysis Problem Book, (ed.

V.P. Havin, S.V. Kruézév, N.K. Nikol'skii), Springer 1984, pp. 219-222.



(6]

(7]

(8l

9]

222

C. Foias, Une application des distributions vectorielles 2 la théorie
9

spectrale, Bull. Sci. Math. (2) 84 (1960), 147-158.

S. Kantorovitz, Classification of operators by means of their

functional calculus, Trans., Amer. Math. Soc. 115 (1965), 194-224,
A.G.R. McIntosh and A.J. Pryde, A Ffunctional calculus for commuting

tuples of operators, and applications, in preparation.

“A.G.R. McIntosh and A.J. Pryde, The solution of systems of operator

equations using Clifford algebras, in preparation.

[10] M. Murray, The Cauchy integral, Calderon commutators, and

[11]

conjugations of singular integrals in ]Rn , to appear.

M.E. Taylor, Functions of several self-adjoint operators, Proc. Am.

Math. Soc., 19 (1968), 91-98.

School of Mathematics and Physics
Macquarie University

North Ryde NSW 2113

AUSTRALIA

Department of Mathematics
Monash University
Clayton VIC 3168
AUSTRALIA



