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THE MALLIAVIN CALCULUS AND LONG TIME ASYMPTOTICS 

OF CERTAIN WIENER INTEGRALS 

Nobuyuki Ikeda, Ichiro Shigekawa and Setsuo Taniguchi 

l . INTRODUCTION 

The asymptotic behavior of stochastic oscillatory integrals has 

recently received much attention in the probabilistic literatures and is 

closely related to various problems in the analysis and applied mathe-

matics, (cf. [3],[4],[6],[5],[10],[14]~[17] and [l9j). In particular, 

in order to study asymptotic properties of stochastic oscillatory 

integrals, Malliavin [17] has used the s·tochastic calculus of variation. 

Gaveau and Moulinie.r [5] have also been interested in similar problems. 

The main purpose of this paper is to complete in detail the proof of 

Malliavin's results which was sketched in [17]. To do this, as is shown 

in the section 5, we need some considerations which are not discussed 

in [17], (see Propositions 5.1 and 5.2). We will also give a slight 

extension of some results in Malliavin [17]. 

Let us consider a smootl1 Riemannian metric g on Rd which 

is uniformly elliptic and bounded, (see Assumption 2. 2) • Then there 

exists the diffusion process 
d 

{X(-t) ,P ,x E R } generated by half the 
X 

Laplace-Beltrami operator 6 /2 with respect to 
g 

g • For every smooth 

differential 1-form e , we set 

Kt (x,y; 8) Ex[exp{vC:lf 8} \x(t) 
X [0, t] 

y] 

(l.l) 

for (t,x,y) E (O,oo) x Rd x Rd 
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where E [·IX(t) = y] denotes the conditional expectation with respect 
X 

to the probability Px given X(t) = y and 

JX[O,t] e 

is the stochastic line integral of 6 along the curve X[O,t] = {X(s) ; 

0 ~ s ~ t} , (see [8] and [9], for details of the definition). We are 

interested in the asymptotic behavior of a(t;6) defined by 

(1.2) 

as t-+ co 

following: 

ASSUMPTION 1 • 1 

a(t;6) = sup 1Kt(x,y;6) I 
. d 

x,y€R 

In this paper, from now on, we always assume the 

(i) The derivatives of all orders ( ~1) of ei (x) , 

i = 1,2, ••• ,d are bounded where ei (x) ' i = 1,2,•••,d are the 

coefficients of e with respect to the basis dxi i l,2,···,d 

(ii) There exists a positive constant c such that 

(1. 3) for 

where II •II (x) denotes the norm on T* (Rd) ® T* (Rd) with respect to g • 
X X 

ASSUMPTION 1. 2 Let o be the adjoint operator of the exterior 

differential operator d with respect to g • We assume that 

{1.4) oe 0 . 

The physical meaning of this assumption combining the integral (1.1) 

in the theory of electro-magnetic fields can be found in [4] and [23]. 

The result of Malliavin in [17] is as follows: In case when g 

is the standard flat metric on Rd , under some appropriate conditions, 

a{t;6) decays exponentially as t -+co, i.e., 
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(1. 5) 
l 

lim t log a (t; e) < 0 • 
t-7<» 

By using the stochastic calculus of variation called the Malliavin 

calculus, Malliavin gave a program of the proof of (1.5) and a sketch 

of details. In this paper, we will sho1r1 how one can obta.in an extension 

of Malliavin' s result based on ideas of the partial Malliavin calculus, 

(see Sec·tion 3). We will also give full details of the proof of 

Malliavin' s result in [17]. Our analysis relies heavily on the theory 

of partial Malliavin calculus. In particular, we 1r1ill use the in'cegra-

tion by parts fo:c;nula with respect to the conditional expecta'cion on the 

Wiener space. 

The organization of this paper is as follows: In Section 2, we 

will reformulate our problem in terms of Wiener integrals and state 

main resul·ts. In Section 3, we sUilii!larize the basic notations and results 

in ·the theory of the partial Malliavin calculus. It should also be noted 

that these are useful themselves in the study of various problems. 

In Section 4, for every positive N , we will evaluate the quantity 

sup JKt (x,y; 8) I . 
x,yERd, lx-yi~N 

The section 5 wi 11 be devoted to the proof of ( L 5) in case \vhen g is 

the standard flat metric on Rd . Finally, in Section 6, we will prove 

Theorem 2 .1, by combining the results obtained in Sections 4 and 5. 

2. MAIN RESULTS 

(x 
l 2 d 

standard coordinate in Rd Let ,x '• • • 'X ) be the of X and 

we denote by a. j 1,2,···,d 
J 

u the vector fields on Rd 
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j 

We set 

g .. (x) = g (a. 'd . ) 
lJ X l J 

i,j 1,2,•••,d. 

In this paper, we always assume the follov<ing: 

ASSUt~PTION 2.'1 (i) The Riemannian metric g is uniformly elliptic and 

bounded in the following sense: For some positive cons·tant K , 

(2.1) 
d 
:2.: 

i,j=l 
( ,.ij =< 'Ti"l2 g .. x, s s "' "' lJ 

for x E Rd and t; l 2 d d 
(t;,t;,•••,t;)ER. 

(ii) g .. (x) 
lJ 

i,j l,2,•••,d and tl<eir derivatives of all orders 

are bounded. 

In order to apply the ?-ialliavin calculus to our problem, we have to 

rewrite the quantity Kt(x,y;8) given by (1.1) in terms of Wiener 

integrals. To do this we first summarize some of basic fac·ts in the 

stochastic analysis, (see [9], for details). We denote by 
d 

0 (R ) 

bundle of orthonormal frames on the Riemannian manifold 
d 

(R ,g) 

the 

and let 

1r :O(Rd) ----;Rd be the natural projection. Let {L1 ,L2 ,•••,Ld} be 

the system of standard horizontal vector fields on O(Rd) with respect 

to the Riemannian connec·tion 'V on d (R ,g) • We now consider the 

following stochastic differential equation on O(Rd) of Stratonovich's 

type defined on the d-dimensional Wiener space 

( 2. 2) dr(t) 
d 
:2.: 

a=l 
L (r (t)) odwa (t) 

a 
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where denotes the space of all functions 

w(O) = 0 and PW is the d-dimensional Wiener measure, Let {r(t,r,w); 

t ~ 0} be the unique solution of (2,2) with initial value 

We set 

(2. 3) X(t,r,w) 1T(r(t,r,w)) • 

d 
r(EO(R)). 

The stochastic line int:egral of 6 along the curve X( [O,t] ;r,w) , 

(given by . {X(s,r,w) ;0 ~ s ;;;, t}) , 

J 6 
X( [O,t] p:,w) 

can be decomposed in the following form: 

(2 .4) I d Jt e = ~ e (r(s,r,w)) 
X([O,t];r,w) a=l 0 a 

lft 
(s) - 2 o6(X(s,r,w))ds 

Jo 

~'l'here e ,•••,ed) denotes the scalarization of e 

e. (r) 
J. 

e for 

(see [8] and [9]), By the assmnption 1.2 and (2.4) we have 

(2. 5) t( [O,t] pc,w) e 
Jt 

- a 
6 (r(s,r,w))dw (s) . 

0 a 

By using similar arguments a.s those in [9], Chapter V, it is easy to 

see that the image measures on 
d+l 

and W of 
w 

P by the mappings: 

(2. 6) 
d d w0 3 w ----t {X(t,r,w) ;0 ;;;, t < oo} E W 

and 

(2.7) W~3w~{(X(t,r,w),u+f . 6);0;;;,t<oo}EWd+l 
X( [O,tl ;r,w) 

depend only on x = "IT(r.) and (1T(r) ,u) respectively. Here Wn denotes 

the space of all continuous functions w [O,oo) ----t Rn • Letting 
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x = rr(r) , we denote above measures by p 
X 

and 

Then we have the system of diffusion measures 

by half the Laplace-Beltrami operator /', /2 . 
g 

Q respectively. 
(x,u) 

d 
{Px;x E R ~ genera·ted 

It should be also noted 

that the quantities which 'ifle will evaluate depend only on the laws of 

stochastic processes given by (2.6) or (2.7) and those of stochastic 

processes induced by their functionals. Since these laws depend only 

on (rr(r),u) , for simplicity we use the notations {X(t,x,w);O ~ t < oo} 

and {(X(-t,x,w),u +I 8)} to denote the stochastic processes 
X([O,t];x,w) 

given by (2.6) and (2.7) respectively. Now the kernel Kt(x,y;8), t,;;;, 0 , 

d x, y E R defined by ( L 1) can be rewritten in the following form: 

w f (2.8) Kt(x,y;8) = E [exp{;:l S}!X(t,x,w) = y] 
X( [O,t] ;x,w) 

where 
w 

E [ • lx<t,x,w) = y] means the conditional e:;,.'Pectation with 

respect to the Wiener measure PW given X(t,x,~J) = y . Furthermore it 

holds ·that 

(i) for every smooth exact differential 1-form a , 

(2. 9) E Rd x,y 

(ii) for every t,s > 0 

(2 .10) 

where 

Kt+s(x,y;8)p(t + s,x,y) 

= J Kt(x,z;8)p(t,x,z)Ks(z,y;8)p(s,z,y)m(dz) 
Rd 

d p(t,x,y) , (t > O,x,y E R ) , denotes the fundamental solution 

with respect to the P~emannian volume m of the heat equation on the 

Riemannian manifold 
d 

(R ,g) 

(2 .11) 
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REMARK 2.1 We note that the semi-group relation (6.7) in Ikeda-

Watanabe [10] (also the line 16 of page 25 in Malliavin [17]) should 

be read as (2.10) mentioned above. 

Before stating the main result, we have to introduce an assumption. 

ASSUMPTION 2 • 2 There exists a compact set D in Rd satisfying the 

following: 

(i) The Riemannian metric g coincides with the standard flat 

metric in Rd outside of D, i.e., 

(2.12) g .. (x) 
l] 

0 .. 
lJ 

for X ~ D , i,j 1,2,···,d. 

(ii) There are positive constants ai , i : 1,2 , (a1 ~ a 2 l , 

such that for every n E Sd-l vife can find a number i3 satisfying the 

following 

(2 .13) 

where 

(2 .14) 

for every 

\x,S (z) = (ClaSS - a13 ea) (z) , a,S 

d 
<ya,n>(z) = ~ y 13 (z)n 13 

13=1 a, 
n 

l,2,···,d 

1 2 d d-1 (n ,n ,···,n l E s 

and Sd-l denotes the (d-1)-dimensional unit sphere, i.e., 

REMARK 2.2 It is clear that 

d8 (x) 

{n; nERd, In! 

i . 
y .. (x) dx AdxJ 
l] 

l} . 



For every Tj 

defined by 

Then, letting 
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1 2 d d-1 
(n ,n ,•••,n ) E S , we consider the vector field 

i(A )d6 
n 

(A ) = 
n x 

d 
1: 

i=l 

i 
n ( 3. l 

l X 

be the interior product of the vec·tor field 

and 'che differential 2-form d8 , we have 

i(A )d6 
Tj • 

(cf. [20]). 

1 d . 
-- 1: <y.,n>(x)dxJ 

2 . 1 J J= 

We now are in a position to state our main result. 

THEOREM 2.1 Under Assumptions 1.1, 1.2, 2.1 ancl 2.2, U hoZds that 

(2.15) lim t log a(t;6) < 0 • 
·t-too 

A 
n 

A 
Tj 

REtiJARK 2. 3 As shown in Sec·tion 4, \ve use only the assumptions 1.1 , .1. 2 

and 2.1 in some parts of the proof of Theorem 2.1. 

REMARK 2.4 Under the assumption 2.1 , the condition (ii) of Assumption 

1.1 is equivalent to the following: There exists a positive constant 

C' such ·that 

(2 .16) 
d 2 
:E y 0 (x) ~ C' 

a,S=l a,IJ 
for 

In fact, this can be proved as follows: By the assumption 2.1, 

we can choose a positive definite symmetric matrix 

d 
:E ~ (x) ~ (x) 

k=l 

where <lj (x)) is the inverse matrix of 

for 

(g .. (x)) 
l] 

from (2.1) that for some positive constant_ K, 

i 
(a.(x)) 

J 
such that 

Then it follows 



(2.17) for 

d 
Therefore (2.16) implies that for x E R , 

2 d d d d.. 2 
II d611 (x) = ~ :i: ( !: ~ a~ (x) aJ (x) y .. (x)) 

m=l n=l i=l j=l m n ~J 

l d d d i 2 
,;;:, K ~ ~ ( !: a (x) y .. (x)) 

m=l j=l i=l m ~J 

>...!.. ~ d 2 
= 2 !: y .. (x) 

K i=l j=l ~J 

(by (2.17)) 

(by (2 .17) ) 

(by (2 0 16)) 

This implies (1.3). Conversely we now assume (1.3). Letting 

i 
(b. (x) ) 

J 

i -1 
= (a. (x) ) , we have 

J 

~~~1 2 .;;, ~I~ b~(x)t;il 2 .;;, Klt;l 2 

k"'l i=l 

Hence we have, for d x E R , 

d 2 
~ y .. (x) 

i,j,l ~J 

d d d d d n m k ~ 2 
~ (!: I: l: l: b,(x)b,(x)a (x)a (x)yk,JI.(x)) 

i, j=l n=l m=l k.=1 11.=1 :t J n m 

1 d d d d 2 
> -- :i: :£ ( !: :£ a~ (:x:) a~ ( xl y (x) ) , (by ( 2 o 18) ) , 
= K2 i=l j=l m=l n=l ~ J mn 

' (by ( l. 3) ) ' 

which implies (2.16). 

REMARK 2.5 In 2-dimensional case, the condition (ii) of Assumption 1.1 

implies the condition (ii) of Assumption 2. 2. In this case, it holds 

by (2.13) that 

C' >·..,...
= 2 for 
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Hence, for every l n E s , 

for 

or 

for 
d 

x E R , 

which implies (2.13). In general case, the condition (ii) of Assumption 

2. 2 is not natural in a sense and is technical. In case when g is the 

standard flat metric in 
d 

R , Malliavin [17] has discussed the above 

problem under Assumptions 1.1 and 1.2. As will be shown in Section 6, 

in many cases, without assuming the condition (ii) of Assumption 2.2, 

(2.15) still holds. However, in such cases, in order to prove (2.15) 

we need different arguments from those given in the section 5. For 

example, the following shows that in case d ,;:;, 3 the condition (ii) 

of Assumption 1.1 does not imply, in general, the condition (ii) of 

Assumption 2.2. 

EXAMPLE 2.1 Let d > 3 and 2 ~ d1 < d • Let us consider a smooth 

differential 1-form 8 satisfying the assumptions 1. l , 1. 2 

and the condition (ii) of Assumption 2.2 in case of the d1-dimensional 

dl 
Euclidean space R 8 can also be regarded as a smooth differen·tial 

1-form on Rd and it satisfies the assumptions 1.1 and 1.2 on the 

d-dimensional Euclidean space Rd However it does not satisfy the 

condition (ii) of the assumption 2.2 on Rd • It is not hard to show 

(2.15) in this case. The proof can be reduced to the estimate in the 

case of d1-dimensional Euclidean space. For details, see Section 5. 
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Before closing this section, we give one more remark. It is easy 

to see that the system d+l {Q( );(x,u) E R } defined above is a x,u 

diffusion on 
d+l 

R • It is also not hard to show that the generator of 

this diffusion is given by, for every 

(2.19) 
1 a 2 a2 

Af(x,u) = 2{t:.l(x,u) + 2au(b(6) (x)f(x,u)) + llell (x)-2 f(x,u) 
au 

a 
- o6(x)au f(x,u)} for (x,u) E Rd x R1 

where b(6) is the vector field defined by 

(see [20]) and llell(x) 

for every 
d 

,xER 

denotes the norm of e in T*(Rd) 
X 

As shown 

in Section 4, under the assumptions 1.1, 1.2 and 2.1 , the transition 

probabilities 
d 1 

Q(t,(x,u),•) , t > 0, (x,u) E R x R , of the diffusion 

{Q (X ) E Rd x Rl} ( ) ; ,u 
x,u have the smooth positive densities 

d 1 q(t,(x,u),(y,v)) , t > 0, (x,u),(y,v) E R x R , with respect to the 

measure ~(dydv) m(dy)dv on Rd x R1 The diffusion 

d 1 
{Q( );(x,u) E R x R} is symmetric with respect to the measure ~, x,u 

i.e., for every t > 0 , 

(2.20) q(t, (x,u), (y,v)) q(t, (y,v), (x,u)) 

for every d 1 (x,u),(y,v) E R X R • 

Then the kernel Kt (x,y; 6) can be written in the form 

(2.21) Kt (x,y; e) -lJ r-lv (p(t,x,y)) e q(t, (x,O), (y,v))dv 
Rl 

for t > 0 , x,y E Rd 
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Hence, by the Feyrunan-Kac formula, it is easily seen tha·t 

Kt(x,y;8)p(t,x,y) is the kernel function associated to the operator 

(2.22) 
, 1 2 1 

Hf =~;;, f-- llell f + ,J:::i<df,e> - -2 Moe£ . 
2 g 2 

For the physical meaning of these related to the electro-magnetic field, 

see [4], [6] and [23]. 

3. THE PARTIAL MALLIAVIN CALCULUS 

Before proceeding to the proof of ·rheorem 2.1, in this section, we 

prepare the basic notation and results in the theory of Malliavin's 

calculus which we need. 'I'hese are a slight modification of some results 

in [21], [12] and [10]. 

Let H be a separable Hilbert space with inner product <& *> , H 

and we identify H* , the dual space of H , with H We nm-1 fix an 

abstract Wiener space {W,H,]J} , ·that is, H is included in a separable 

Banach space W as a subspace and the injection i: H ~W is 

continuous with the dense range. Also Jl is a Gaussian measure with 

zero mean carried on W such that 

for h E w* C H* HCW 

vn<ere h(w) is the canonical bilinear form between w* (= the dual space 

of W) and Wand J·I~=<•,•>H, (cf. [7],[ll]and[27]). Ingeneral, 

let E be a separable Hilbert space. Then we denote by L (W ~ E,]J) 
p 

= L (E) , l __ < p < oo , the usual L -space of ]J-measurable functions 
p p -

F : W ---7 E with 
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1 
L (W -----7 R , \l) 
p 

is simply denoted by L (W,\l) = L A Wiener function-
p p 

al F : W ----7 Rl is called a polynomial if there exist an integer n , 

in n variables such that 

F(w) 

In this expression, we can always assume that 

<t. ,t .>H 
1. J 

0 .. 
1.) 

i,j 

for any w E w . 

We denote by P the set of such polynomials. For a dense subspace E0 

of a separable Hilbert space E , we set 

P(E0 ) = {F;F:W ~ E0 which is expressed in the form 

F(w) 
n 
~F. (w)e. for some n F. E P and e. E E 0 } . 

i=l l. l. 
1. ]_ 

An element F of P(E0 ) 0 1 . is called an E -valued po ynornJ.al. As usual 

in the theory of Malliavin • s calculus we define the weak derivative D 

the adjoint operator o of D and the Ornstein-Uhlenbeck operator L 

on P by (3.2), (3.4) and (3.6) in Ikeda-Watanabe [10] respectively. 

For details, see also Watanabe [27] and Sugita [25]. We define the 

Sobolev norm 

Set 

HI , 1 ~P p,s 
< co ' s 

II (I - L) s/2FII 
p 

the completion of P(E) 

by 

for F E P(E) • 

by the norm HI . p,s 

We use the same notation II ·II 5 to denote the norm of D5 (E) We 
p, p 

define the Sobolev space D00 (E) over the Wiener space by 
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d"' (E) 

and 

U Ds (E) 

p<::l,sERl p 

Then D-oo (E) is the dual space of D"" (E) , (cf. [25] and [2 7]) . For 

Rl D5 (E) 
00 

(E) 
-co Ds "' E = ' 

, D and D (E) are denoted simply by ' D and 
p p 

-co 
D respect.i vely. Then we obta.in that the opera·tors o,o and L on 

P(E) can be extended to the continuous linear operators: 

D : D00 (E) ----7 Dco (H @ E) 

o : D00 (H €) E) ------1 D"" (E) 

respectively. For detailed properties of the Sobolev norm and the 

Sobolev space, see Watanabe [27] and Sugita [25]. 

We now proceed to introducing the notion of partial weak deriva-

tives. Let us consider a family H of closed subspaces H(wl of H , 

i .. e .. , 

H {H (w) ; H (\'1") closed subspace of H , w E w} • 

Take a separable Hilbert space E We denote by the projection: 

H ® E ~ H (w) ® E • For every F : W ~ H ® E , we define 

E 
PH (w) (F (w)) for every wEW. 

For simplicity, we often denote this mapping by PHF • In this section, 

from now on, we always assume the following: 
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ASSUMPTION 3.1 The family H satisfies the following conditions: 

For every separable Hilbert space E , 

Here B(E1 ,E2 l denotes 'che space of all measurable mappings: 

where Ei , i = 1,2, are separable Banach spaces. 

DEFINITION 3.1 For FE P(E) and wE W , we define DJ!(w) E H ® E 

by 

lim(<F(w + tPH(w)h) - F(w) ,e>E/t) 
t+O 

for w E W , h E H and e E E • 

By the definition of DR vle have 

LEMMA 3.1 

(3.4) 

(ii) 

Proof. 

(i) It holds that 

.for F E P(E) • 

Let If Fn E P(E) , F ~0 
n 

in L (E) 
p 

L (H (8) E) 
p 

then G = 0 

Since, for F E P(E) , 

<'DF(w) hAe> 
' - ' 'CI H@E lim(<F(w + th) - F(w) ,e>E/t) 

t+O 

and 

for w E W , h E H , e E E , 

(3.4) follows from (3.3). 
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We ·take Fn E P(E) such that F ----7 0 in L (E) and 

L (H (8) E) 
p 

n p 

Then, for every K E D00 (H (8) E) , 

lim E [<D_.F ,K> r.:;,. ] 
fi n H~E n+co 

lim E[<Fn,o(PffKl>E] 
n--+co 

0 ' 

where E [ •] deno·tes. the expectation with respect to ·the measure 11 • 

Here we use the assumption 3.1. Hence G = 0 which completes the proof. 

'l'he lem.ma 3.1 implies that for every F E D00 (E) , there exists a 

sequence 

(i) 

{F } , F E P(E) 
n n 

F ----7 F 
n 

in 

satisfying ·the following: 

D''' (E) 

(ii) {DHFn} consists of a Cauchy sequence in D00 (E) 

(iii) the limi-t 

is uniquely determined. 

For every FE D00 (E) , D~ determined above is called the H-partial 

\oleak deri va:ti ve of F • Furthermore it is easy to see that for every 

F E d"' (H (8) E) , there exists an element <i> E D00 (E) satisfying 

for every G Ed"' (E) 

\ille set 

(3.5) 
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and o8 : Doo (H 0 E) ---t d"' (E) is called the adjoint operator of the 

H-partial weak derivative o8 We also define the H-partial Ornstein-

Uhlenbeck operator LH : d"' (E) -+ D00 (E) by 

(3.6) for F E D"' (E) 

We now have the following: 

LEMMA 3.2 It holds that 

c~ 

DHF = PH(DF) for F E D (E) 

(3.7) oHF = o(PHF) for F ED'" (H (g) E) 

00 

LJ! = -oDJ! for F ED (E) 

It should be emphasized that in common with D the operator DH 

has the following properties: 

LEMMA 3. 3 

(3.8) 

(ii) (Chain rule) . 

(a) ¢(F) E Doo , 

(b) 

(3.9) 

Let us consider 1 2 d 
F= (F ,F ,•••,F), 

Then, for every 
co d 

¢ E Ct (R ) 

where c: (Rd) 

f: Rd ~ Rl 

denotes the space of all slowly increasing C00-funations 
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Proof. Combining Lemma 3.2, the derivation property and the chain rule 

for D we can complete the proof. 

Before turning to typical examples of the partial weak derivative, 

it will be useful to introduce some notation. We consider the 

· _ _n n W 
n-dimensional Wiener space {w0 ,B(W0),P} . In this section, we will 

restrict ourselves to the. case of a finite interval . [0, Tl where 

T > 0 is an arbitrary but fixed number: We use the same notation 

to denote the space of all continuous functions w : [0 ,T] ~ Rn such 

that w(O) = 0 • 
n w0 is a Banach space with norm 

lw I max lw(t) I 
OStST 

If H is the Hilbert space given by 

H 
n 

{w E w0 ; each component of w is absolutely continuous 

(3.10) with square integrable derivatives} , 

~ ITO h~(t)h~(t)dt 
i=l 

h. E H 
~ 

then {~,H,PW} is an abstract Wiener space which we call the 

n-dimensional Wiener space. 

EXAMPLE 3.1 (Partial weak derivatives, [21] and [12]) 

d~ h~(t) 

Let di, i = 1,2 , be positive integers and d = d1 + d2 • Let us 

consider the d-dimensional Wiener space S.et 

dl+l d 
H( 2 ) = {h; h = (O,O,•••,O,h ,•••,h ) E H} 

dl 
and we consider a family H = {H( 2)}, i.e., letting H(w) = H( 2) , 

wE~ , we set H = {H(w) ;wE~} . Then H satisfies the assumption 

3.1. Then it is not hard to see t~at 
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for every F E D00 (E) 

where denotes the operator introduced in Section 1 of Kusuoka-

Stroock [12]. Fordetails, see [12] and [21]. 

EXAMPLE 3.2 (Conditional weak derivatives, [lOll 

Let {w,H,Jl} be an abs·tract 1\liener space. We fix a Wiener func-

tional F 

{3.11) 

l 
(F such that 

(det 0 ) ~l E 
F 

n 

where 0 
F 

denotes the ~1alliavin covariance of F • 

Following Ikeda-Watanabe [10], we define the condi·tional weak derivative 

where 

and 

d d . i 
DG- ~ ~ (y ) .. <DG,DFJ>.DF 

i=l jzl F lJ H 

is the inverse matrix of 0 
f' 

!:ile set 

{hE H O,l<i.:S.,d},wE'I'J 

H {H (w) ; w E Ill} • 

It should be noted ·that here 1.;e have to fix nice v·ersions of 
i 

DF (w) 

Tlnen H satisfies ·the assumption 3.1. Furthermore, it: is 

clear thort for every G E D00 0-I 

(3.13) G(w) -
i=l j=l 

Hence, by t:he lemma 3. 2 , 

1 
R ) 

.. (w) <G(w), 
:LJ 

(w) 
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(3.14) on 

. i 
Slnce, DHF 0 , 1 ~ i < d , it follows from (3.9) that for every 

00 d 
f E Ct (R ) , 

(3.15) 0 • 

lrJe will now point out the different properties of DH and /5H from ·the 

those of D and 15 respectively. 

LEfviMA 3.4 Let F 
1 2 d d 

(F ,F ,···,F l ED0,(R) and 

(3.16) 

Then, for every 
00 d 

¢ E Ct (R ) 

0 

and K E v"'(H) 

(ii) ¢(F)K E D00 (H) and 

(3.17) 

Proof. It is clear ·that (i) follows from 'che lemma 3. 3. Next we no·te 

that 

o (GK) = - <DG,K>H + GoK 

(see [27]). By combining this with Lemma 3.2, we have, for G E D00 

and K E D00 (H) , 

T'nen se·tting G = ¢(F) and using (i) we can complete the proof of ( 3.17). 

We now turn to studying properties of the pull-back of Schwartz 

distributions on as elements in related to the partial weak 
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derivative DH 

butions on Rd 

Let S• (Rd) be the Schwartz space of tempered distri-

PROPOSITION 3.1 Let us consider a Wiener functional F 
1 2 

(F ,F v !!>eo , 

d 00 d F ) E D (R ) such that 

(i) 0 i 

(ii) 

(3.18) (detcr )-lEn L 
F p;?:l p 

where aF is the Malliavin covariance of F 

Then, for every G E D00 
, <!> E v"' (H) and T E S• (Rd) , 

(3.19) 

where T(F) denotes the puU-back of T under the mapping F : w ~ Rd 

(cf. [27] and [10]) and <•,*> denotes the canonical pairing between 

D00 and D-oo 

Proof. Let {¢n} be a sequence of such that 

00 

denotes the Schwartz space of rapidly decreasing C -

functions on Rd Then we have 

<<DHG,~>H,T(F)> =lim E[<DHG,<l>>H¢n(F)] 
n-+oo 

lim E[<DHG'¢n(F)<l>>H] 
n-+oo 

lim E[GoH(¢n(F)<l>)] 
n-+w 

lim E[G(oH(<l>))¢n(F)] 
n-;.oo 

(by ( 3 .17)) 
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which completes the proof {3.19). 

COROLLARY 3. 1 (Integration by part8 foY'TrrU"la). Let F ~ D'" {Rd) satisfy 

the same condition as in the proposition 3."l. 1 2 n Let G = {G ,G ,•••,G) E 

and 

{3.20) 
-1 

{det cr G H) E n L 
, p<==l p 

where aG,H denotes the H-partia"l Ma"l"liavin covariance of G defined 

by 

{3.21) 

Then, for every 

{3.22} 

E[{a. a. ···a . .p)oG(w)K{w) jF{w) = y] 
1 1 1 2 1 k 

= E [.poG(w) ~. . . {K;G,F) {w) jF{w) = y] 
~1~2 •• ·~k 

if <l,o {F)> to , where 
y 

{3.23) 

~. {K;G,F) {w) 
1. 

n 
~ oH{{y H)· ,{w)K{w)DHGj{w)) 

j=l G, 1.] 

~i i • ••i (K;G,F) (w) 
1 2 m 

~i (~i • • •i (K;G,F) ;G,F) (w) 
m 1 m-1 

m=l,2,•••,k. 

Here E[•jF(w) = y] denotes the conditional expectation with respect to 

the measure ~ given F(w) = y and YG,H = ((yG,H)ij) is the inverse 

matrix of aG,H . 

Proof. By the assumption (3.18), there exists a continuous version of 

.. 
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(3.24) 

(K;G,F) (w) IF(w) 

yl<l,o (Fl> , 
y 

yl<l,o (Fl> 
y 

(cf. [27] and [10]). On the other hand, by using (3.9) and (3.20), we 

have 

Hence 

<3.¢oG(w)K(~.<1) ,cS (F)> 
]_ y 

d 
= «D (d>cG), ~ (y H). ,K(w)DHGj> ,1) (F)> 

H ' j=l G, :LJ .. H y 

Combining this with (3.19) we have 

<3.¢oG(w)K(w),o (F)> 
]_ y 

d 
<¢oG(w)o ( ~ 

H . 1 
.. (w)K(w)DHGj(w)),o (F)> 
:LJ y 

J= 

<¢oG(w)<P. (K;G,F) (w) ,o (F)> 
]_ y 

By using this and (3.24), we can conclude (3.22) in case k = 1 . NovJ 

by repeating the argument of the induction on k , we can easily 

complete the proof. 

REMARK 3.1 
l 2 d 

We again consider a Wiener functional F = {F- ,F , • • • ,F ) E 

D"' (Rd) satisfying the same condition as in the proposition 3.1. Let 

1 2 n oo n 
G = (G ,G ,•••,G) ED (R) and we assume tha·t 
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(3.25) 

Then the condition 

(det crK) -l E n 
p2l 

(3.26) 

is necessary and sufficien-t for (3"20) where 

L 
p 

K = (G,F) and denotes 

the Malliavin covariance of K • In fac-t, this can be proved as follows, 

Since D Fi 
H 

i j 
<DF trDF 

It also holds that, by (3,7), 

( 3, 2 7) 

i,j l,2,•••,n 

By the assumption (3.25), there exists the matrix C(w) (C~(w)) such 

t.'Iat 

(3.28) 
i 

DG (w) 

Hence, setting 

we have, by (3.27), 

d . 
2: ~(w)DFk(w) 

k=l -

Combining (3.27), (3.28) with this, we have 

i 
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( 

crG,H(w) 

det 

AF,G(w) 

+ C(w)A (w) 
F,G 

(3.29) 

This implies that (3.20) and (3.26) are equivalent. 

C (w) crF (w)) 

crF(w) 

Before closing this section, we show a relation which is useful in 

the evaluation of a(t;8) , (see, Section 5). From now on, in this 

section, we always fix £ £ ••• £ E w* l' 2' ' d 
such that 

We also set 

and 

PROPOSITION 3.2 

( 3. 30 l 

<£, ,£.>H 
~ J 

0 0 ' 

~J 
i,j 1,2,···,d . 

H ~ {h E H ; <h, £, > = 0 , 1 < i < d} 
0 lH = = 

F(w) 

FOP every G E D00 and x E Rd 

In order to prove, we will prepare some notation and a lemma. Let 

w2 = {w E w ; !L (w) 0 for every 

Then we have the pseudo orthogonal decomposition: 

(direct sum) , 
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(cf. [18],[22] and [10]}. We write niw = wi , if w = w1 + w2 , wi E Wi, 

i = 1,2,· Set lli = (ni) * (!J) , the image measure of ll under the 

mapping ni: W-----+ Wi , (i = 1,2,) • Then we have an abstract Wiener 

space {w2 ,H0 ,!J 2} • For every f E C00 (Rn) , z ERn , we set 

fz(y) = f(y +z) y E~. 

LEMMA 3.5 Take an element K EP suah that 

(3o31) 

1i1here 

z (x) 
q 

K(w) = p (q1 (w) ,q2 (w), • • • ,~ (w)) , w E w 

Then for every d 
xER 

ll2 X 
E[KIF = x] = E [K l 

1 2 d d for x = (x ,x ,·••,x) E R • 

ll 
Here E 2 denotes the expeatation liJith respeat to 

Proof. The mapping q : W -----+ Rn is defined by 

q (w) (q1 (w) ,q2 (w) , • • • ,qn (w)) • 

Then 
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which completes the proof. 

Proof of Proposition 3.2 We first note that F sa·tisfies the condition 

of Proposition 3 .l. Since the mappings: DH : D00 --7 D00 (H) 

co 00 do (H €) H) and LH : D ------?> D are continuous, it is sufficient to shovl 

(3.30) for G E P • If we ·take G(w) E P such ·tha·t 

G(w) p 

then 

(3. 32) 

(w) ,q2 (vJ) , • • • ,qn (w)) , 

11 

~ Cl.p(q(w))1T2q. 
i=l l l 

n n 
~ ~ 3. 3.p(q(w)) 

i=l j=l l J 

n n 
~ I: Cl. 3.p(q(•.v))<1T?q.,1T q.>, 

i=l j=l l J - l 2 J cl 

n 
::E 3.p(q(w) qi (1T 2w) 

i=l 1. 

E 

wEW 

'JJ E W. 

Since w2 C W and lrJ* C w; , G can be regarded as a polynomial on the 

abstract Wiener space Let.ting i5 a11d L be the weak 

derivative and the Ornstein-Uhlenbeck's operator defined on {w2 ,H0 ,J1 2 } 

respectively, we have 

l1 

::E 3.p(q(\"li )q. 
i=l ]. l 

(3. 33) 
-2 
D G(w) 

n n 
::E ::E a.a.p(q(w)Jq. 

i=l j=l l J l 

q, 
J 

wE W~ , 
1-
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n n 
LG(w) ~ ~ a.a.p(q(w))<q.,q.>H 

i=l j=l l J l J 0 

n 
- ~ a.p(q(w)}q. (w) 

i=l l l 

By Lemma 3.5, (3.32) and (3.33), we have 

(3.34) 

I 2 12 I ]l2 . -2 X 12 
E [ DHG H@H F = x] = E [ I D G ] 

Setting 

n n 
~ ~ a.a.p(y)<u2q. ,u2q.>H 

i=l j=l l J l J 

n d 
- ~ a.p(y) (y. - ~ <q. ,R..> u.) 

i=l l l j=l l J H J 

we have, by Lemma 3.5, 

2 ]l2 X 2 
E [ (L G) IF = x] = E [ (K ) J 

H 
(3.35) 

]l2 - X 2 = E [(LG) ] • 

On the other hand, it holds that 

ll2 - x 2 ll2 1_ xl2 ~-2 xl2 
E [ (LG ) ] = E [ DG + D G H 'X'H ] , 

Ho o \CI o 

(see Shigekawa [22]). By combining (3.34), (3.35) with this we obtain 

(3.30). 
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4. LOCAL ESTIMATES 

In this section, we assume only Assumptions 1.1, 1.2 and 2.1. 

Hence we do not assume the assumption 2.2. The purpose of this section 

is to prove the following estimate: 

PROPOSITION 4.1 Under Assumptions 1.1, 1.2 and 2.1, for every positive 

constants t and L , there exists a positive constant S (t ,L) which 

may depend on t and L such that 

sup jKt(x,y;8) I~ S(t,L) < 1. 

x, y E Rd' I X- y 15;L 

We first begin to introduce some notation. Let us consider the 

!-dimensional torus 

T {z E C ; J z I = 1} • 

Then by the mapping: 
,/-1u 

[0, 2rr) 3 u -----7 e E T we can identify T 

with the interval [0,2rr) For every positive ~ , let M~ be the 

totality of probabilities A such that 

( 4. 2) 

where 

and d¢ 
du 

for every ¢ E C co (T) , 

I l-1u I 11¢11 00 sup ¢(e ) 
u 

denotes the derivative of the mapping: r-lu u -----7 ¢ (e ) . Then 

we ob·tain the following: 

LEMMA 4.1 For every positive ~ , 

If r-fu 
sup e A(du) I < l . 

A EM~ T 
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Proof. Let M be the totality of all probabilities on T . Since 

T is compact, M also is compact in the weak w-topology. Furthermore, 

for every ~ E C00 (T) , the mapping 

is continuous. Hence M.R, is closed. T'.aerefore M.Q, is compact in the 

weak *-topology. It follows from this that if 

IJ 1-lu I sup e A(du) 
A E M.Q, T 

1 1 

there exists an element AO E M.Q, such that 

Since ler-lul -- 1 , this implies that A0 is the Dirac measure. 

This contradicts (4.2). 'rherefore· 

II ,J:lu I sup e A (du) 
A EM£ T 

< l 

which comp1e·tes the proof. 

Next we set 

F(t,x,w) X(t,x,w) and G(t,x,wl = J . 8 • 
X( [O,t] ;x,w) 

Letting A be the image measure of PW[•jx(t,x,w) 
t,x,y 

y] under the 

mapping: w---;)> exp{,l.::lG(t,x,w)} , we have 

(4. 3) Kt(x,y;S) J ,J:lu d 
e /, (du) , x,y E R 

T t,x,y 
t > 0 . 

LEMMA 4.2 For every positive constants t and L , there exists a 

positive constant £ = £(t,L) which may depend on t and L such that 
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(4.4) for 

ProoL It is well-known that for every t > 0 and 
d 

x E R , 

(4. 5) 
00 d 00 

F(t,x,w) ED (R ) , G(t,x,w) ED 

(cf. [10]). Furthermore, by using the assumptions L l and 2. l, t<Je .can 

show that for every p > l 

(4. 6) 

~eJhere °F(t,x,w) 

sup 
d 

XER 

< GO 

denotes the ~~11iavin covariance of F (t,x,w) • In 

order to obtain the uniform estimate like as (4.6) we need a delicate 

lower bounds on the Ma.lliavin covariance in tex:·ms of vector fields 

{L1 ,L2 , ••• ,Ld} in (2.2). For details, see Kusuoka-Stroock [13]. It 

also holds, by the assumptions L l and 2 .1, that for every integer 

p ~ 1 and 
1 

s E R , there is a positive cons tarrt satisfying the 

following: 

(4. 7) IIF(t,x,w) - xll < cl ' IIG(t,x,w) 
p,s s < cl for X E 

Letting 

H(w) {h E H; <h,DX.i (t,x,w) > .. 
H 

0 ' l < i ,;;, d} 

we consider a system H of closed subspaces of H given by 

H 

Then H satisfies the assumption 3.1 and it holds that 

d~(cf-:TG(t,x,w),D G(t ) E Cco(2") 
du ~ J H ,x,vl ' ~ 
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Here and from now on, we identify a function w on T with the periodic 

extended function on R1 Setting K(t,x,w) (G(t,x,w) ,F(t,x,w)) , 

we have, by (3.29), 

(4.9) det aK(t,x,w) (det a ) (det a ) 
G(t,x,w),H F(t,x,w) 

where aK(t,x,w) and aG(t,x,w) ,H are the Malliavin covariance of 

K(t,x,w) and the H-partial Malliavin covariance of G(t,x,w) respec-

tively. We also have 

(4.10) a ( ) H = <DHG(t,x,w),DHG(t,x,w)>H G t,x,w , 

We will now show that for every p ~ 1 

(4.11) sup II (det a ) -lll < oo • 
d G(t,x,w),H p 

xER 

By (4.7) and (4.9), this can be reduced to show that for every p ~ 1 

(4.12) sup 
d xER 

II (det a ) -lll 
K(t,x,w) p 

< 00 • 

Let us consider the system {A1 ,A2 ,•••,Ad} of vector fields on 

A (r,u) 
Cl 

L (r) + B (r)f.-
Cl Cl oU 

Cl = 1,2,···,d • 

Then it holds that for every a,S = 1,2,•••,d 

where means the Lie bracket and dS 

1,2,•••,d 

(d8 0 ) denotes the a,.., 
scalarization of d8, ([9]). Letting i be the mapping defined by 

and using 1T * ( [L ,L ] ) 
Cl s 0 , a,S 1,2,•••,d, we have 
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l,2,•••,d 

where 11,. and 11 * are the differen·tials of the mappings 11 and 1i 

respectively. Therefore, in the standard coordinate 

(e~),u) in O(Rd) x R1 , we have 
J 

l 2 d 
((x ,x ,•••,x) 

Hence 

(4.13) 

i 
e. 

J 

8. (r) 
J 

0 

d6 0 (r) a:,.., 

d d 
~ ~ (detC1i,.A1,1i*A2 ,···,n*Ad,1i*([A A0 ]))

2 

a=l S=l 01 ' " 

d d i 2- 2 
~ ~ det (e . ) dl3 0 

a=l S=l J 01 " 

. . 2 
det (g~J (x) lll d13ll (x) • 

On the other hand, by the assQmptions 1.1 and 2.1, 

. . 2 
det(g~J(xlllld13ll (x) > 

By combining (4.13) with this, we ob·tain (4.12), (cf. [26]). 

By using (4.11), we obtain that for every ¢ E C00 (T), 

(4.14) 
I §1d (e ,T-Tu) >. (du) 

T u t,x,y 

d¢ HG(t x w) -1 = <-d (e ' ' ),6 (F(t,x,w))>(p(t,x,y)m(y)) 
u y 

where m (y) = ket ( g i j (y) ) i.e. , the density of the Riemannian volume 

with respect to the Lebesgue measure. By Proposition 3.1, (4.8) and 

(4.11), it holds that for every ¢ E C00 (T) , 
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Ew[~(e{.:!G(t,x,w)} IF(t,x,w) = y] 

W {.:!G(t,x,w) 0HG(t,x,w) 
= E [cj>(e · )oH(<D[iG(t,x,w),DHG(t,x,w)>/IFCt,x,w) = y] ' 

Hence, for k > d , p > 1 , ~ + ~ = 1 , 

(4.15) ~ llcj>ll"'{lloy(F(t,x,w))llq,-k 

. DHG(t,x,w) 2 1 1/2 
x ll{o ( )} II k(<l,o (F(t,x,w))>)-} 

H <DHG(t,x,w),DHG(t,x,w)>H p, y 

(see Watanabe [27]). By (4.6), there exists a constant c2 independent 

of x and y such that 

(4.16) 

where c_k denotes the completion of S(Rd) with respect to the norm 

(cf. Watanabe [25]). We also note that, by (3.7), 

(4.17) 

DHG(t,x,w) 
0 ( ) 
H <DHG(t,x,w),DHG(t,x,w)>H 

<DH<DHG(t,x,w),DHG(t,x,w)>H,DG(t,x,w)>H 

2 
(<DHG(t,x,w) ,DHG(t,x,w)>H) 

LHG(t,x,w) 

<o~(t,x,w),D~(t,x,w)>H 

Combining (4.7), (4.10), (4.11) with this, we obtain that 

(4.18) sup 
d 

XE:R 

Furthermore it is well-known that for every L > 0 , 
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(4.19) 
-1 

sup (p(t,x,y)m(y)) < oo 

x,yERd, lx-yj~L 

By (4.15), (4.16), (4.18) and (4.19), 

(4.20) I w[d<j>( 1-=TG(t,x,w)) jF(~ ) sup E du e ._,x,w 

x,yERd, lx-yj~L 

where C~ is a positive constant. Therefore, by (4.14), (4.19) and 
" 

(4.20), we can conclude that for every L > 0 

II d<j> r:lu I sup -d (e ) ;, (du) 
d T u t,x,y 

x,yER , lx-yj~L 

where c4 is a positive constant. This completes the proof of the 

lemma. 

Proof of Proposition 4.1 (4.1) is an easy consequence of the lemmas 

REMARK 4. I By Proposition 4.1, we can show tha·t 

sup spec H < 0 

vvhere H is the self-adjoint operai:or in (m) defined by (2.22) 

and spec H is the set of spectrums of H To see this, denoting by 

{Qt; t ~ 0} the semi-group generai:ed by H , it is enough to show that 

for some t > 0 where IIQtll is the operator norm of 

Firs·t we remember that Qt can be expressed as 

Hence we have 

J Kt(x,y;6)p(t,x,y)f(y)m(dy) 

]Rd 
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f f -

J dlj dKt(x,y;8)p(t,x,y)f(y)m(dy) j"m(dx) 

1R 1R 

r I 2 ~I ( 1Kt(x,y;8) I p(t,x,y)m(dy) 
J d d 
1R 1R 

x f p(t,x,y) lf(y) j 2m(dy))m(dx) 

1Rd 

On the other hand, using Proposition 4.1, we obtain 

r 2 J djKt(x,y;8) I p(t,x,y)m(dy) 

1R 

~ J i3(t,L) 2p(-t,x,y)m(dy) + J . p(t,x,y)m(dy) 

I x-y I ~L I x-y I > L 

S(t,L) 2 (1- J P(t,x,y)m(dy)) + J" p(t,x,y)m(dy) 
I x-y j > L I x-y I > L 

2 r 2 
(l ·- S(t,L) lj p(t,x,y)m(dy) + {3(t,L) • 

lx-y I >L 

But we can choose L so that 

f p(t,x,y)m(dy) ~ t , for 
jx-y I >L 

(see the proof of Lemma 6.2). In this case we get 

d 
xElR 

2 1 2 r I 2 
IIQtfll ~ 2(1+ S(t,L) ) J d dp(t,x,y) jf(y) I m(dy)m(dx) 

L 2 (m) 1R 1R 

Thus we have 

which we desired. For related results, see [23]. 
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5. THE CASE OF THE BROWNIAN MOTION 

In this section, we always assume that g is the standard flat 

metric on Rd Hence the assumption 2.1 and the condition (i) of the 

assumption 2.2 are automatically satisfied. Furthermore the correspond-

ing diffusion process is the Brownian motion on Rd Also we assume the 

assumptions 1.1 and 1.2. Furthermore we assume that the inequality 

(2.13) holds for any x E Rd Under these conQitions we will show the 

estimate (2 .15). To do this it is sufficient to show that for fixed 

(5 .1) 

In fact, it follows from (2.10) that 

log a(t + s;8) ~log a(t;S) + log a(s;8) for t,s > 0 . 

Hence we have 

lim llog a(t;8) 
t-too t 

inf llog a(t;8) 
t>O t 

which implies (2.15). 

Next, we note that 

(5.2) lim llog a(t;6) ~sup spec H 
t->oo t 

where H is the operator defined by (2. 22) • To see this, note that 

tH 
Qt = e is given by 

Therefore 

J K (x,y;B)p(<t,x,y)f(y)m(dy) 
d t 

JR 
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J if Kt(x,y;S)p(t,x,y)f(y)m(dy) 12m(dx) 
JRd Rd 

a(t;Sl 211fll 2 

L 2 (m) 

Thus it holds that 

Hence we have 

sup spec H lim t log IIQtll 
t-+<» 

~lim t log a(t;S) • 
t-+<» 

Let {W~,B(wg),PW} be the d-dimensional Wiener space. Then, as 

stated in Section 3, {W,H,PW} is an abstract Wiener space, where 

and H is the Hilbert space defined by (3.10) with n = d 

Let us consider a system of vector fields 
d+l 

Va on R given by 

a= 1,2,•••,d 

d . 
where 9 = ~ S.dxJ Now we consider the following stochastic differen-

j=l J 
tial equation (S.D.E.) defined on {wg,B(wg),Pw} 

d 
(5. 3) ~ V (X(t))odwa(t) 

a=l a -

Let x<t,x,w> ' X= (x,xd+l) E Rd x R1 , be the solution of S.D.E. (5.3) 

with the initial condition X(O) = x . Set 
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X(t,i,wJ - d+l - Rd 1 (X(t,x,w),x (t,x,wll E x R 

- - d+l Rd l Then it is clear that X(t,x,~~>I) , x = (x,x ) E x R , is independent 

of 
d+l 

X and depends only on X • Hence, for si.mplici ty, we denote it 

by X(t,x,w) . Furthermore we note that 

(5. 4) X(t,x,w) w(t) + x 

Also it is well-known that 

X-(t- ) E D00 (Rd+l) . ,x,w 

Setting 

G(t,x,w) 
d+l 

X (t, (x,O) ,vl) , 

v1e have 

d t I e = I: I ei (X(s,x,w))odXi(s,x,w) 
X( [O,t] ;x,w) i=l 0 -

(see (2.5)). Hence, as stated in (2.8), K1:(x,y;6) can be expres-sed in 

the form 

Kt(x,y;8) EW [exp{.r.::lG(t,x,w) }Jx(t,x,w) y] • 

For simplicity, without loss of generality, we set t 0 l . Now le·t 

H(w) {h ; h E H , <h,DXi (l,x,w) > 0 , l ~ i ~ d} 

Then the system H = {H(w) ;wE W~} satisfies the assumption 3.1. We 

can also define the operators DH,oH and LH as in Section 3. We will. 

first prove the following lemmas: 



LEMMA5.1 

(5. 7) 

where 

(5. 8) 

•a and h (s) 

85 

(MaUiavin [17]). It holds that 

d r1 - •a 
n8 G(1,x,w) [h] = - :Z: J (na(s,x w)- na(x,w))h (s)ds 

a=1 o 

- ~ f1
na(s,x,w) (ha(s) - ha(1))ds , hE H , 

a=1 0 

J1n (s,x,co~)ds 
0 a 

We now set, for a continuous function f on [a,b] , 

(5.9) 

LEMMA 5.2 

(5.10) 

LEiVlt~A 5. 3 

l (b - 2 - 1 rb 
v[a,b] (f)= b-a;a (f(t) -f) dt' f = b-aJaf(t)dt. 

(Malliavin [17]}. It holds that 

d 

<DHG(l,x,w) ,DHG(l,x,t-1) \'I a:1v [0, 1 ] (na) 

(Malliavin [17]} • It holds that 

d f1 
(5.11) trace DD8 G(1,x,\v) = ::::; Ll6C!(X(s,x,w))s(1- s)odXa(s,x,w) • 

C!=1 0 
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LEMMA 5.4 (MaUiavin [17]}. It hoZds that 

d Jl LHG(l,x,w) = :E fi6CY.(X(s,x,w)) (1- s)sodXCY.(s,x,w) 
CY.=l 0 

(5.12) 

d d Jl 8 l: l: { XCY.(s,x,w)yCY. f3 (X(s,x,w)) odX (s,x,w) 
CJ.=l f3=1 0 I 

Jl f3 
- [XCY.(O,x,w) y "(X(s,x,w)) odX (s,x,w) 

0 CY.,.., 

CY. CY. Jl f3 + (X (l,x,w). - X (O,x,w)) sy 0 (X(s,x,w)) 0 dX (s,x,w)]} • 
0 CY.,.., 

Although Malliavin [17] has formulated the lemmas mentioned above 

in terms of the pinned Wiener space, we use the partial Malliavin 

calculus. This allows us to handle the results of Sections 4 and 5 

in the same framework. Then, in order to prove the lemmas, we can use 

the general theory of Malliavin calculus in case of Wiener functionals 

obtained by Ito's calculus. 

Proof of Lemma 5.1 We consider the Jacobian matrix Y(t) at 

x = (x,O) given by 

Y(t) 

and set 

Z(t) 

i -(Y. (t,x,w)) 
J 

i -
(Z. (t, x,w)) 

J 

i -
(<l.X (s,x,w)) 

J 

Y(t)-1 I 

(cf. [9]). Then we have, by (5.4) and (5.5), 
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(5 .13) Y(t) and z(t) 

and 

d+l -
Yi (t,x,w) I: 3.6 (X(s,x,w))odXa(s,x,w) d ft 

a=l 0 l a. 
(5.14) i 1,2,···,d. 

d+l -
zi (t,x,w) 

d+l -
- Yi (t, x,~o1) 

Hence, by (5.6) in [10], we have 

DG(l,x,w) [h] 

d J1 d+l - d+l - •a. 
I; {y (l,x,w) - Ya ('t,X,vl) + 8a (X(t,x,w)) }h (t) dt 

a.=l 0 C! 

Combining (5.14) with Ito's formula, we obtain 

d+l - d+l -
Ya (l,x,w) - Ya (t,x,w) + Sa (X(t,x,w)) 

d Jl 13 I: y l3 (X(s,x,w)) 0 dX (s,x,~.r) + 8 (X(l,x,w)) 
13=1 t a, a 

' 0( 1,2,···,d. 

= - na (t,x,w) + na (l,x,w) + Sa (X(l,x,w)) 

Therefore, noting 

DG(l,x,w) [h] 

d i i 
1: <DG (1, x,w) , DX ( 1, x,w) > DX ( 1, x,w) [h] 

i=l H 
(5 .15) 

i 
DX (l,x,w) [h] fl . 

•l 
h (s) ds 

0 
for hE H , i 1,2,···,d' 

we can complete the proof of (5.7) with (5.8). 

Proof of Lemma 5.2 (5.10) is an easy consequence of (5.7) with (5.8) 

and so details are omitted. 
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Proof of Lemma 5.3 It follows .from (5.7) with (5.8) that 

DDHG(l,x,w) [h,g] d Il •a a 
- ~ Dna(t,x,w) [g] (h (t) - h (l))dt , h,g E H • 

a=l 0 

Since 

- n (t,x,w) 
a 

we have, by (5.15), 

DDHG(l,x,w) [h,g] 

d Jt s - ~ () 8 0 (X(s,x,w)) odX (s,x,w) 
S=l 0 a '-' 

d d d rl k a s 
L L ~ J 8k8a8S(X(s,x,w))g (s)[ha(s)- sh (l)]odX (s,x,w) 

a=l S=l k=l o 

+ 
d d rl ()( a ·8 
~ ~ J () 80 (X(s,x,w)) [h (s) - sh "(l)]g· (s)ds 

a=l S=l 0 a '-' 

d d Jl ~ ~ a8ea(X(s,x,w))l(s) [ha(s)- ha(l)]ds. 
a=l S=l 0 

+ 

Let { ~ J be a comple·te orthonormal system on L 2 ( [0, 1]; dt) 
k k=O,l,••• 

such ·that 

Setting 

a 
v 

1 

ea (0,•••,0,1,0,•••,0) 

a=l,2,•·•,d,k 

we obtain an orthonormal system {ha(t)} 
k a=l,2,•••,d,k=O,l,··· 

Then 

in H • 
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we obtain 
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trace DDHG(l,x,w) 

d 00 d Jl 2 ° 

~ ~{:E 338.(X(s,x,w))(n(s))odXJ(s,x,w) 
a=l k=l j=l 0 a a J k 

d 
La e = o 

Cl=1 a a 

trace DDHG(l,x,w) 

+ 2J:aaea(X(s,x,w))nk(s)~(s)ds} . 

and 
2 

:E (nk (s) l 
k=l 

s(l-s), 

which completes the proof. 

Proof of Lemma 5.4 We first note that 

Hence it is sufficient, by Lemma 5.3, to show that 

(5 .16) 

d d Jl a S 
2.: 2.: { X (s,x,w)ya S(X(s,x,w))odX (s,x,w) 

a=1 S=l 0 ' 

Jl s 
- [Xa(O,x,w) y 0 (X(s,x,w))odX (s,x,w) 

0 a,,_, 

a a f1 S +(X (1,x,w)- X (O,x,w)) sy a(X(s,x,w))odX (s,x,w)]}. 
0 a,,_, 

By Lemma 5.1, we have 

d d Jl Jt s - 2.: 2.: { ( ya S(X(s,x,w))odX (s,x,w))odXa(t,x,w) 
a=l S=l 0 0 ' 
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d d fl s ~ ~ { Y S(X(s,x,w)) 0 dX (s,x,w)Xa(l,x,w) 
a=l S=l 0 a, 

fl s 
- Xa(s,x,w)y 0 (X(s,x,w)) 0 dX (s,x,w) 

0 a,.., 

(l,x,w) - xa (O,x,1ri'))} 

which implies (5.16). 

We now consider the following stochastic differential equation 

defined on {wg,B(W~),Pw} : 

(5 .17) dB(t) = dw(t) - ~ dt 
l - t 0 ~ t < 1 ' 

and let B(t,w) be the solution of (5.17) with B(O) 

(5 .18) i;(t,x,y,w) B(t,w) + (x + t(y- x)) • 

0 • We set 

Then, as is well-known ([9]), conditional Wiener integrals can be re-

written as follows: 

LEMMA 5.5 (i) 

(5 .19) 

d d Jl 
Ew [I :.E ~ { 

a=l S=l 0 

. s (s,x,w)y 0 (X(s,x,w))odX (s,x,w) a,.., 

a Il S a - [X (O,x,w) y 0 (X(s,x,,.JH 0 dX (s,x w) + (X (l,x,w) 
0 a,.., 

a S 2 Jl 
-X (O,x,w)) sy 0 (X(s,x,,>~})odX (s,x,w)J}j jx(l,x,w) 

0 a,.., 

- d d Jl s 2 
Ew[l :.E E Ba(s,w)y s(i;(s,x,y,w))odi; (s,x,y,w) I l 

a=l S=l 0 a, / 

Where Ew denotes the expectation with respect to w p 

y] 
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(ii) 

(5 .20) 

w d rl 2 
E [la:1J0Ma(X(s,x,w))(l- s)sodXa(s,x,w) I lx(l,x,w) 

w d Il 0! 2 
E [I :E 66a (l;(s,x,y,w)) (1 - s)sodi; (s,x,y,w) I ] . 

0!=1 0 

(iii) 

(5. 21) 

where 

(5.22) 

y] 

d Jt (3 
sC!(t,x,y,w) = :z; y Q(l;(s,x,y,w)) 0 di; (s,x,y,w) , 

S=l 0 a,.., 

l; (x,y,w) 
0! f1

s (t,x,y,w)dt 
o a 

y] 

Proof. The image measure of PW under the mapping: 
d 

WO 3W~ 

s(t,x,y,~rr) E Wd is the d-dimensional conditional Wiener measure 
O,x;l,y 

where 

wd 
O,x;l,y 

d 
{w E W ; w (0) x, w(l) y} • 

Hence (5.19) and (5.20) are clear. Futhermore (5.21) is an easy conse-

quence of (5.7) and (5.8). 

Before proceeding to estimating several conditional Wiener integrals, 

we note the following. 

LEMMA 5.6 There exists a positive constant c1 such that 
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Proof. The proof is easy and is omitted. 

LEMMA 5. 7 There exist positive constants · c2 and c3 such that 

d d !1 s 
EW[j ~ :E { Xa(s,x,w)ya 8 (x(s,x,w))odX (s,x,w) 

a=1 B=l o ' 

a J1 B a - [X (O,x,w) y 0 (X(s,x,w)) 0 dX (s,x,w) +(X (l,x,w) 
0 a,l-' 

(5. 24) I1 B 2 
Xa(O,x,w)) sy Q(X(s,x,w))odX (s,x,w)]}j jx(l,x,w) 

0 a,'" 
y] 

2: w I y- X 14 d Jl 
~c2 {1+ ( {E [ <y ,-

1
---,>(t;(s,x,y,llr)) ds 

a=1 0 a Y - x 

Proof. By (5 .17) and (5 .18), >~e have 

d d Jl a B 
2: L B (s,w)y S(~(s,x,y,w)) 0 d~ (s,x,y,w) 

a=l B=l 0 a, 

d d J1 B 
:E 2: Ba(s,w)ya S(~(s,x,y,w))dw (s) 
a~1 S=1 o ' 

(5.25) 
d d fl B 2: ~ C/, B (s ,w) , 

2: B (s,w)y B(~(s,x,y,w))·-1-_~-o.s 
01.=1 8=1 0 a, - s 

d Jl a 
+ :E B (s,w)<y , IY = ~~>(~(s,x,y,w))dsjy- xl 

a=1 o a Y 

1 d d I1 
+- :E :E Ba(s,w)3 0 y B(~(s,x,y,w))ds. 

2 a=1 S=1 0 ~-' a, 

By Lemma 5.6, there exist positive constants K1 and K2 independent 

of x and y such that 

" "' a ( · ) ( ( ) B (s ,w) , d d Jl B 
""' .r~ B s,w y ~ s,x,y,w) l--· as = 0 

a=l S=l 0 · a,S - 8 

(5. 26) 
d d Il 2 Ewll :E 2: i3Cl(s,w)ya s(~(s,x,y,w))dw8 (s) I J ~ K1 

a=l 8=1 0 ' 
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d d rl 2 
Ew[l ~ ~ J Ba(s,w)a 0 y 0 •(t;(s,x,y,w))dsl 1 < K 

a=l S=l 0 ~ a,~ = 2 

Furthermore 

d rl 
EW[I ~J Ba(s,w)<y '~I -xl >(l;(s,x,y,w))dsly-xii 2 J 

a=l 0 a Y- x 

(5. 27) 
~dX 

2 d Jl w 4 l/2 ~ K ly-xl ~ { E [l<y '~I -xl:>(l;(s,x,y,w)) I )ds} , 
- 3 a=l 0 a y- x 

where K3 is a positive constant independent of x and y • By 

combining (5.19),(5.25),(5.26) and (5.27) we can complete the proof of 

(5.24). 

LEMMA 5.8 There exist .positive eonstants c4 and c5 such that 

d Jl 2 EW[I ~ ll8a(X(s,x,w)) (1-s)sodxa(s,x,w) I lx(l,x,w) = y) 
a=l 0 

where y-x a y-x 
a <y I I l>(z) = -<y ,-1--l>(z) 

a a y-x a~ a y-x 

Proof. Since oe = 0 I we have 

d Jl ~ flea (l;(s,x,y,w)) (l- s)sodl;a(s,x,y,w) 
a=l 0 

d Jl ~ liSa (l;(s,x,y,w)) (1- s)sdl;a(s,x,y,w) • 
a=l 0 

Furthermore 

(5.29) M 
a 

d 
~ a Y 

S=l B a,B 
a= l,2,•••,d , 



and 

(5. 30) 

Hence 

(5. 31) 

d 
~ 68 (z) (ya - xa) 

a=l a 
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d 
~a <y ,-1~1 i>(zl Jy-xj 

a=1 a a y - x 

w d fl 2 
E [I ~ ll8a(~(s,x,y,w)) (1- s)sod~a(s,x,y,w) 1-J 

a=l 0 

w d Jl 
= E [j ~ Ma(~(s,x,y,w)) (1- s)sdw01 (s) 

Ci"'l 0 

d Il + ~ 68a(~(s,x,y,w))sB01 (s,w)ds 
a=l o 

dfl y-x I 112 + :E a <y ,-1--l>(~(s,x,y,w))s(l- s)ds y-x l 
a=l 0 a. a Y- x 

It is easy to see that for some positive constants K4 ,K5 ,K6 ,K7, 

(5. 32) 

By combining (5. 20), (5. 31) and (5. 32) we can complete the proof. 

By using the lemmas 5. 4, 5. 7 and 5. 8 we obtain 'che following. 

PROPOSITION 5,1 There exists a positive aonstant c6 suah that 

(5. 33) 
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REMARK. 5.1 Let d = 2 and e be the differential 1-form, 

(5. 34) 
1 1 2 2 1 e = 2<x dx - x dx ) 

Then e satisfies the assumption 2.1 and the condition (ii) of the 

assumption 2.2. In this case, by (5.12), 

fl 1 2 1 Il 2 LHG(l,x,w) =- X (s,x,w) 0 dX (s,x,w) T [X (O,x,w) 0dx (x,s,w) 
0 . 

1 . 1 f1 2 + (X (l,x,w) -X (O,x,w)) sdX (s,x,w)1 
. 0 

fl 2 1 2 fl 1 + 0x (s,x,w) 0 dX (s,x,w) - [X (O,x,w) 0dX (s,x,w) 

2 2 f1 1 + (X (l,x,w) -X (O,x,w)) 0sdX (s,x,w)1 . 

Therefore we have 

w fl 1 2 Jl 2 1 = E £1 0B (s,w)dw (s) - 0B (x,w)dw (s) 

2 2 f1 1 1 1 Jl 2 2 + ((y - x ) 0B (s,w)ds - (y - x ) 0B (s,w)ds) I 1 

w f1 1 2 fl 2 1 2 = E rl OB (s,w)dw (s) - OB (s,w)dw (s) I 1 

w I 2 2 J1 1 1 1 f1 2 12 + E [ (y - X ) 0B (s,w)ds - (y - x ) 0B (s,w)ds 1 

w I J1 1 2 12 w I f1 2 1 12 = E [ 0B (s,w)dw (s) 1 + E [ 0B (s,w)dw (s) 1 

I 2 212 J1 1 12 1 1 2 Jl 2 2 + Y - x E£1 0B (s,w)ds 1 + IY - x I E[l 0B (s,w)dsll 1 

Hence 

(5. 35) w I 121 1 1 I 12 E [ LHG(l,x,w) X(l,x,w) = y1·= 3 + 12 X- Y • 
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This means that under the assumption 2.2, the estimate (5.33) is 

sufficiently sharp. 

Nex-t we prepare a general lemma. 

LEMMA 5.9 (cf. D. Stroock [24]), For every continuous function 

f: [O,T] ---';> Rl with 

f(t) > E 

(5. 36) 

g(t) 

Proof. For some t 0 , 0 < 

Hence 

V[O,T] (g) 

where 

h(t) 

> 0 for 0 

2 

V [0 ,T] (g) 
E 

> 

< T 

t , 0 

g = J 
0 

f (s) ds 

2 
dt > 

t 

< t < T , 

f(s)ds) 

ro ml (h) 
& J 1. 

2 
E 

12 

In order ·to prove (5.1) the follmving proposition plays an important 

role. 

PROPOSITION 5. 2 For every positive integer p ,2:, 2 , there er:cists a 

positive constant c7 independent of x and y such that 



(5. 37) 

Proof. 

(5. 38) 

We set 

(5. 39) 

and 
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w I 1-p\ E [ DHG(l,x,w) H X(l,x,w) 

Since (5.29) holds, we obtain 

d It s :E y 0 (~(s,x,y,>v))dw (s) 
S=l 0 a,., 

d It s B (s ,w) 
- :E Y 0 (~(s,x,y,w)) 1 _ ds 

S=l 0 a," s 

+ Jy-x\ft<y -1 y-xl>(~(s,x,v,w))ds + 1:.2 f0tli8N{~(s,x,y,w))ds oa,y-x - ~ 

l;;(t,x,y,w) 
d 
:E t; (t,x,y,w) 

a=l a 

Cl = 1,2,··· ,d . 

d t 
A(t,w) = :E f (<ya ~~~(s,x,y,w)) 2ds 

S=l o "' 

where 1:. = ( 1,1, • • •, l) . Then, by the assumption 2. 2, there exist 

positive constants c8 ,c9 independent of x and y such that 

(5.40) 

d 2 
c _s_ :E (<y 13 ,1:_> (zl l ~ c9 

8 - S=l 

we also consider 

a(t,x,y,w) 
-l 

t;(A (t,w) ,x,y,w) 0 ~ t < A(t,w) 

where 
-1 

A (-t,w) is the inverse function of t ~ A(t,w) Then we have 

(5. 41) V[O,l](1;(•,x,y,v;)) = ((a(A(s,w),x,y,w)- ~(x,y,w) 2ds 

where 
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~(x,y,w) I: l;(s,x,y,w) ds • 

Setting 

inf{s; jB(s,w) I ~ 1} A (l/N2 ) 

we obtain that for some c10 · and c11 , 

(5 .42) 

( [9] l . 

2 
PW[crN(w) ~ .1:_] < 2d exp[-C N2 ] 

N2 = 10 
for N ~ c11 , 

Next, if 
3 

1/N ~c8 , by (5.40) and (5.41), 

V [O,l] (I;(• ,x,y,w)) 

cs 
~_!_I (a(s,x,y,w)
- c9 o 

- 2 l;(s,y,w)) ds 

l 
~ C 3 V 3 (a(• ,x,y,w)) 

9 N [0,1/N 

([27]). It follows from this that for l/N3 ~ c8 , 

(5. 43) 

~{w;oN(w) t-~}U{w;V 3 (a(•,x,y,w)) <.1:_ cr (w) =1:_} 
N [0,1/N ] N4 ' N i 

On the other hand, by the general tl>eory of martingales, there exists a 

Brownian motion {S(t,w)} such that 

(5. 44) a(t,x,y,w) S(t,w) + m(t,x,y,w) 0 ~ t ~ A(1,w) 

where 

-1 IA (t,w) d ds 
m(t,x,y,~V') - I: <ya,B(s)>(l;(s,x,y,w)) 1 _ s 

0 a=l 

A- 1 (t w) d I Q ~ 
+ jy-xJ I: <y 'I l>(l;(s,x,y,w))ds 

0 a=l a Y- x 

-1 1JA (t,w) d · 
+ 2 ~ ~8a(l;(s,x,y,w))ds • 

0 a=l 



Then, if crN(w) = l/N2 , N > ...!..v 1 , 
= ca 
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lm<t,x,y ,w) I ,;,c12 (1 + IY - xI) t , for t <...!.. 
= 3 

N 

where c12 is a positive constant independent of x and y • Hence, 

(5.45) 

Since 

l/N2 , N > ...!.. v 1 , then 
= ca 

V 3 (m(•,x,y,w)) 
[0,1/N l 

vl/2 <a> < vl/2 (a) + vl/2 (m) 
[O,l/N3] [O,l/N3] [O,l/N3] 

( [27]), if N ~ (Cal-l v 1 and 

then 

~ 1 1 {w; V 3 (a(• ,x,y,w)) ,;, 2, crN{w) = 2} 
[0,1/N ] N N 

(5.46) 
. 1/2 2 

C {w; V 3 (1$(• ,w)) ,;, 2} 
[0,1/N ] N 

By combining (5.42),(5.43),(5.46) with Lemma v-a.6 in [9], we obtain 

-1 ,;:: 
that if N ~ (Cal v (1 v "cuv c9 ) and 

then 

(5.47) 

fi 
N ~ - c 1 < 1 + I x - y I l , 

- fj 2 

where c13 and c14 are positive constants independent of x and y • 

This implies that for some positive constant c15 , 
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W -p lx- Yl> 8p+l E [V[O,ll{z;;(•,x,y,w)) ] ,;,c15 {1 + 

{5.48) 
d 

Ewr< 1: <r < >>>-pl <1 +I 1>8p+l a=lv[O,l] ~a ·,x,y,w ,;, cl5 x- Y • 

Next we will show {5.37) by using {5.48). It follows from the 

assumption 2.2 that for {y- xl/IY- xl E Sd-l we can choose an integer 

a = a{x,y) satisfying 

{5.49) 

We set 

{5.50) 

for z E Rd • 

d 
F{x,y;w) 1: v[o ll <z;;s{•,x,y,w)) 

8=1 , 

{1) 
fa {t,x,y,w) 

{2) 
fa {t,x,y,w) 

{3) 
fa. {t,x,y,w) 

f t <y~, ly- xl,. {!;{s ,x,y,w)) ds IY- xl 
0 a y-x 

ft . 

<y ,dw{s)>{!;{s,x,y,w)) 
0 a 

= ~ fty {!;{s,x,y,w))dw8 {s) 
s=l 0 a,8 

f~4 ) {t,x,y,w) = tJt~e {!;{s,x,y,w))ds 
0 a 

By Lemma 5.9 and {5.49), we have 

{5.51) 

Setting 

sup{ly .. {z) 1, IM. {z) l,z E Rd,i,j 
l] l 

1,2, ••• ,d} , 

we have 



1 01 

(5.52) 

Next we note that there exists a 1-dimensiona1 Brownian motion {S(t,w)} 

and the time change function T(t,w) such that 

( 3) ' 
fa (c,x,y,w) S(T(t,w),w) It d 2 

T(t,w) = ( 2: y 13 U;(s,x,y,w)) )ds 
0 s.=l a, 

Hence, for some positive constant K9 (independent of x and y) 

and 

I (3) I sup f (t,x,y,w) < 
o:;;t:;;1 a 

sup \S(t,wl\ 
o:;;t:>K9 

Therefore we have 

(5. 53) 

We now set 

( sup \ S (t,w) \) 2 

o:;;t:9:<9 

rl(x,y) 
1 13 ;a; 

{w; sup \B(s,wl\ _:s_--jfs' \x-yJ, 
o:;;t:;;l/2 - 6 dKs 48 

sup ls<t,wl\~~;fs \x- y\}. 
ostsK1 

Then, noting 

1/2 
(V[O,l/2](/;;a(·,x,y,w))) > 

(l) 1/2 
(V[O,l/2](fa (·,x,y,w))) 

(k) 1/2 
2: (V [O 1121 (f ( • ,x,y ,w))) 

k=2 ' a 

4 

([27]), we obtain that if 
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,1.(8 
IX- yj >-X 6 =.;.-

al 

then for w E n(x,y) , 

(5.54) 

1;;:; 
=-/-,*lx-yJ 2 I 48 

By combining this with 

1 . 
F(x,y,w) ~ V [O,l] (I';C! (• ,x,y,w)) ~ 2 V [O,l/2 ] (r;o, (• ,x,y,w)) , 

we obtain that if 

lx- yj > x 6 
=~ 

(5.55) 
_l2_ ~-w 2 . 96 Pj ~-p E[F(x,y,w) ;rl(x,y)J,;;;,(2 a_-;) x-y 

On the other hand, there exist positive cons·tant.s c16 and 

independent of x and y such that 

w c 
p [rl(x,y) J ,;;;,c16 exp[-

By (5,48),(5.55) and (5,56), if 

then 
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w -p/2 
= E [F(x,y,w) ] 

w '-p/2 w -p 1/2 w c 1/2 
~ E [F(x,y,w; ; f."Hx,y)] + (E [F(x,y,w) ]) (P [n(x,y) ]) 

which implies (5.37). 

We now return to ·the proof of (5.1). By using (3.22), (3.30), (4.8) 

and (4.17) we obtain that for every ¢ E C00 (T) , 

lEW[~! (e HG(l,x,w)) jx(l,x,w) = y] I 
2 

W 2<DHG(l,x,w) ,D}]G(l,x,w) @ D}]G(l,x,w) >_ 
.s_ II ¢11 {E [ 4 H jx(l,x,w) = y] 
- oo \n}]G(1,x,w) IH 

W \LHG(l,x,w) I 
+ E [ 2 jx(l,x,w) = y]} 

joHG(1,x,w) IH 

w I 121 l/2 ~ 311¢11 00 (E [ LHG(l,x,w) X(1,x,w) = y]) 

Hence, by Propositions 5.1 and 5.2, if 

K 

\x-yj~-8 x6 ra; 

311 II ( (1 I 12))1/2( (1 lx _ Y\2)-2)1/2 ~ ¢ oo c6 + Y - x c7 + 
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By combining this with Lemma 4.2, for ~ E C00 (T) , 

(5.57). 

where c18 is a positive constant independent of x and y • By 

Lemma 4.1 and (5.57), we have 

a(l;6) < 1 

which completes the proof of (5.1). 

Before closing this section, we give some remarks. Setting 

i 

e. 
~ 

v 
(O,•••,l,•••,O) i 1,2,•••,d, 

if, for 1 < m ~ i ~ d 

(5.58) <y ,e.>(z) 
a ~ 

0 1,2,•••,d 1 

then the assumption 2.2 does not hold. In this case, 

1, 2, ••• , d , . s 

Hence, by (5.8), 

m-lJt 
na(t,x,y,w) = ~ Y S(X(s,x,w)) 0 dXS(s,x,w) 

S=l 0 a, 

Furthermore if we assume that 

, a 

m,m + l,•••,d. 

1,2,··· ,d • 

1 m-1 m d Rd y 0 (z) ,a=l,2,•••,d,S=l,2,•••,m-l,z=(z ,••,z ,z ,••,z) E a,.., 

depend only on 
1 2 m-1 

(z , z , • • • ,z ) , then DHG(l,x,w) [h] is independent 

m m+l d } of {(X (t,x,w),X (t,x,w),•••,x (t,x,w)),O~t<oo T!lerefore 
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are independent of and 
m m+l d 

(y,y ,···,y). Under 

L'l.ese assumptions, in many cases, (5.57) (also (2.15)) still holds. In 

fact, in such cases, the problem can be reduced to one in case of 

Next we return to the remark 5.1. In this case, we have 

m-1 
R 

2 Jl It . l • 2 2 <DHG(l,x,\v),h@g> = 2{ 
0

( 
0

(l;.L(s)- h (l))ds)(g (t)- g (l))dt 

+ J>J:<s?(sJ -lnllds)(h1 <tl- h 1 (llldt}. 

It follows from this that for some C > 0 , 

and 

This means that in order to show (5.1) we need the estimate (5.37). 

6. THE PROOF OF THEOREM 2.1 

First we choose a positive constant R0 such that 

DC B(O,R0 ) where B(a,r) {z E Rd ; I a - z I < r} . 

We now show the follwing two lemmas. 

LEMMA 6.1 For every t > o, there exist R(t) ~ R0 and o ~ S(t) < l 

such that if 

(6 .1) 

d 
x,y E R and 9,(x,y)r'IB(O,R(t)) = <j>, 
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where 

t(x,y) 
d 

{z E R ; z x + n (y - x) , 0 ,:;, r1 ~ l} 

Proof. We consider the first hitting time T(w) for B(O,R0J , i.e., 

T(w) inf {t ~ 0 ;w(t) E B(O,R0 )}, wE Wd 

Then we have 

y] 

(6.2) . r-1J e 
,;, EW[e B([O,t];x,w) •T(B(•;x,w)) >tiB(t;x,w) -y] g(t,x,y) 

· - p(t,x,y)m(y) 

W l=lG(t,x,w) I + E [e ;T(X(•;x,w)) ,:;,t X(t,x,w) y] 

where B(t;x,w) = x + w(t) and g(t,J{ 1 y) , t > 0 , x,y E Rd, denotes 

the heat kernel on Rd , Le., 

g(t,x,y) 

It follows from (6.2) that 

In order to estimate the first term of the right hand in (6.3), we can 

assume that (2.13) holds for all z E Rd • Hence we obtain, by using the 

result of Section 5, that there exists a positive constant y(t) < 1 
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satisfying 

(6.4) 
w + P [T(B(•;x,w)) ,;;; tjB(t;X,Vl) l g(t,x,y) 

y p(t,x,y)m(y) 

+ PW[T(X(•;x,w)) ;;; tjx(t;x,w) y] • 

We also have 

g(t,x,y) 
w 

P [T (X( • ;x,w)) > t Jx(t;x,wl y] 
p(t,x,y)m(y) w 

P [T (B ( •; x,w)) > t !B (t; x,w) y] 

1 
;;;~w~------~--~~-------------

P [T(B( • ;x,w)) > t!B(t;x,w) "' y] 

Hence for £ = (1- y(t))/8 , there exists a positive constant R(t) 

such that if ~(x,y)n B(O,R(t)) = $ , 

- ..,....g..;,(_t.:..., X--;--' y._)~,-- - ~1+£ 
p(t,x,y)m(y) 

y] ;;; £ 

v< I P [T(X(•;x,w)) ;;; t X(t;x,w) = y] 

( [2]) . Combining this with (6. 4) , vle have 

IK( 8)1 (t)(l) c(1+~)+c<l+~(t)<l, t x,y; ;;; y + e: + ~ ~ ~ 

which completes the proof of (6.1). 

LEMMA 6.2 ThePe eJnst positive constants R1 ~ R(l) and o < S < 1 

euah that if I x - y j ~ R1 , 

whel'e R(t) is the constant given by Lemma 6. L 
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Proof. It holds by the assumption 2.1 that 

1 d I 12 
C (--) exp [ - x2~~ l 

1 hnt l 

1 d I 2 
< c2 (--) exp [ - x - Y I l 

/2nt 2tm2 
~ p(t,x,y) 

d 
, t > 0 , x,y E R , 

where 0 < m1 ~ < 00 II Q < ~ c2 < oo , (for example, see [1]). T'i'e 

take a such that 

We also choose an 

(6. 6) 

where 

and 

such that 

l 
exp{R. 

l. 

M = sup m(z) 

ZERd 

We fix points x and y such "that 

We also take 

Setting 

we have 

<e. ,e.> 
]_ J 

r+(x,y) 

r (x,y) 

,j 

{x + 

{x + 

such "i:ha"t 

0 

d-1 
a(y - x) + I: 

i=1 

d-1 
a(y - x) + :E 

i=l 

i,j 

3 
; a > 

4 

a < 

E 

l 
c. 

4 1< 
E 

1 
~2 

Rl} 



where R~ 
L. 
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or 

R(l - t 0 ) . We first consider the case v1hen 

f (x,y) II B(O,R2 J = eli o + -

leJe nmv consider the s'candard coordinate vJith x the origin with respect 

to ·the basis 

Then 

X= (0,0,•••,0) 1 y (r,O,•••,O) , r 

By (2ol0) , 

jK1 (x,y;el I ~ p(l,x,y) -li cp(t0 ,x,z)p(l- t 0 ,z,y)rn(dz) 

r + (x,y) 

+ p (l,x,y) -lS (1- t 0 J J p(t0 ,x,z)p(l- t 0 ,z,y)m(dz) 
r+(x,y) 

(6. 7) 

-1( 
x p(l,x,y) J cp(t0 ,x,z)p(l- t 0 ,z,y)m(dz) 

r+(x,y) 

where S (t) is the constant given in Lemma 6 o 1. On the other hand 

p(l,x,y)-lf cp(t0 ,x,z)p(l- t 0 ,z,y)rn(dz) 

r+(x,y) 

.. (C2)2 l d/2 / J3r/4 a2 (a-r)2 
< M-C-(2 t (l- t ) ) exp{-2-} exp{-2t - 2 (1- t ) }da 

l 1T 0 0 ml -oo m2 0 m2 0 

2 
M (C2) d l l 1 

< --~-(~) exp{(-(-- -) -
2 '"'l 2 2 m1 m2 

(t _l_)2 
0 4 2 l 

4m t ( l - t ) ) r } ~ 2 ' (by ( 6 . 6) ) . 
2 0 0 
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Combining this with (6.7), we have 

(6.8) 

Next we consider the case when 

r_ (x,y) n B(O,R2 l tP • 

Then we have, by (2.10) and Lemma 6.1, 

IKl (XrY16) I ~a (1- to) 

+ (l-aO.-·t0llp(l,x,yl-1 J 
r 

p(l- t 0 ,x,z) p (t0 ,z,y)m(dz) 

(x,y)c 

By using the argument mentiond above, we also have 

p(l,x,y) -l J cp(l- t 0 ,x,z)p(t0 ,z,y)m(dz) ~ 1/2 

r_ (x,y) 

which inplies 

Combining this with (6.8), we can complete the proof. 

THE PROOF OF THEOREM 2.1 By combining Lemma 6.2 and results in 

Section 4, there exists a positive constant a , 0 < a < 1 such that 

for 

Hence 

d x,y E R 

k a ( 1, e) < 1 1 a (k r e) ~ a ( 11 e) r k = 1 r 2 r 0 •0 0 • 

As stated in Section 5, by combining these results with (2.10) we can 

complete the proof of (2.15). 
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