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THE SOLUTION OF SYSTEMS OF OPERATOR EQUATIONS 

USING CLIFFORD ALGEBRAS 

Alan Mcintosh and Alan Pryde 

1. INTRODUCTION 

Our aim is t1wfold. We develop a functional calculus for commuting 

m-tuples of Banach space opel"ators, and then use this functional calculus 

to solve a system of operator equations and obtain estimates for the 

solution. The new ingredient is the use of Clifford algebras. 

As a corollary we obtain results on the perturbation of the spectral 

subspaces of commuting self-adjoint operators. In particular we answer an 

open question, stated for example on p. 221 of [ 5], on the spectral 

perturbation of self-adjoint matrices. 

Our idea of using Clifford algebras is derived from the vmrk of 

R. Coifman and M. Murray [10]. The functional calculus for several operators 

is a generalization of that developed in S. Kantorovitz [7] and I. Colojoara 

and C. Foia~ [4] for a single operator. Our results on systems of operator 

equations extend results of R. Bhatia, Ch. Davis and A. Mcintosh [2] 

concerning single equations. Thanks are due to J. Picton-Warlow with 

whom we have had several stimulating discussions. 

Banach spaces I( 

" and Hilbert spaces H and I( are defined over the 

field IF , where :IF denotes either the real field IR or the complex field 

[ . 

2. OPERATOR EQUATIONS 

To motivate our discussion of the functional calculus, we state here 

our results on systems of operator equations. 

Throughout this s,ection, 

denote commuting m-tuples of bounded self-adjoint operators defined on 

Hilbert spaces H and K respectively. The joint spectrum of A is 

denoted a (A) . 
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o = dist (u(~) , CJ(B)) > 0 and let W. E 
J 

for j = 1 ,2 0 0 ,m 0 Then the system of opeEator equations 

A.Q 
J 

QB. 
J 

W. for j 
J 

has a solution Q E L(K,H) if and only .if 

1 ,2, 0. ,m 

L(K,H) 

WkB. 
- J 

AkW. 
- J 

W .B, for j ,k 
J ,{ 1 ,2 .. ,m • 

In this case the solution Q is unique and satisfies 

The constant c is defined by 
m 

where the infimum is taken over' all functions g : IRm -> mm, each 

component gk of which is the Fourier 

satisfies gk(x) = x)x r-2 if lx[ 

We remark that 1 < c < oo 
m 

> 

tt'ansform of an L1-function 

1-E: for some € > 0 

The Fourier transform being used is the following: 

vJi th the Fourier inversion formula 

f(x) ( 2 , -m ( i <x, £;>:;,\ ( E;' d E; rr; J e r 1 

and 

In the special case when o(Al c B(O,K) and a(§) n B(O,K+ o) ¢ 

for some K :::: 0 , the above result has been proved by Bh=ttia =tnd Davis 

with em replaced by 1 . 
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Theorem 1 will be proved in section 7 after the functional 

calculus has been developed, 

Corollary 1 • Let H = K , and for closed subsets X and Y of 1R m, 

let Ex and F'y denote the corresponding spectral projections of A 

and Q respectively. Suppose 6 = dist(X,Y) > 0 . Then 

Proof. 

Ex( A.-B. )F y E L (HY,HX), and apply theorem 1. 
J J 

II 

The following corollary can be deduced from the first as in the proof 

of theorem 5.1 of [2] for the case m = 1 

Corollary 2. Suppose that H = I( = ~N for some N < oo, that A has 

joint eigenvalues 9\1 , ••• '~N E JR•m, and that B has joint eigenvalues 

If II~ - §II 

{1 ,2, ... ,m} 

< .S then there exists a permutation a 
em 

of the index set such that ~~k- ~o(k)l S s for 1< = 1 ,2 •• ,N 

3. CLIFFORD ALGEBRAS, JF:(h) 

The vector space 1R '1+ 1 is embedded in a 2n -dimensional algebra ·JF (n) 

over JF as follows. Let be the standard basis of JRn+l 

and denote the basis vectors of JF ( n) by es , where S is a subset of 

{1 ,2, ... ,n} Make the identifications and for 

'I ;;: j ;;: n , and define the multiplication on JF(n) by taking e0 as 

the unit 1, 

2 
e. 

J 
-1 for 1 ;; j $ n 

if and 
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The product of two elements and 

Jl = L llreT , llr E JF , is All where 

Note that is again a basis vector of lF(n) . 

The Clifford algebras JR( 1 ) and ~ 21 are the complex numbers 

and the quaternions respectively. Basic properties of Clifford algebras 

can be found in Brackx, Delanghe and Sommen [3]. 

An involution A + A is defined by ~ = L ~S~S where AS is the 
s 

complex conjugate of As and es = ± es , the sign being chosen so that 

Not all elements of lF(n) are invertible. One important reason 

for using Clifford algebras, however, is that non-zero elements x E JR n+ 1 
n 

X- 1 -- I x ~-2 x- -- ( 1." xk2 ) -1 ( ) do ,have inverses, namely L x0-x1e1-x2e2 .... -xnen 

4. CLIFFORD ANALYSIS 

Let n be an open subset of JR n+ 1 . 

called left 
n 

Df = _2.0 L 
J= s 

monogenic if Df = 0. Here 
Hfg 1." -ax. ejeS when f = L fses 

J ~ 

0 

A function 
n a 

D = 8 Clxj ej 

for functions 

of the theory of analytic functions in complex analysis 

f: n + JF(n) is 

and 

f :n + JF Much s 
generalizes to 

results concerning left monogenic functions. See [3]. In particular 

there is an analogue of Liouville's theorem: 

THEOREM 2. If f ·. ,n+1 JF 
JJl + (n) is a bounded left monogenic function on 

all of JRn+ 1 , then f is constant. 

It is not hard to verify that the functions gz defined for 

z,x E JR:n+1 by 

g (x) = lx-zl-n-1 (x-z) 
z 

are left monogenic for x i z . 
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5. FUNCTIONAL CALCULUS 

Let T = (T1 , ... ,Tm) be a commuting m-tuple of bounded opet·ators, 

each acting on a Banach space X over 1F. We define a kind of joint 
m 

spectrum a(T) by a(T) = {A E JRm: L{T .-A .. )2 is not invertible 
1 J J 

in L( X) } • This defines a compact subset of JRm which may reasonably 

be called a joint spectrum for a large class of m-tuples T . In 

particular, if the T. 
J 

are self-adjoint operators on a Hilbert space, 

then a(T) is the usual joint spectrum. For a single operator, a(T) 

is the intersection of the spectrum with the real line. 

m 
For n ~ m, we identify JR· with the span of e1 ,e2 , ... ,em in 

Then Til m c JR n+ 1 c 1F We also form the Banach space (n). m 

x(n) =X® JR(n) = {u = Lsuses : usE X} and define T = IT .e. E L (X(n)) 
1 J J 

by T(u) =j~STj(uS)ejeS . It is then possible to prove the following 

result. 

THEOREM 3. (T - AI} .is not invertible in L(X(n}}} . 

In the following, for an algebra A of functions on JRm , let 

Ao denote the subspace of functions f with compact support, sptf 

For a compact subset K of JRm 
' 

let H( K) denote the space of 1F -valued 

functions which are real analytic in a neighbourhood of K , taken with its 

usual topology. For f E A0 and g E H( sptf) , let Mf(g) = fg . 

We say that T has a functional calculus (T,A) based on JRm 

if the following conditions hold: 

A is a topological algebra of functions from JR m to 1F, with 

addition and multiplication defined pointwise, and T : A + L(X) is 

a continuous algebra homomorphism such that 
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(a) 

(b) if f E A0 , then Mf : H(sptf) + A is continuous; 

(c) T has compact support; 

(d) T(8P) p CE,) for· all polynomials p : IR m ->- JF , 

where 8 E C00 (IR ro) is 0 . on a neighbourhood of spt! 

The support of T , spti , is the smallest closed set K such 

that T(f) :: 0 for all f E A with K n sptf = rp . 
0 

The support is 

1-1ell-defined in view of condition (a). 

Let A ( n) be the algebra of functions f : IR m + JF ( n) of the 

form where f E A Tt1e homomorphism extends in a 

natut'al way to a homomorp!1ism T : A(n) ..,> l.(X(n)) Indeed 

T has the same support as T 
= 

In the case of a single operator, the following result is due to 

Foias [6]. , 

THEOREI-1 4. If T has a functional calcu_lus (T ,A) m 
based on IR 

then 

Proof. It is easy to show that a(Il c spt! . We shall p!'Ove that 

spt~ c o(T) vJhich is what we requil"e for the proof of theorem ·1 • 

Let f E A 
0 

with sptf n O(!) = ¢ He have to show that 

')2(f) = 0 

Let n be ar. odd integer, n 2: m , and recall the embeddings 

IRm c IR n+l c JF (n) Foe z E IR n+·l , define functions h · IR m + JF 
z • · (n) 

imd_ gz : IRrn cv { z} +lF (n) 

gz (x) = I ~-n-1 x-z · (x-z) 

\}!h E A and if z "- spt\jJ , < z I 

by h rv) 

z \ ~"'- I 

If \jJ E Ao 

' 
\jJg E oz A 

I 1 n-1 
x-o;l (x-z) and 

then by condition (a) above, 

As 1\ is a polynomial, h (T) z ~ 

is defined and, by theorem 3, is invertible 1-1hen z 'f oq:J Also 

gzhz :: 1 except at z . 
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Construct a function F : mn+l + L(X(n)) as follows. If z ~ sptf , 

define 

It is straightforward to check that F is well-def.i.ned. It takes 

somewhat more work to check that, for all u E X(n) and v E X* , 

<F(z)u,v> is a left monogenic function of z which converges to zero 

at infinity. By theorem 2, F(z) , and hence also T(f) , is zero. ~ 

6. OPERATORS WHICH GENERATE BOUNDED GROUPS 

In this section IF = IT: and T is an m-tuple of commuting operators 

T. E L(X) 
J 

which satisfy 1\exp(isT.lll :£ M 
J 

for all s E m and some 

M > 0 

Such T have a functional calculus 
v m 

(I ' L,l (lli ) ) based on 

m m and defined as follows. The algebra L1 ( m m) is tl1e space of 

invense Fourier transforms f = g of functtons g E L1 ( lli m ) • 

So g = f and we take llfll = (2rr)-mjjgjjL wt1ictJ makes L1 (llim) a 
1 

Banach algebr·a under pointwise multiplication and addition. The 

homomorphism ! : L1 (lli m) + L(X) is defined by 

Verification of condition (c) of the previous section can be 

accomplished by an adaptation of the proof of theorem 4 using an 

approximation argument. Alternatively, j_t folloHs from a Paley-Wiener 

argument as used. by Taylor [ 11] and Anderson [ 1 ] . 

Note that T(f) is given by the same formula, where f = ~fses , 

fs E L1 (mm) 

m 
If 0 ~ cr(T) , then, by theorem 2, T = L T .e. is invertible in 

1 J J 

L( x(n) l We then have the following formulae for T-1 : 
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m 

= -(IT 2 l-1T 
1 j 

= ~(g) 

= (2TI)-m J m ei<!,~>g(~)d~ 
IR 

where g(x) =lxl-2x = -lxl-2x on a neighbourhood of O(!) in IRm 

and gk E L1 ( IR m) 

1. PROOF OF THEOREM 1 

We are now in a position to indicate a proof of theorem 1 concerning 

the system of operator equations 

1 ,2, ... ,m 

where A. and B ace commuting m~tuples of bounded self-adjoint operators 

defined on Hilbert spaces H and K respectively. We write this system 

as 

T(Q) :: W 

m tTl 

where W = ~· Wjej E X(n) with X" L( K, H) and T ::: r T j e j E L (X ( n) ) 

with Tj(Q) = A.jQ-QBj 

We solve this equation foP Q E X(n) and then determine when the 

solution is in X (that is, when Q = Q0e0 ) 

Conside!' first the case K>'= ~ • Note that the operators T. 
J 

commute and that 

iT.s 
e J (Q) 

iT.s 

iA.s 
= e J Q e 

-iB.s 
J for s E IR . 

Hence the operators e J are unitary, So the preceding section can be 

applied to construct a functional calculus (~, i 1 (IRm)) for T based on 

IR m • 
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The next task is to find a(T). It will be shown in a fuller 

version of this paper [8] that a(T) a(A) - a(B) . Since we have 

assumed 6 = dist(a(~l , a(~)) > 0 , it follo~rs that a(T) n B(0,6) ¢ . 

So T is invertible, and 

m 

(f T/)-1 T = Jlg(6)) 

-1 -1 I I 2 where g( 6 )(xl=o g(6 x) and g(x) =- x- x for lx)>1-s 

(for some s > 0) and 
A m 
gk E Ll (JR ) for 1 ~ k ~ m 

The solution of the operator equation T ( Q) = W is thus 

is the compatibility condition A/k 

theorem~ 

stated in the 

It remains for II Oil to be estimated. If o = 1 and the compatibility 

condition is satisfied, then 

o = o0 = [ ( 2 n l -m f 

the subscript 0 denoting the scalar part (coefficient of e0 l . So 

Hence, 

For other values of 6 the required estimate follows from a scaling of this 

one. 
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This completes the proof for spaces defined over JF = \1:. The result 

for JF= JR is obtained by complexifying X to obtain X a: and observing 

that the operators T and T-1 in L((Xrr;) (n)) presel"Ve the subspace X (n) 

8. EPILOGUE 

The technique developed in this paper can be applied in the study of 

more complicated equations (as long as the dependence of W on Q is 

linear). We can also consider m-tuples of commuting operators A and B 

which themselves have a functional calculus based on JRm , without A. 
J 

and 

B. necessar'ily being self -adjoint. FUJ~ther we can take symmetric norms on 
J 

Q and W different from the operator· norm. Such results \'>Till be presented 

in more detailed papers [8,9]. Also included will be a spectral mapping 

theorem and a comparison of o(T) with other definitions of joint spectrum. 
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