THE SOLUTION OF SYSTEMS OF OPERATOR EQUATIONS

USING CLIFFORD ALGEBRAS

Alan McIntosh and Alan Pryde

1. INTRODUCTION

Our aim is twofold. We develop a functional calculus for commuting m-tuples of Banach space operators, and then use this functional calculus to solve a system of operator equations and obtain estimates for the solution. The new ingredient is the use of Clifford algebras.

As a corollary we obtain results on the perturbation of the spectral subspaces of commuting self-adjoint operators. In particular we answer an open question, stated for example on p. 221 of [5], on the spectral perturbation of self-adjoint matrices.

Our idea of using Clifford algebras is derived from the work of R. Coifman and M. Murray [10]. The functional calculus for several operators is a generalization of that developed in S. Kantorovitz [7] and I. Colojoara and C. Foiaş, [4] for a single operator. Our results on systems of operator equations extend results of R. Bhatia, Ch. Davis and A. McIntosh [2] concerning single equations. Thanks are due to J. Picton-Warlow with whom we have had several stimulating discussions.

Banach spaces X and Hilbert spaces H and K are defined over the field ${\rm I\!F}$, where ${\rm I\!F}$ denotes either the real field ${\rm I\!R}$ or the complex field ${\rm I\!C}$.

2. OPERATOR EQUATIONS

To motivate our discussion of the functional calculus, we state here our results on systems of operator equations.

Throughout this section, $\underline{A} = (A_1, \dots, A_m)$ and $\underline{B} = (B_1, \dots, B_m)$ denote commuting m-tuples of bounded self-adjoint operators defined on Hilbert spaces H and K respectively. The joint spectrum of \underline{A} is denoted $\sigma(A)$.

$$A_jQ - QB_j = W_j$$
 for $j = 1, 2, ..., m$

has a solution $Q \in L(K,H)$ if and only if

$$A_j W_k - W_k B_j = A_k W_j - W_j B_k$$
 for j,k = 1,2...,m.

In this case the solution $\ensuremath{\,\mathbb{Q}}$ is unique and satisfies

$$\|\mathbf{Q}\| \leq \mathbf{c}_{\mathbf{m}} \, \delta^{-1} \, \|\mathbf{W}\|_{K \to H^{\mathbf{m}}} \, .$$

The constant c_m is defined by

$$c_{m} = \inf(2\pi)^{-m} \int |\hat{g}(\xi)| d\xi$$

where the infimum is taken over all functions $g: \mathbb{R}^m \to \mathbb{R}^m$, each component g_k of which is the Fourier transform of an L_1 -function and satisfies $g_k(x) = x_k |x|^{-2}$ if $|x| > 1-\varepsilon$ for some $\varepsilon > 0$.

We remark that $1 < c_m < \infty$.

The Fourier transform being used is the following:

$$\hat{f}(\xi) = \int e^{-i\langle x,\xi\rangle} f(x) dx$$
;

with the Fourier inversion formula

$$f(x) = (2\pi)^{-m} \int e^{i \langle x, \xi \rangle_{f}} f(\xi) d\xi$$
.

In the special case when $\sigma(\underline{A}) \subset \overline{B}(0,\kappa)$ and $\sigma(\underline{B}) \cap B(0,\kappa+\delta) = \phi$ for some $\kappa \ge 0$, the above result has been proved by Bhatia and Davis with c_m replaced by 1.

Theorem 1 will be proved in section 7 after the functional calculus has been developed.

Corollary 1. Let H = K, and for closed subsets X and Y of \mathbb{R}^{m} , let E_{X} and F_{Y} denote the corresponding spectral projections of $\stackrel{A}{\sim}$ and \mathcal{B} respectively. Suppose $\delta = \text{dist}(X,Y) > 0$. Then

$$\|\mathbf{E}_{\mathbf{X}}\mathbf{F}_{\mathbf{Y}}\| \leq \mathbf{c}_{\mathbf{m}}\delta^{-1}\|\mathbf{A}-\mathbf{B}\|_{\mathbf{H}\rightarrow\mathbf{H}\mathbf{m}}$$

Proof. Let $H_X = E_X(H)$, $H_Y = F_Y(H)$, $Q = E_X|_{H_Y} \in L(H_Y, H_X)$, $W_j = E_X(A_j-B_j)F_Y \in L(H_Y, H_X)$, and apply theorem 1.

The following corollary can be deduced from the first as in the proof of theorem 5.1 of [2] for the case m = 1.

Corollary 2. Suppose that $H = K = \mathbb{C}^{\mathbb{N}}$ for some $\mathbb{N} < \infty$, that $\underline{\mathbb{A}}$ has joint eigenvalues $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^m$, and that $\underline{\mathbb{B}}$ has joint eigenvalues $\beta_1, \ldots, \beta_N \in \mathbb{R}^m$. If $\|\underline{\mathbb{A}} - \underline{\mathbb{B}}_{\mathbb{N}}^{\|\|} \leq \frac{\varepsilon}{c_m}$ then there exists a permutation σ of the index set $\{1, 2, \ldots, m\}$ such that $|\alpha_k - \beta_{\sigma(k)}| \leq \varepsilon$ for $k = 1, 2..., \mathbb{N}$.

3. CLIFFORD ALGEBRAS, E(n)

The vector space \mathbb{R}^{n+1} is embedded in a 2ⁿ-dimensional algebra $\mathbb{F}_{(n)}$ over \mathbb{F} as follows. Let e_0, e_1, \ldots, e_n be the standard basis of \mathbb{R}^{n+1} and denote the basis vectors of $\mathbb{F}_{(n)}$ by e_s , where S is a subset of $\{1,2,\ldots,n\}$. Make the identifications $e_0 = e_{\phi}$ and $e_j = e_{\{j\}}$ for $1 \leq j \leq n$, and define the multiplication on $\mathbb{F}_{(n)}$ by taking e_0 as the unit 1,

$$e_j^2 = -e_0 = -1$$
 for $1 \le j \le n$;
 $e_j e_k = -e_k e_j = e_{\{j,k\}}$ for $1 \le j < k \le n$;
 $e_j e_j \dots e_j = e_s$ if $1 \le j_1 < j_2 < \dots < j_s \le n$ and

 $S = \{j_1, j_2, \dots, j_s\}.$

The product of two elements $\lambda = \sum_{S} \lambda_{S} e_{S}$, $\lambda_{S} \in \mathbb{F}$, and $\mu = \sum_{I} \mu_{T} e_{T}$, $\mu_{T} \in \mathbb{F}$, is $\lambda \mu$ where

$$\lambda \mu = \sum_{S,T} \lambda_{S} \mu_{T} e_{S} e_{T}$$
.

Note that $e_{Se_{T}}$ is again a basis vector of $\mathbb{F}_{(n)}$.

The Clifford algebras $\mathbb{R}_{(1)}$ and $\mathbb{R}_{(2)}$ are the complex numbers and the quaternions respectively. Basic properties of Clifford algebras can be found in Brackx, Delanghe and Sommen [3].

An involution $\lambda \neq \overline{\lambda}$ is defined by $\overline{\lambda} = \sum_{S} \overline{\lambda}_{S} \overline{e}_{S}$ where $\overline{\lambda}_{S}$ is the complex conjugate of λ_{S} and $\overline{e}_{S} = \pm e_{S}$, the sign being chosen so that $e_{S}\overline{e}_{S} = \overline{e}_{S}e_{S} = 1$.

Not all elements of $\mathbb{F}_{(n)}$ are invertible. One important reason for using Clifford algebras, however, is that non-zero elements $x \in \mathbb{R}^{n+1}$ do have inverses, namely $x^{-1} = |x|^{-2} \bar{x} = (\sum_{n=1}^{n} x_k^2)^{-1} (x_0 - x_1 e_1 - x_2 e_2 \dots - x_n e_n)$.

4. CLIFFORD ANALYSIS

Let Ω be an open subset of \mathbb{R}^{n+1} . A function $f: \Omega \to \mathbb{F}_{(n)}$ is called *left monogenic* if Df = 0. Here $D = \sum_{0}^{n} \frac{\partial}{\partial x_{j}} e_{j}$ and $Df = \sum_{j=0}^{n} \sum_{S} \frac{\partial f_{S}}{\partial x_{j}} e_{j}e_{S}$ when $f = \sum_{S} f_{S}e_{S}$ for functions $f_{S}: \Omega \to \mathbb{F}$. Much of the theory of analytic functions in complex analysis generalizes to results concerning left monogenic functions. See [3]. In particular there is an analogue of Liouville's theorem:

THEOREM 2. If $f: \mathbb{R}^{n+1} \to \mathbb{F}_{(n)}$ is a bounded left monogenic function on all of \mathbb{R}^{n+1} , then f is constant.

It is not hard to verify that the functions $\,g_{_{\rm Z}}\,$ defined for z,x $\in\,\,{\rm I\!R}^{,n+1}$ by

$$g_{z}(x) = |x-z|^{-n-1}(\overline{x-z})$$

are left monogenic for $x \neq z$.

5. FUNCTIONAL CALCULUS

Let $\underline{T} = (T_1, \dots, T_m)$ be a commuting m-tuple of bounded operators, each acting on a Banach space X over \mathbf{F} . We define a kind of joint spectrum $\sigma(\underline{T})$ by $\sigma(\underline{T}) = \{\lambda \in \mathbb{R}^m : \sum_{j=1}^{m} (T_j - \lambda_j)^2 \text{ is not invertible}$ in $L(X) \}$. This defines a compact subset of \mathbb{R}^m which may reasonably be called a joint spectrum for a large class of m-tuples \underline{T} . In particular, if the T_j are self-adjoint operators on a Hilbert space, then $\sigma(\underline{T})$ is the usual joint spectrum. For a single operator, $\sigma(\underline{T})$ is the intersection of the spectrum with the real line.

For $n \ge m$, we identify \mathbb{R}^{m} with the span of $e_{1}, e_{2}, \dots, e_{m}$ in \mathbb{R}^{n+1} . Then $\mathbb{R}^{m} \subset \mathbb{R}^{n+1} \subset \mathbb{F}_{(n)}$. We also form the Banach space $X_{(n)} = X \otimes \mathbb{R}_{(n)} = \{u = \sum_{S} u_{S} e_{S} : u_{S} \in X\}$ and define $T = \sum_{1}^{m} T_{j} e_{j} \in L(X_{(n)})$ by $T(u) = \sum_{j,S} T_{j}(u_{S}) e_{j} e_{S}$. It is then possible to prove the following result.

THEOREM 3. $\sigma(\underline{T}) = \{\lambda \in \mathbb{R}^m : (\underline{T} - \lambda \underline{I}) \text{ is not invertible in } L(X_{(\underline{n})})\}$.

In the following, for an algebra A of functions on \mathbb{R}^m , let A₀ denote the subspace of functions f with compact support, sptf. For a compact subset K of \mathbb{R}^m , let H(K) denote the space of F-valued functions which are real analytic in a neighbourhood of K, taken with its usual topology. For $f \in A_0$ and $g \in H(sptf)$, let $M_r(g) = fg$.

We say that \underline{T} has a functional calculus (\underline{T}, A) based on \mathbb{R}^{m} if the following conditions hold:

A is a topological algebra of functions from \mathbb{R}^m to \mathbb{F} , with addition and multiplication defined pointwise, and $\underline{T} : A \rightarrow L(X)$ is a continuous algebra homomorphism such that

- (a) $C_0^{\infty}(\mathbb{R}^m) \subset A$;
- (b) if $f \in A_0$, then $M_f : H(sptf) \rightarrow A$ is continuous;
- (c) T has compact support;
- (d) $\underline{T}(\Theta P) = p(\underline{T})$ for all polynomials $p : \mathbb{R}^m \to \mathbb{F}$, where $\Theta \in C_0^{\infty}(\mathbb{R}^m)$ is 1 on a neighbourhood of $spt\underline{T}$.

The support of \underline{T} , $\operatorname{spt}\underline{T}$, is the smallest closed set K such that $\underline{T}(f) = 0$ for all $f \in A_0$ with K n spt $f = \phi$. The support is well-defined in view of condition (a).

Let $A_{(n)}$ be the algebra of functions $f : \mathbb{R}^m \to \mathbb{F}_{(n)}$ of the form $f = \sum_{S} f_S e_S$ where $f \in A$. The homomorphism \underline{T} extends in a natural way to a homomorphism $\underline{T} : A_{(n)} \to L(X_{(n)})$. Indeed $\underline{T}(f) = \sum \underline{T}(f_S) e_S$, and \underline{T} has the same support as \underline{T} .

In the case of a single operator, the following result is due to Foias [6].

THEOREM 4. If T has a functional calculus (T,A) based on \mathbb{R}^{m} then

 $\sigma(\underline{T}) = \operatorname{spt}\underline{T}$

Proof. It is easy to show that $\sigma(\underline{T}) \subset \operatorname{spt}\underline{T}$. We shall prove that $\operatorname{spt}\underline{T} \subseteq \sigma(\underline{T})$, which is what we require for the proof of theorem 1. Let $f \in A_0$ with $\operatorname{spt} f \cap \sigma(\underline{T}) = \phi$. We have to show that $\underline{T}(f) = 0$.

Let n be an odd integer, $n \ge m$, and recall the embeddings $\mathbb{R}^m \subset \mathbb{R}^{n+1} \subset \mathbb{F}_{(n)}$. For $z \in \mathbb{R}^{n+1}$, define functions $h_z : \mathbb{R}^m \to \mathbb{F}_{(n)}$ and $g_z : \mathbb{R}^m \sim \{z\} \to \mathbb{F}_{(n)}$ by $h_z(x) = |x-z|^{n-1}(x-z)$ and $g_z(x) = |x-z|^{-n-1}(\overline{x-z})$. If $\psi \in A_0$, then by condition (a) above, $\psi h_z \in A$, and if $z \notin \text{spt}\psi$, $\psi g_z \in A$. As h_z is a polynomial, $h_z(\overline{z})$ is defined and, by theorem 3, is invertible when $z \notin \sigma(\overline{z})$. Also $g_z h_z = 1$ except at z. Construct a function $F : \mathbb{R}^{n+1} \to L(X_{(n)})$ as follows. If $z \notin \text{sptf}$, define $F(z) = \underline{T}(fg_z)$, while if $z \notin \sigma(\underline{T})$, define $F(z) = h_z(\underline{T})^{-1}\underline{T}(f)$. It is straightforward to check that F is well-defined. It takes somewhat more work to check that, for all $u \in X_{(n)}$ and $v \notin X^*$, $\langle F(z)u, v \rangle$ is a left monogenic function of z which converges to zero at infinity. By theorem 2, F(z), and hence also T(f), is zero.

6. OPERATORS WHICH GENERATE BOUNDED GROUPS

In this section $\mathbb{F} = \mathbb{C}$ and \mathbb{T} is an m-tuple of commuting operators $T_j \in L(X)$ which satisfy $\|\exp(isT_j)\| \leq M$ for all $s \in \mathbb{R}$ and some M > 0.

Such \underline{T} have a functional calculus $(\underline{T}, L_1(\mathbb{R}^m))$ based on \mathbb{R}^m and defined as follows. The algebra $L_1(\mathbb{R}^m)$ is the space of inverse Fourier transforms $f = \check{g}$ of functions $g \in L_1(\mathbb{R}^m)$. So $g = \hat{f}$ and we take $||f|| = (2\pi)^{-m} ||g||_{L_1}$ which makes $\check{L}_1(\mathbb{R}^m)$ a Banach algebra under pointwise multiplication and addition. The homomorphism $\underline{T} : \check{L}_1(\mathbb{R}^m) \rightarrow L(X)$ is defined by

$$\underline{T}(f) = (2\pi)^{-m} \int_{\mathbb{R}} e^{i < \underline{T}, \xi > \hat{f}(\xi) d\xi} .$$

Verification of condition (c) of the previous section can be accomplished by an adaptation of the proof of theorem 4 using an approximation argument. Alternatively, it follows from a Paley-Wiener argument as used by Taylor [11] and Anderson [1].

Note that $\underline{T}(f)$ is given by the same formula, where $f = \sum_{S} f_{S} e_{S}$, $f_{S} \in \tilde{L}_{1}(\mathbb{R}^{m})$ and $\hat{f} = \sum_{S} \hat{f}_{S} e_{S}$. If $0 \notin \sigma(\underline{T})$, then, by theorem 2, $T = \sum_{1}^{m} T_{j} e_{j}$ is invertible in

 $L(X_{(n)})$. We then have the following formulae for T^{-1} :

$$T^{-1} = -(\sum_{j=1}^{m} T_{j}^{2})^{-1}T$$

= $\underline{T}(g)$
= $(2\pi)^{-m} \int_{\mathbb{IR}^{m}} e^{i < \underline{T}, \xi > \hat{g}(\xi) d\xi}$

where $g(x) = |x|^{-2}\overline{x} = -|x|^{-2}x$ on a neighbourhood of $\sigma(\underline{T})$ in \mathbb{R}^m and $\hat{g}_k \in L_1(\mathbb{R}^m)$.

7. PROOF OF THEOREM 1

We are now in a position to indicate a proof of theorem 1 concerning the system of operator equations

$$A_{j}Q-QB_{j} = W_{j}$$
 for $j = 1, 2, ..., m$

where A and B are commuting m-tuples of bounded self-adjoint operators defined on Hilbert spaces H and K respectively. We write this system as

T(Q) = W

where $W = \sum_{i=1}^{m} W_{j}e_{j} \in X_{(n)}$ with X = L(K, H) and $T = \sum_{i=1}^{m} T_{j}e_{j} \in L(X_{(n)})$ with $T_{j}(Q) = A_{j}Q-QB_{j}$.

We solve this equation for $Q \in X_{(n)}$ and then determine when the solution is in X (that is, when $Q = Q_0 e_0$).

Consider first the case $\, {\mathbb F} = \, {\mathbb C}$. Note that the operators $\, {\mathbb T}_{j}^{}$ commute and that

$$\begin{array}{ccc} \mathrm{i} T_{,\mathrm{S}} & \mathrm{i} A_{,\mathrm{S}} & -\mathrm{i} B_{,\mathrm{S}} \\ \mathrm{e}^{\mathrm{j}}(\mathrm{Q}) & = \mathrm{e}^{\mathrm{j}} \mathrm{Q} \mathrm{e}^{\mathrm{j}} & \text{for } \mathrm{s} \in \mathrm{I\!R} \end{array} .$$

Hence the operators e^{iT_js} are unitary. So the preceding section can be applied to construct a functional calculus $(\underline{T}, \underline{L}_1(\mathbb{R}^m))$ for \underline{T} based on \mathbb{R}^m .

The next task is to find $\sigma(\underline{T})$. It will be shown in a fuller version of this paper [8] that $\sigma(\underline{T}) = \sigma(\underline{A}) - \sigma(\underline{B})$. Since we have assumed $\delta = dist(\sigma(\underline{A}), \sigma(\underline{B})) > 0$, it follows that $\sigma(\underline{T}) \cap B(0, \delta) = \phi$. So T is invertible, and

$$T^{-1} = -(\sum_{j=1}^{m} T_{j}^{2})^{-1} T = T_{j}(g_{(\delta)})$$

where $g_{(\delta)}(x) = \delta^{-1}g(\delta^{-1}x)$ and $g(x) = -|x|^{-2}x$ for $|x|>1-\epsilon$ (for some $\epsilon > 0$) and $\hat{g}_k \in L_1(\mathbb{R}^m)$ for $1 \le k \le m$.

The solution of the operator equation T(Q) = W is thus

$$Q = T^{-1}(W)$$

$$= - \left(\sum_{1}^{m} T_{i}^{2}\right)^{-1} \int_{k}^{m} T_{j}^{(W_{k})e_{j}e_{k}}$$
$$= \left(\sum_{1}^{m} T_{i}^{2}\right)^{-1} \left\{\sum_{k=1}^{m} T_{k}^{(W_{k})} - \sum_{1 \le j \le k \le m} (T_{j}^{(W_{k})} - T_{k}^{(W_{j})})e_{j}e_{k}\right\}.$$

So Q belongs to X precisely when $T_j(W_k) = T_k(W_j)$ for all j,k. This is the compatibility condition $A_jW_k - W_kB_j = A_kW_j - W_jB_k$ stated in the theorem.

It remains for $\|\,Q\,\|$ to be estimated. If δ = 1 and the compatibility condition is satisfied, then

$$Q = Q_0 = [(2\pi)^{-m} \int e^{i < T} \hat{\xi} \hat{\xi}(\xi)(W) d\xi]_0$$

the subscript 0 denoting the scalar part (coefficient of $\,e_{_{\hbox{\scriptsize O}}})$. So

$$Q = - (2\pi)^{-m} \int e^{i \langle T, \xi \rangle} \sum_{k=1}^{m} \hat{g}_{k}(\xi)(W_{k}) d\xi$$

Hence,

$$\|\mathbf{Q}\| \leq (2\pi)^{-m} \int |\hat{\mathbf{g}}(\xi)| d\xi \|\mathbf{W}\|_{\mathcal{K} \to \mathcal{H}^{m}}$$

For other values of $\,\delta\,$ the required estimate follows from a scaling of this one.

This completes the proof for spaces defined over $\mathbb{F} = \mathfrak{L}$. The result for $\mathbb{F} = \mathbb{R}$ is obtained by complexifying X to obtain $X_{\mathbb{C}}$ and observing that the operators T and T^{-1} in $L((X_{\mathbb{C}})_{(n)})$ preserve the subspace $X_{(n)}$.

8. EPILOGUE

The technique developed in this paper can be applied in the study of more complicated equations (as long as the dependence of W on Q is linear). We can also consider m-tuples of commuting operators \underline{A} and \underline{B} which themselves have a functional calculus based on \mathbb{R}^{m} , without A_{j} and B_{j} necessarily being self-adjoint. Further we can take symmetric norms on Q and W different from the operator norm. Such results will be presented in more detailed papers [8,9]. Also included will be a spectral mapping theorem and a comparison of $\sigma(T)$ with other definitions of joint spectrum.

REFERENCES

- R.F.V. Anderson, The Weyl Functional Calculus, J. Funct. Anal. 4 (1969), 240-267.
- [2] R. Bhatia, Ch. Davis and A. McIntosh, Perturbations of spectral subspaces of normal operators, Linear Algebra and its Applications, 52/53 (1983),45-67.
- [3] F. Brackx, R. Delanghe and F. Sommen, *Clifford Analysis*, Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1982.
- [4] I. Colojoara and C. Foias, Theory of Generalised Spectral Operators, Mathematics and its Applications Vol. 9, Gordon and Breach, New York, London, Paris, 1968.
- [5] Ch. Davis, Perturbation of spectrum of normal operators and of commuting tuples, Linear and Complex Analysis Problem Book, (ed. V.P. Havin, S.V. Kruščev, N.K. Nikol'skii), Springer 1984, pp. 219-222.

- [6] C. Foias, Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. (2) 84 (1960), 147-158.
- [7] S. Kantorovitz, Classification of operators by means of their functional calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224.
- [8] A.G.R. McIntosh and A.J. Pryde, A functional calculus for commuting tuples of operators, and applications, in preparation.
- [9] A.G.R. McIntosh and A.J. Pryde, The solution of systems of operator equations using Clifford algebras, in preparation.
- [10] M. Murray, The Cauchy integral, Calderon commutators, and conjugations of singular integrals in \mathbb{R}^n , to appear.
- [11] M.E. Taylor, Functions of several self-adjoint operators, Proc. Am. Math. Soc., 19 (1968), 91-98.

School of Mathematics and Physics Macquarie University North Ryde NSW 2113 AUSTRALIA

Department of Mathematics Monash University Clayton VIC 3168 AUSTRALIA