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SOI1E FULLY NON-LINEAR PARABOLIC P,ARTIAL DIFFERENTIAL EQUATIONS 

S ,/!?eve 

In trlis paper I wish to discuss the classical solvability of tile first 

boundary value problem for a ciass of non-linear parabolic equations of 

second order Tt-1e equations to be considered arise from symmetric 

functions in a natural way analagous to the equations considered by 

Caffarelli, Nirenberg and Spruck [CNS] in the elliptic case, They are also 

motivated by the proposed analogue of the l'-1onge-Ampere equation of 

Krylov [KL which is considered here as a first special case I do not 

present the proofs of the results described, but only rough indications of 

the methods involved. The work constitutes the central results of the 

latter half of my doctoral dissertation [R l] 

In [K, 1 J Krylov considered the problem of defining an appropriate 

evolution equation corresponding to the i'1onge-Ampere equation 

,., 
I) det OLu f(x) 

Tne equation r1e proposed took. tr1e form 

f(><,t) 

In [K 1 L Krylov studies this equation on cyliMrical domains w1tr1 zero 

boundary values and with tr1e right t\and side <jepen.jing only on. x and t. 

There he proved results relating to the existence of "generalized 

solutions", while in subsequent work ([K<?J. [K3]) rHj proved further 
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results for classical solvability. A related problem, that of the evolution 

of convex surfaces with velocity proportional to Gauss curvature, has been 

studied by Tso [Tsl. By mimicking the methods of t~1e elliptic theory (for 

example in the dissertation of John Urbas [U.1 D these results may be 

extended to the classical solvability of the equation 

f(x, t ,u,Du) 

for smooth boundary values on a somewhat different class of domains to 

those considered by Krylov. It is mainly in the fact that the elliptic 

methods (in particular the calculation of Pogorelov [P. l]) may be naturally 

extended to the equation 1 "')that its claim to be the ·correct' analogue 

liE'S. 

The elliptic Monge-Ampere equation is known to be classically solvable 

for general boundary values only on convex domains. It is easy to see that 

for a corresponding result for the Krylov equation 1 "), the class of 

domains to be considered should not be indrical but rather 'parabola 

shaped' More precisely, the natural class of domains for this problem 

consists of domains 0 satisfying 

2) 0 U t) "' IR" • .1 I r · t 1 · 0 ·; ,,x, ~ p,x,, .. <.. 

where p is some smooth function umformly convex with respect to :.: 

and uniformly decreasmg with respect to t. For such domains the 

following theorem holds: 
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THEOREM 1 Suppose 0 Is a natural doma;~ Ill e: C2 • 1 (0), and f Is a 

posit!velunctir.m!n C2 (0 x IR x lfln) satisfying fz ) 0 and t!Je 

structure condition 

0 ( f(x,t,z,p) ~ ~(lzl)d~lplcr 

for al!(x,t) e: N aneig!Jbour!JoodofaO, z e: IR, lpl 'f f-!(!zl), 

1-1 a nondecreasfng function., f3 = a - n - 2 ) 0. Then tlN? cl:7SSir..4l 

lirst boundary value problem has a unique convex decreas1/1g solution in 

C 2 , 1 ( 0) n C 0 , 1 ; 0 , 1 1 n • 1 (TI) . 

As in the elliptic case, this tl1eorern is proved using the method of 

continuity. Tr1us it suffices to establish a priori estimates for u and its 

derivatives. These estimates are proved by methods essentiany identical 

to the elliptic case <see [G T J for tt'le global estimates, [T U.l or [U l for 

the local second derivative estimates, and [U l for the boundary gradient 

estimate). The necessary Htiltjer estimates for second space and first 

time derivatives may be proved using U1e weak Harnack inequality of 

Gruber, a non-probalistic proof of which may be found in [R 1] or [R2l 

The above theorem suggests u·1at the Krylov equation is indeed a good 

parabolic version of the ~·Jonge-Ampere equation. However, it has the 

following disagreeable feature; it has no stat10nary solutions (indeed the 

domains considered cannot t1e stationary). It is normal to expect the 

elliptic solutions of an equation to be stationary solutions of the 

corresponding parabolic equations. To obtain an equation with this 

property, which is also solvable under reasonable conditions, I consider 

the more general situation of an equation arising from a symmetric 

function of n+ 1 variables. To see how such a function gives rise to a 

parabolic equation, for a function F defined on the space of (n+ 1 )~(n+ 1) 
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real matrices, consider equations of the form 

3) F(H[u]) = ~(x,t) 

wr1ere for convenience of notation, I denote by H[ u J the matrix 

H[ u] 
f -Dtu = I . 

l 0 

Given a symmetric function f on n+ 1 variables, one may define a 

function F by evaluating f at the eigenvalue vector 

') 

where>.. i [ u] is defined to be the i-th eigenvalue of D'"u. 

I now define a class of functions f so tr1at the equation 3) is 

parabo1ic on appropriate u. Let f be a real valued function on iAn+ 1 , 

f = f(A;, , \n,\t) satisfylng 

4) f is symmetric and smooth in a11 arguments 

Also suppose that a positive cone Y. c IRn+ 'I is w itr, vertex at trH.? 

or·i and contaminq the cone [;,, > 0 ; i = 1 , .. , n+ 1} and 
' ' 

symmetric m U1e !\ i. This cone is to (jetermine the equations on wrlicr1 our 

operator is to be parabolic As extra conciitions on f ! require 

0 on Y. 
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6) f is concave on Y 

Note U1at 5) is simply tiie requirement that 

is parabolic on those u such that :\[ u] e: Y Property 6) is the essential 

condition used by Evans [E] and subsequent auu·,ors for the proof of 

classical solvability of uniformly ell fully non-linear equations. 

It is also required for application of the method of continuity, as well 

as for the estimates, that F be locally uniformly parabol i.e. I require 

that 

7) 
f For every C > 0 and compact K c Y there exists R = R (C. K) 

t such tl1at f(>.,, ... , >.n, >-n•·l + R) ~ C V A € K 

ancl 

8) f(R;..) ) C 

Tr1e next condition controls the behaviour of f near the e;<trernal 

points of the cone Y 

9) 3 ~0 suct1that TTiii f(/\) ~ ~ 0 
'A->1\ 0 

For the inhomogeneous term '~ I require that 
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This condition ensures (indirectly) that the prospective solution actually 

remains in a compact subset of the parabolic functions. 

Now I turn to the conditions to be satisfied by the domain 0. To obtain 

the most general solvability theorem, it is again necessary to consider 

domains which are variable in t. The theorem to be formulated wm 

establish the solvability for arbitrary smooth boundary values on a such a 

class of domains 

The domains to be treated will be assumed to be reasonably smooth.; i.e. 

I do not consider domains with corners, and so cylindrical domains are not 
. . 

included. Note that this means that the usual compatibility conditions at 

the corners do not arise. My flrst assumption is that sufficiently close to 

co, O) e. an, the surface an may be represented as 

1 1 ) Xn = p (X' , t ) t(O 

where the positive xn -axis is the interior normal to an with respect to 

x, and Kd are the principle curvatures of an at ( 0, 0) with respect to 

x, and 't is the ··time derivative" of an. The condition tying in the nature 

of F now becomes 

12) ¥(x,t) E an' 3R suchthat(K,, ... ,Kn-l•'t,R) E y 

Note that this condition does not make sense where K i Of't are notwe\1 

defined. I therefore assume that for t sufficiently small, an may be 

represented as 
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11') t=&(x) 

and insist that 

12') & - t is an admissible function 

where the term "admissible" is defined by the following. 

DEFINITION A function u e: C2 • 1 CrD is called admissible if at ever_,v 

(x,t) e: 0, X[u](x,t) e: Y 

Note that with this definition, condition 12') is equivalent to the 

requirement that 

X[G-t)(O,x) (&,1(x), ···, &nn(x), 1) e: 'i 

Thus the restrictions on oO take on a purely pointwise form. It is also 

clear that the class of domains thus defined is. apart possibly from the 

smoothness requirement, the maximal class for the following theorem. 

The main result of this article is tr1e obvious extension of Theorem 2 of 

[C.N.S.l 

THEOREM 2 .!Yuppose conditions 4)- 12') all hold, and that 

:p e: C""(oO). Thenthereexistsauniqueadmisstblesolution u"' C"""(O) 

to the boundary value problem 

13) F[u] = 1p(x, t) in 0, u = Ill 0/7 ofl 
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The method of proof is as before; apriori estimates are derived for 

solutions, and then the method of continuity is invoked. The usual 

bootstrapping methods give the higher regularity in the interior. The 

estimates are proved in a manner parallel to those of [C.N.S.1, and are an 

global in nature. The only difficult estimate is the boundary.second 

derivative estimate, which makes strong use of all the structure 

conditions. The lack of local estimates means that high powers of the 

gradient in the inhomogeneous term cannot be handled by these methods. 

An important example of a function f satisfying the conditions above 

is given by the k-th root of the k-th elementary symmetric function on 

n+ 1 variables. Thus in the case k = 1 , one obtains the heat equation, 

and in the case k = n+ 1 , one obtains the Krylov equation. If one now 

asks the question what equation is the natural parabolic equation 

associated with the elliptic equation arisingfrom the k-th elementary 

symmetric equation on n variables, the obvious answer gener·alizing 

from the relationship between Poisson's equation and the Heat equation is 

that arising from the k-th elementary symmetric function on n+ 1 

variables. To return to the question of the ·correct' analogue of the 

Monge-Ampere equation, I would 1 ike to suggest that attention be given to 

the equation 

f(x,t,u,Du) 

where 6n _ 1 is the n-1 ~th elementary symmetric function, as the 

above reasoning suggests this as an appropriate analogue. 
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