THE SOLUTION OF SYSTEMS OF OPERATOR EQUATIONS
 USING CLIFFORD ALGEBRAS

Alan McIntosh and Alan Pryde

1. INTRODUCTION

Our aim is twofold. We develop a functional calculus for commuting m-tuples of Banach space operators, and then use this functional calculus to solve a system of operator equations and obtain estimates for the solution. The new ingredient is the use of Clifford algebras.

As a corollary we obtain results on the perturbation of the spectral subspaces of commuting self-adjoint operators. In particular we answer an open question, stated for example on p .221 of [5], on the spectral perturbation of self-adjoint matrices.

Our idea of using Clifford algebras is derived from the work of R. Coifman and M. Murray [10]. The functional calculus for several operators is a generalization of that developed in S. Kantorovitz [7] and I. Colojoara and C. Foiaş [4] for a single operator. Our results on systems of operator equations extend results of R. Bhatia, Ch. Davis and A. McIntosh [2] concerning single equations. Thanks are due to J. Picton-Warlow with whom we have had several stimulating discussions.

Banach spaces X and Hilbert spaces H and K are defined over the field \mathbb{F}, where \mathbb{F} denotes either the real field \mathbb{R} or the complex field \mathbb{C} 。

2. OPERATOR EQUATIONS

To motivate our discussion of the functional calculus, we state here our results on systems of operator equations.

Throughout this section, $\underset{\sim}{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\underset{\sim}{B}=\left(B_{1}, \ldots, B_{m}\right)$ denote commuting m-tuples of bounded self-adjoint operators defined on Hilbert spaces H and K respectively. The joint spectrum of $\underset{\sim}{A}$ is denoted $\sigma(\underset{\sim}{A})$.

THEOREM 1. Suppose $\delta=\operatorname{dist}(\sigma(\underset{\sim}{A}), \sigma(\underset{\sim}{B}))>0$ and let $W_{j} \in L(K, H)$ for $j=1,2 \ldots, m$. Then the system of operator equations

$$
A_{j} Q-Q B_{j}=W_{j} \text { for } j=1,2, \ldots, m
$$

has a solution $Q \in L(K, H)$ if and only if

$$
A_{j} W_{k}-W_{k} B_{j}=A_{k} W_{j}-W_{j} B_{k} \text { for } j, k=1,2 \ldots, m .
$$

In this case the solution Q is unique and satisfies

$$
\|Q\| \leqq c_{m} \delta^{-1}\|\underset{\sim}{W}\|_{K \rightarrow H^{m}} .
$$

The constant c_{m} is defined by

$$
c_{m}=\inf (2 \pi)^{-m} \int|\hat{g}(\xi)| d \xi
$$

where the infimum is taken over all functions $g: I^{m} \rightarrow \mathbb{R}^{m}$, each component g_{k} of which is the Fourier transform of an L_{1}-function and satisfies $g_{k}(x)=x_{k}|x|^{-2}$ if $|x|>1-\varepsilon$ for some $\varepsilon>0$.

We remark that $1<c_{m}<\infty$.

The Fourier transform being used is the following:

$$
\hat{f}(\xi)=\int e^{-i<x, \xi\rangle} f(x) d x
$$

with the Fourier inversion formula

$$
f(x)=(2 \pi)^{-m} \int e^{i<x, \xi>\hat{f}}(\xi) d \xi
$$

In the special case when $\sigma(\underset{\sim}{A}) \subset \bar{B}(O, K)$ and $\sigma(\underset{\sim}{B}) \cap B(O, K+\delta)=\phi$ for some $k \geqslant 0$, the above result has been proved by Bhatia and Davis with c_{m} replaced by 1 .

Theorem 1 will be proved in section 7 after the functional calculus has been developed.

Corollary 1. Let $H=K$, and for closed subsets X and Y of \mathbb{R}^{m}, let E_{X} and F_{Y} denote the corresponding spectral projections of $\underset{\sim}{A}$ and $\underset{\sim}{B}$ respectively. Suppose $\delta=\operatorname{dist}(X, Y)>0$. Then

$$
\left\|E_{X} F_{Y}\right\| \leq c_{m} \delta^{-1}\|\underset{\sim}{A}-\underset{\sim}{B}\|_{H \rightarrow H^{m}}
$$

Proof. Let $H_{X}=E_{X}(H), \quad H_{Y}=F_{Y}(H), Q=\left.E_{X}\right|_{Y} \in L\left(H_{Y}, H_{X}\right)$, $W_{j}=E_{X}\left(A_{j}-B_{j}\right) F_{Y} \in L\left(H_{Y}, H_{X}\right)$, and apply theorem 1 .

The following corollary can be deduced from the first as in the proof of theorem 5.1 of [2] for the case $m=1$.

Corollary 2. Suppose that $H=K=\mathbb{C}^{N}$ for some $N<\infty$, that $\underset{\sim}{A}$ has joint eigenvalues $\underset{\sim}{\alpha}, \ldots, \underset{\sim}{\alpha} \underset{N}{\alpha} \in \mathbb{R}^{m}$, and that $\underset{\sim}{B}$ has joint eigenvalues $\underset{\sim}{\beta}, \ldots,{\underset{\sim}{\beta}}_{N} \in \mathbb{R}^{m}$. If $\|\underset{\sim}{A}-\underset{\sim}{B}\| \leq \frac{\varepsilon}{C_{m}}$ then there exists a permutation σ of the index set $\{1,2, \ldots, m\}$ such that $|\underset{\sim}{\alpha} \underset{\sim}{x}-\underset{\sim}{\beta}(k)| \leq \varepsilon$ for $k=1,2 \ldots, N$.

3. CLIFFORD ALGEBRAS, IF (in)

The vector space \mathbb{R}^{n+1} is embedded in a 2^{n}-dimensional algebra \mathbb{F} (n) over \mathbb{F} as follows. Let $e_{0}, e_{1}, \ldots, e_{n}$ be the standard basis of \mathbb{R}^{n+1} and denote the basis vectors of $\mathbb{F}_{(n)}$ by e_{S}, where S is a subset of $\{1,2, \ldots, n\}$. Make the identifications $e_{0}=e_{\phi}$ and $e_{j}=e_{\{j\}}$ for $1 \leqq j \leqq n$, and define the multiplication on $\mathbb{F}_{(n)}$ by taking e_{0} as the unit 1,

$$
\begin{aligned}
& e_{j}^{2}=-e_{0}=-1 \text { for } 1 \leqq j \leqq n ; \\
& e_{j} e_{k}=-e_{k} e_{j}=e_{\{j, k\}} \text { for } 1 \leqq j<k \leqq n ; \\
& e_{j_{1}} e_{j_{2}} \cdots e_{j_{S}}=e_{S} \text { if } 1 \leqq j_{1}<j_{2}<\ldots<j_{S} \leqq n \text { and }
\end{aligned}
$$

$$
S=\left\{j_{1}, j_{2}, \ldots, j_{S}\right\}
$$

The product of two elements $\lambda=\int_{S} \lambda_{S} e_{S}, \lambda_{S} \in \mathbb{F}$, and $\mu=\sum \mu_{T} e_{T}, \mu_{T} \in \mathbb{F}$, is $\lambda \mu$ where

$$
\lambda \mu=\sum_{S ; T} \lambda_{S} \mu_{T} e_{S} e_{T} .
$$

Note that $e_{S} e_{T}$ is again a basis vector of $\mathbb{F}_{(n)}$.
The Clifford algebras $\mathbb{R}_{(1)}$ and $\mathbb{R}_{(2)}$ are the complex numbers and the quaternions respectively. Basic properties of Clifford algebras can be found in Brackx, Delanghe and Sommen [3].

An involution $\lambda \rightarrow \bar{\lambda}$ is defined by $\bar{\lambda}=\sum_{S} \bar{\lambda}_{S} \bar{e}_{S}$ where $\bar{\lambda}_{S}$ is the complex conjugate of λ_{S} and $\bar{e}_{S}= \pm e_{S}$, the sign being chosen so that $e_{S} \bar{e}_{S}=\bar{e}_{S} e_{S}=1$.

Not all elements of $\mathbb{F}_{(n)}$ are invertible. One important reason for using Clifford algebras, however, is that non-zero elements $x \in \mathbb{R}^{n+1}$ do have inverses, namely $x^{-1}=|x|^{-2} \bar{x}=\left(\sum_{0}^{n} x_{k}{ }^{2}\right)^{-1}\left(x_{0}-x_{1} e_{1}-x_{2} e_{2} \ldots-x_{n} e_{n}\right)$.

4. CLIFFORD ANALYSIS

Let Ω be an open subset of \mathbb{R}^{n+1}. A function $f: \Omega \rightarrow \mathbb{F}_{(n)}$ is called left monogenic if $D f=0$. Here $D=\sum_{0}^{n} \frac{\partial}{\partial x_{j}} e_{j}$ and $D f=\sum_{j=0}^{n} \sum_{S} \frac{\partial f_{S}}{\partial x_{j}} e_{j} e_{S}$ when $f=\sum_{S} f_{S} e_{S}$ for functions $f_{S}: \Omega \rightarrow \mathbb{F}$. Much of the theory of analytic functions in complex analysis generalizes to results concerning left monogenic functions. See [3]. In particular there is an analogue of Liouville's theorem:

THEOREM 2. If $\mathrm{f}: \mathbb{R}^{\mathrm{n}+1} \rightarrow \mathbb{F}_{(\mathrm{n})}$ is a bounded left monogenic function on all of \mathbb{R}^{n+1}, then f is constant.

It is not hard to verify that the functions g_{z} defined for $z, x \in \mathbb{R}^{n+1}$ by

$$
g_{z}(x)=|x-z|^{-n-1}(\overline{x-z})
$$

5. FUNCTIONAL CALCULUS

Let $\underset{\sim}{T}=\left(T_{1}, \ldots, T_{m}\right)$ be a commuting m-tuple of bounded operators, each acting on a Banach space $X \underset{\mathrm{~m}}{\mathrm{over}} \mathbb{F}$. We define a kind of joint spectrum $\sigma(\underset{\sim}{T})$ by $\sigma(\underset{\sim}{T})=\left\{\lambda \in \mathbb{R}^{m}: \sum_{1}\left(T_{j}-\lambda_{j}\right)^{2}\right.$ is not invertible in $L(X)\}$. This defines a compact subset of \mathbb{R}^{m} which may reasonably be called a joint spectrum for a large class of m-tuples $\underset{\sim}{T}$. In particular, if the T_{j} are self-adjoint operators on a Hilbert space, then $\sigma(\underset{\sim}{T})$ is the usual joint spectrum. For a single operator, $\sigma(\underset{\sim}{T})$ is the intersection of the spectrum with the real line.

For $n \geqq m$, we identify $\mathbb{R}:^{m}$ with the span of $e_{1}, e_{2}, \ldots, e_{m}$ in \mathbb{R}^{n+1}. Then $\mathbb{R}^{m} \subset \mathbb{R}^{n+1} \subset \mathbb{F}(n)$. We also form the Banach space $X_{(n)}=X \otimes \mathbb{R}_{(n)}=\left\{u=\sum_{S} u_{S} e_{S}: u_{S} \in x\right\}$ and define $T=\sum_{1}^{m} T_{j} e_{j} \in L\left(X_{(n)}\right)$ by $T(u)=\sum_{j, S} T_{j}\left(u_{S}\right) e_{j} e_{S}$. It is then possible to prove the following result.

THEOREM 3. $\sigma(\underset{\sim}{T})=\left\{\lambda \in \mathbb{R}^{m}:(T-\lambda I)\right.$ is not invertible in $\left.L\left(X_{(n)}\right)\right\}$.
In the following, for an algebra A of functions on \mathbb{R}^{m}, let
A_{0} denote the subspace of functions f with compact support, sptf. For a compact subset K of \mathbb{R}^{m}, let $H(K)$ denote the space of \mathbb{F}-valued functions which are real analytic in a neighbourhood of K, taken with its usual topology. For $f \in A_{0}$ and $g \in H(s p t f)$, let $M_{f}(g)=f g$.

We say that $\underset{\sim}{T}$ has a functional calculus (T, A) based on \mathbb{R}^{m} if the following conditions hold:
A is a topological algebra of functions from \mathbb{R}^{m} to \mathbb{F}, with addition and multiplication defined pointwise, and $T: A \rightarrow L(X)$ is a continuous algebra homomorphism such that
(a) $\quad C_{0}^{\infty}\left(\mathbb{R}^{m}\right) \subset A$;
(b) if $f \in A_{0}$, then $M_{f}: H($ sptf $) \rightarrow A$ is continuous;
(c) I has compact support;
(d) $\quad \underline{T}(\theta p)=p(\underset{\sim}{T})$ for all polynomials $p: \mathbb{R}^{m} \rightarrow \mathbb{F}$, where $\theta \in C_{0}^{\infty}\left(\mathbb{R}^{m}\right)$ is 1 on a neighbourhood of sptT.

The support of \mathbb{T}, sptI , is the smallest closed set K such that $\underline{\underline{T}}(f)=0$ for all $f \in A_{0}$ with $K \cap$ sptf $=\varnothing$. The support is well-defined in view of condition (a).

Let $A_{(n)}$ be the algebra of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{F}(n)$ of the form $f=\int_{S} f_{S} e_{S}$ where $f \in A$. The homomorphism T extends in a natural way to a homomorphism $\underset{=}{T}: A_{(n)} \rightarrow L\left(X_{(n)}\right)$. Indeed $\underline{\underline{T}}(f)=\sum \underline{T}\left(f_{S}\right) e_{S}$, and \xrightarrow{T} has the same support as $\underline{\underline{T}}$.

In the case of a single operator, the following result is due to Foiaş [6].

THEOREM 4. If $\underset{\sim}{T}$ has a functional calculus (\underline{T}, A) based on \mathbb{R}^{m} then

$$
\sigma(\underline{T})=\operatorname{spt} t
$$

Proof. It is easy to show that $\sigma(\underset{\sim}{T}) \subset$ sptT. We shall prove that sptT $\subset \sigma(T)$, which is what we require for the proof of theorem 1. Let $f \in A_{0}$ with sptf $\cap \sigma(\mathbb{T})=\phi$. We have to show that $T(f)=0$.

Let n be an odd integer, $n \geqq m$, and recall the embeddings $\mathbb{R}^{\mathbb{m}} \in \mathbb{R}^{n+1} \subset \mathbb{F}_{(n)}$. For $z \in \mathbb{R}^{n+1}$, define functions $n_{z}: \mathbb{R}^{m} \rightarrow \mathbb{F}_{(n)}$
and $g_{z}: \mathbb{R}^{m} \sim\{z\} \rightarrow \mathbb{F}(n)$ by $n_{z}(x)=|x-z|^{n-1}(x-z)$ and $g_{z}(x)=|x-z|^{-n-1}(\overline{x-z})$. If $\psi \in A_{0}$, then by condition (a) above, $\psi h_{z} \in A$, and if $z \neq \operatorname{spt} \psi, \psi_{g_{z}} \in A$. As h_{z} is a polynomial, $h_{z}(\underset{\sim}{T})$ is defined and, by theorem 3, is invertible when $z \underset{\sim}{\mid} \sigma(\underset{\sim}{T})$. Also $g_{z} h_{z}=1$ except at z.

Construct a function $F: \mathbb{R}^{n+1} \rightarrow L\left(X_{(n)}\right)$ as follows. If $z \ddagger$ sptf , define $F(z)=\underset{=}{T}\left(f g_{z}\right)$, while if $z \oint \sigma(\underset{\sim}{T})$, define $F(z)=h_{z}(\underset{\sim}{T})^{-1} \underline{I}(f)$. It is straightforward to check that F is well-defined. It takes somewhat more work to check that, for all $u \in X_{(n)}$ and $v \in X^{*}$, $\langle F(z) u, v\rangle$ is a left monogenic function of z which converges to zero at infinity. By theorem 2, $F(z)$, and hence also $T(f)$, is zero.

6. OPERATORS WHICH GENERATE BOUNDED GROUPS

In this section $\mathbb{F}=\mathbb{C}$ and $\underset{\sim}{T}$ is an m-tuple of commuting operators $T_{j} \in L(X)$ which satisfy $\| \exp \left(\right.$ isT $\left._{j}\right) \| \leqq M$ for all $s \in \mathbb{R}$ and some $M>0$ 。

Such $\underset{\sim}{T}$ have a functional calculus $\left(\underline{T}, V_{L_{1}}\left(\mathbb{R}^{m}\right)\right)$ based on \mathbb{R}^{m} and defined as follows. The algebra $\check{L}_{1}\left(\mathbb{R}^{m}\right)$ is the space of inverse Fourier transforms $f=\check{g}$ of functions $g \in L_{1}\left(\mathbb{R}^{m}\right)$. So $g=\hat{f}$ and we take $\|f\|=(2 \pi)^{-m}\|g\|_{L_{1}}$ which makes $\tilde{L}_{1}\left(\mathbb{R}^{m}\right)$ a Banach algebra under pointwise multiplication and addition. The homomorphism $\mathbb{T}: \check{L}_{1}\left(\mathbb{R}^{m}\right) \rightarrow L(X)$ is defined by

$$
\underline{T}(f)=(2 \pi)^{-m} \int_{\mathbb{R}^{m}} \mathrm{e}^{i<\frac{T}{\sim}, \xi>} \hat{f}(\xi) d \xi .
$$

Verification of condition (c) of the previous section can be accomplished by an adaptation of the proof of theorem 4 using an approximation argument. Alternatively, it follows from a Paley-Wiener argument as used by Taylor [11] and Anderson [1].

Note that $\underset{=}{T}(f)$ is given by the same formula, where $f=\int_{S} f_{S} e_{S}$, ${ }_{f} \in \check{L}_{1}\left(\mathbb{R}^{m}\right)$ and $\hat{f}=\int_{S} \hat{f}_{S} e_{S}$.

If $0 \| \sigma(T)$, then, by theorem 2, $T=\sum_{1}^{m} T_{j} e_{j}$ is invertible in $L\left(X_{(n)}\right)$. We then have the following formulae for T^{-1} :

$$
\begin{aligned}
T^{-1} & =-\left(\sum_{1}^{m} T_{j}^{2}\right)^{-1} T \\
& =\frac{T}{\underline{T}(g)} \\
& \left.=(2 \pi)^{-m} \int_{\mathbb{R}^{m}} e^{i<T}, \xi\right\rangle \hat{g}(\xi) d \xi
\end{aligned}
$$

where $g(x)=|x|^{-2} \bar{x}=-|x|^{-2} x$ on a neighbourhood of $\sigma(\underset{\sim}{T})$ in \mathbb{R}^{m} and $\hat{g}_{k} \in L_{1}\left(\mathbb{R}^{m}\right)$.

7. PROOF OF THEOREM 1

We are now in a position to indicate a proof of theorem 1 concerning the system of operator equations

$$
A_{j} Q-Q B_{j}=W_{j} \text { for } j=1,2, \ldots, m
$$

where $\underset{\sim}{A}$ and $\underset{\sim}{B}$ are commuting m-tuples of bounded self-adjoint operators defined on Hilbert spaces H and K respectively. We write this system as

$$
T(Q)=W
$$

where $W=\sum_{j}^{m} W_{j} e_{j} \in X_{(n)}$ with $X=L(K, H)$ and $T=\sum_{1}^{m} T_{j} e_{j} \in L(X(n))$ with $T_{j}(Q)=A_{j} Q-Q B_{j}$.

We solve this equation for $Q \in X(n)$ and then determine when the solution is in X (that is, when $Q=Q_{0} e_{0}$).

Consider first the case $\mathbb{F}=\mathbb{C}$. Note that the operators T_{j} commute and that

$$
e^{i T} j^{s}(Q)=e^{i A_{j} s} Q e^{-i B_{j} s} \text { for } s \in \mathbb{R}
$$

Hence the operators $e^{i T} j^{s}$ are unitary. So the preceding section can be applied to construct a functional calculus $\left(\underline{T}, \check{L}_{1}\left(\mathbb{R}^{m}\right)\right)$ for $\underset{\sim}{T}$ based on \mathbb{R}^{m} 。

The next task is to find $\sigma(\underset{\sim}{T})$. It will be shown in a fuller version of this paper [8] that $\sigma(\underset{\sim}{T})=\sigma(\underset{\sim}{A})-\sigma(\underset{\sim}{B})$. Since we have assumed $\delta=\operatorname{dist}(\sigma(\underset{\sim}{A}), \sigma(\underset{\sim}{B}))>0$, it follows that $\sigma(\underset{\sim}{T}) \cap B(0, \delta)=\phi$. So T is invertible, and

$$
T^{-1}=-\left(\sum_{1}^{m} T_{j}^{2}\right)^{-1} T=T\left(g_{(\delta)}\right)
$$

where $g(\delta)(x)=\delta^{-1} g\left(\delta^{-1} x\right)$ and $g(x)=-|x|^{-2} x$ for $|x|>1-\varepsilon$
(for some $\varepsilon>0$) and $\hat{g}_{k} \in L_{1}\left(\mathbb{R}^{m}\right.$) for $1 \leqq k \leqq m$.
The solution of the operator equation $T(Q)=W$ is thus

$$
\begin{aligned}
Q & =T^{-1}(W) \\
& =-\left(\sum_{1}^{m} T_{i}^{2}\right)^{-1} \sum_{j, k} T_{j}\left(W_{k}\right) e_{j} e_{k} \\
& =\left(\sum_{1}^{m} T_{i}^{2}\right)^{-1}\left\{\sum_{k=1}^{m} T_{k}\left(W_{k}\right)-\sum_{1 \leqq j<k \leqq m}\left(T_{j}\left(W_{k}\right)-T_{k}\left(W_{j}\right)\right) e_{j} e_{k}\right\}
\end{aligned}
$$

So Q belongs to X precisely when $T_{j}\left(W_{k}\right)=T_{k}\left(W_{j}\right)$ for all j, k. This is the compatibility condition $A_{j} W_{k}-W_{k} B_{j}=A_{k} W_{j}-W_{j} B_{k}$ stated in the theorem.

It remains for $\|Q\|$ to be estimated. If $\delta=1$ and the compatibility condition is satisfied, then

$$
\left.Q=Q_{0}=\left[(2 \pi)^{-m} \int e^{i\langle T}, \underline{\sim}\right\rangle_{\hat{g}}(\xi)(W) d \xi\right]_{0}
$$

the subscript 0 denoting the scalar part (coefficient of e_{0}). So

$$
\left.Q=-(2 \pi)^{-m} \int e^{i\langle T}, \xi\right\rangle \sum_{k=1}^{m} \hat{g}_{k}(\xi)\left(W_{k}\right) d \xi
$$

Hence,

$$
\|\mathrm{Q}\| \leqq(2 \pi)^{-\mathrm{m}} \int|\hat{g}(\xi)| \mathrm{d} \xi\|\underset{\sim}{\sim}\| \underset{\sim}{w_{\|}} \| H^{m}
$$

For other values of δ the required estimate follows from a scaling of this one.

This completes the proof for spaces defined over $\mathbb{F}=\mathbb{\mathbb { W }}$. The result for $\mathbb{F}=\mathbb{R}$ is obtained by complexifying X to obtain $X_{\mathbb{C}}$ and observing that the operators T and T^{-1} in $L\left(\left(X_{\mathbb{T}}\right)_{(n)}\right)$ preserve the subspace $X_{(n)}$.

8. EPILOGUE

The technique developed in this paper can be applied in the study of more complicated equations (as long as the dependence of W on Q is linear). We can also consider m-tuples of commuting operators $\underset{\sim}{A}$ and $\underset{\sim}{B}$ which themselves have a functional calculus based on \mathbb{R}^{m}, without A_{j} and B_{j} necessarily being self-adjoint. Further we can take symmetric norms on Q and W different from the operator norm. Such results will be presented in more detailed papers $[8,9]$. Also included will be a spectral mapping theorem and a comparison of $\sigma(\underset{\sim}{T})$ with other definitions of joint spectrum.

REFERENCES

[1] R.F.V. Anderson, The Weyl Functional Calculus, J. Funct. Anal. 4 (1969), 240-267.
[2] R. Bhatia, Ch. Davis and A. McIntosh, Perturbations of spectral subspaces of normal operators, Linear Algebra and its Applications, 52/53 (1983),45-67.
[3] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1982.
[4] I. Colojoara and C. Foias, Theory of Generalised Spectral Operators, Mathematics and its Applications Vol. 9, Gordon and Breach, New York, London, Paris, 1968.
[5] Ch. Davis, Perturbation of spectrum of normal operators and of commuting tuples, Linear and Complex Analysis Problem Book, (ed. V.P. Havin, S.V. Kruscëv, N.K. Nikol'skii), Springer 1984, pp. 219-222.
[6] C. Foias, Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. (2) 84 (1960), 147-158.
[7] S. Kantorovitz, Classification of operators by means of their functional calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224.
[8] A.G.R. McIntosh and A.J. Pryde, A functional calculus for commuting tuples of operators, and applications, in preparation.
[9] A.G.R. McIntosh and A.J. Pryde, The solution of systems of operator equations using Clifford algebras, in preparation.
[10] M. Murray, The Cauchy integral, Calderon commutators, and conjugations of singular integrals in In n, to appear.
[11] M.E. Taylor, Functions of several self-adjoint operators, Proc. Am. Math. Soc., 19 (1968), 91-98.

School of Mathematics and Physics Macquarie University
North Ryde NSW 2113 AUSTRALIA

Department of Mathematics
Monash University
Clayton VIC 3168
AUSTRALIA

