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REGULARITY OF THE SINGULAR SETS 

IN IMMISCIBLE FLUID INTERFACES 

AND SOLUTIONS TO OTHER PLATEAU-TYPE PROBLEMS 

Brian White 

Existence and almost everywhere regularity of solutions to a wide 

variety of Plateau-type problems follows from several geometric measure 

theory theorems (due primarily to DeGiorgi, Federer, Fleming, 

Reifenberg, Almgren, and Allard.) But singularities do occur, and the 

size and nature of the singular set depends strongly on the particular 

problem. In this paper we describe our recent discovery that, for many 

problems, the singular sets are also fairly regular. The pioneering 

work on regularity of singular sets was done by Jean Taylor [Tl,T2] for 

certain two-dimensional surfaces in ~3 ; our work is a simplification 

and generalization of hers. 

An important ingredient in the proofs is a slight extension of a 

stratification of singularities theorem due to Almgren [A2,2.27]. The 

theorem says that an m-dimensional surface S that is stationary for 

any of the Plateau-type problems we consider stratifies naturally as 

where Xi has Hausdorff dimension ~i. The stratification is by 

tangent cone type. In particular, Xm consists of all points at which 

each tangent corie is an m-plane, and Xm-l consists of all points at 

which each tangent cone is a union of half-planes meeting along an 

(m-2) dimensional subspace. (The lower levels of the stratification 

need not concern us here.) In the particular problems we consider, it 
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is also possible to show that :z m 
is an open subset of s and consists 

of smooth minimal or constant mean curvature manifolds. (This is not 

always true. For instance it fails for two dimensional mass minimizing 

integral currents in ~4 • E2 : the variety 
2 

z 
3 

w is an example.) 

We will first describe the results for several problems and then 

sketch some ideas involved in the proofs. 

1. IMMISCIBLE FLUIDS 

Consider an energy-minimizing configuration of three immisicible 

fluids (such as mercury, \l'Jater, and sesame oil.) Mathematically we 

model the situation as follows. To any partition of a given region in 

into regions v1 , , and v3 , we assign an energy: 

X . • a .. x(m-dimensional area of the V.-V. interface) 
l<J lJ 1 J 

where the o:.ij 's are surface·energy densities which depend on the 

physical properties of the fluids. We could also take into account the 

gravitational energy of the configuration. Now we ask, what is the 

structure of a partition that minimizes energy subject to prescribed 

volumes of the three regions? 11/e prove that for the interface 

S ; av 1 uav 1 uav 3 ,,:::111 consists of smooth constant mean curvature 

hypersurfaces, and zm-l consists of (m-1)-dimensional c1 'a manifolds 

along which three sheets of zm meet at fixed angles (the angles 

depending on the aij.) 

In the case of four or more immiscible fluids, we prove the 

slightly weaker result that a dense open subset of zm-l consists of 

(m-1)-dimenensional manifolds along which three or more sheets of 

meet. 

z 
m 
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2. AREA MINIMIZING HYPERSURFACES MOD p 

Two rectifiable integer-multiplicity currents S and S are said 

to be congruent mod p provided S - S" = pT for some integer 

multiplicity current T; we then write S - S' (mod p). (For integral 

flat chains, the definition of congruence mod p is slightly more 

complicated [W2,1.2].) We say that S is mass-minimizing mod p 

provided 

IM(S) ::S IM(S') whenever aS- <l>S'(mod p) 

Givem any (m-1) dimensional T in with CIT ,. 0 (mod p), there 

exists an s with as = T (mod p) that minimizes mass mod p. Our 

methods show that if s is a mass minimizing hypersurface mod p and 

p is odd, then I. 
m-1 

consists of cl,a: manifolds along which p 

sheets of meet. This was established by Jean Taylor [T1] when 

m = 2 and p 

behaviour. 

3. There are known examples that illustrate this 

The case of even p is considerably more subtle, Even almost 

if 

everywhere regularity is not known except for p = 2 or p ~ 4 [W1]. 

Indeed, examples (such as [Wl, fig.2]) show that Im need not be open 

in S and may contain singular points. 

3 . SOAP FILMS 

Let S be an m-dimensional subset of an open subset U c ~m+l 

such that 

for any Lipschitz map ~ U ~ U such that x ~ ~(x) - x has compact 
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support in U. We show that Em_ 1 is a c1 •a manifold along which 

three sheets of Em meet at equal angles. 

We think it likely that the method will also show that Em_2 is a 

c1 •a manifold, but we have not yet checked this. 

In case m = 2, the result is due to Jean Taylor [T2]. 

4. IDEAS IN THE PROOFS 

Consider the case of mass minimizing hypersurfaces mod p. A 

minimizing mod p cone C (with C contained in the unit ball m c Rm+1 

and (3C) n int B:: 0 (mod p.)) is said to have the epiperimetric 

property provided there exists positive ~ and o such that 

(*) IM(S) - IM(C) :S (1-~) [IM(OX(Sn3B)) - IM(c)] 

whenever S is mass-minimizing mod p and 1p(3S- 3C) < o. Note that 

for ~ = 0 (and o = =) this inequality holds trivially, and it leads 

immediately to the monotonicity of r-m IM(SnB) 
r 

and the existence of 

tangent cones. But for all we know, there may in general be more than 

one tangent cone at a given point. Furthermore, even if the tangent 

cone is unique, snmr may resemble its tangent cone in only a weak, 

measure-theoretic way. 

Reifenberg [R] discovered that if S has a tangent cone C with 

the epiperimetric property (i.e. for which* holds with ~>0), then 

-m r IM(SnBr) actually grows like a power of r, and s n mr (after 

scaling by 
-1 

r ) converges rapidly to its (unique) tangent cone 

many cases one can further show that this rapid convergence forces 

s n m to be a c 1 'a perturbation of c itself. 
r 

c. 

In practise, one proves the epiperimetric property for a cone C 

by constructing comparison surfaces. That is, given a cycle (mod p) 

In 
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T c a~ weakly near ac, one has to construct a surface 

s• with as• = T (mod p) and such that: 

This immediately implies the epiperimetric property. In doing this, one 

is faced with the difficulty that, even if ac is rather simple, T 

may be extremely complicated. Typically this sort of difficulty is 

handled by proving Lipschitz approximation theorems. Our contribution 

to the theory is showing that it suffices to consider only those T 

which themselves have a certain minimization property (essentially 

Almgren's "·•,ll minimization property [Al]). Since T is (m~l) 

dimensional, we may then by induction assume that T has the regularity 

properties we are trying to prove. Finally, the comparison surface S" 

is constructed by linearizing the minimal surface equation of C. 
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