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SOME FULLY NON-LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

S A Reye

in this paper | wish to discuss the classical solvability of the first
boundary value problem for a class of non-linear parabolic equations of
second order. The equations to be considered arise from symmetric
functions in a natural way analagous to the equations considered by
Caffareili, Nirenberg and Spruck [C.N.S] in the elliptic case. They are also
motivated by the proposed analogue of the Monge-Ampére equation of
Krylov [K], which is considered here as a first special case. | do not
present the proofs of the results described, but only rough indications of
the methods involved. The work constitutes the central results of the
latter half of my doctoral dissertation [R.1].

In [K.1] Krylov considered the problem of defining an appropriate
evolution equation corresponding to the Monge-Ampére equation
D det D%y = f(x)
The equation he proposed took the form
- B
" =Dpu.det Du = fix,t)

in [K.1], Krylov studies this equation on cylindrical domains with zero
boundary values and with the right hand side depending only on x and t.
There he proved results relating to the existence of "generalized
solutions”, while in subsequent work ([K.25, [K.Z]) he proved further
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results for classical solvability. Arelated problem, that of the evolution
of convex surfaces with velocity proportional to Gauss curvature, has been
studied by Tso [Ts] By mimicking the methods of the elliptic theory (for
example in the dissertation of John Urbas [U.1]) these results may be
extended to the classical solvability of the equation

1"} -Dpu.det D2y = f(x,t,u,Du)

for smooth boundary Va]ues on a somewhat different class of domains to
those considered by Krylov. It is mainly in the fact that the elliptic
methods (in particular the calculation of Pogoreiov [P.1]) may be naturally
extended to the equation 1") that its claim to be the ‘correct’ analogue
Hes.

The elliptic Monge-Ampeére equation is known to be classically solvable
for general boundary values only on convex domains. It is easy to see that
for a corresponding result for the Krylov equation 1), the class of
domains to be considered should not be cylindrical but rather ‘parabola
shaped'. More precisely, the natural class of domains for this problem
consists of domains Q satisfying

2) 0= {{x,t) e B"""| pix,t) ¢ 0}

where p is some smooth function uniformly convex with respect to x
and uniformly decreasing with respect to t. For such domains the
following theorem holds
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THEOREM | Suppose O is anatural domain, ¢ € C2+'(Q), and f /isa
positive function in C3(Q x R x B") satisfving f, > 0 and the

Structure conaition
0 ¢ fix,t,z,p) ¢ p(lzl)dPlpl®

for all (x,t) € N anemghbourhoed of 30, z € R, Ipl » u(izl),

W dnondecreasing runction, B = o ~ n - 2 » 0. 7hen the classical
First boundary value problem has a unigue convex aecreasing solution in
L2 1(Q) n CO 0T ()

As in the elliptic case, this theorem is proved using the method of
continuity. Thus it suffices to establish a priori estimates for u and its
derivatives. These estimates are proved by methods essentially identical
to the elliptic case (see [G.T.] for the global estimates, [T.U] or [U] for
the 1ocal second derivative estimates, and [U.] for the boundary gradient
estimate). The necessary Holder estimates for second space and first
time derivatives may be proved using the weak Harnack inequality of
Gruber, a non-probalistic proof of which may be found in [R.1] or [R2]

The above theorem suggests that the Krylov equation is indeed a good
parabolic version of the Monge-Ampére equation. However, it has the
following disagreeable feature; it has no stationary solutions (indeed the
domains considered cannot be stationary). It isnormal to expect the
elliptic solutions of an equation to be stationary solutions of the
corresponding parabolic equations. To obtain an equation with this
property, which is also solvable under reasonable conditions, | consider
the more general situation of an equation arising from a symmetric
function of n+1 variables. To see how such a function givesrise to a

parabolic equation, for a function F defined on the space of (n+1)x(n+1)
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real matrices, consider equations of the form

3 F(H[uD) = y(x,t)

where for convenience of notation, | denote by H{ul the matrix
{ -—Dtu Q0 1

Hlul = | .
| 0 Déu

Given a symmetric function f on n+1 variables, one may define a

function F by evaluating f at the eigenvalue vector

NMul = (0 [ul, N L], -[ltu}
where A, [ul is defined to be the i-th eigenvalue of Dy,

I now define a class of functions f so that the eguation 3) is
parabolic on appropriate u. Let f be areal valued function on PR“”,

fo=flN,, ., An,ht) satisfying

4) f is symmetric and smooth in all its arguments

Also suppose that a positive cone ¥ ¢ RY ! is given with vertex at the

origin and containing the cone (A, > 0 ; i =1, .., n*1] and
symmetric in the A, This cone is to determine the equations on which our

operator is to be parabolic. As exira conditions on f i require

5) of/fea; » 0 on ¥
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6) f isconcaveon Y
Note that S) is simply the requirement that

Flul= F(xTul, oo, A [ul, -Dgu)

is parabolic on those u such that X[u] e Y. Property 6) is the essential
condition used by Evans [E.] and subsequent authors for the proof of
classical solvability of uniformly elliptic fully non-linear equations.

It is also required for application of the method of continuity, as well
as for the estimates, that F be locally uniformly parabolic; i.e. | require
that

For every C > 0 and compact K c ¥ there existsR = R(C,K)
such that f(A,, ..., A\,, Aa.1 +R) 2 C ¥ XekK

and

8) f(Rx) 2 C ¥ A ek
The next condition controls the behaviour of f near the extremal
points of the cone ¥.

9) 3 ¥, suchthat Tim f(\) ¢ ¥, ¥ Ag € 3¥
A=A g

For the inhomogeneous term v | require that

10) v e C(M); © ¢ yg =min ¢  mox ¥ = ¥,; ¥ > Vo
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This condition ensures (indirectly) that the prospective solution actually
remains in a compact subset of the parabolic functions.

Now | turn to the conditions to be satisfied by the domain ). To obtain
the most general solvability theorem, it is again necessary to consider .
domains which are variable in t. The theorem to be formulated will
establish the solvability for arbitrary smooth boundary values on a such a
class of domains

The domains to be treated will be assumed to be reasonably smooth; i.e.
| do not consider domains with corners, and S0 cylindrical domains are not
included. Note that this means that the usual'compatibmty conditions at
the corners do not arise. My first assumption is that sufficiently close to
(0,0) e 20, the surface a0 may be represented as

) x,=plx’,t) = %> xdxdz - .t + o(lx 13+t2) .. t£0
ain

where the positive xn-axis is the interior normal to a0 With respect to

x,and « , are the principle curvatures of a0 at (0,0) withrespect to

%, and © is the "time derivative” of a0). The condition tying in the nature
of F now becomes

12) ¥(x,t) € 20 , 3R suchthat(x,, ..,&..,,7,R) € ¥

Note that this condition does not make sense where «  or T are not well

defined. | therefore assume that for t sufficiently small, a0 may be
represented as ‘
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1 l'A) t=2¢(x)

and insist that

127 ¢ - t s anadmissible function

where the term "admissible” is defined by the following.

DEFINITION A function u € C2 ' (Q) /s called admissible ir at every
(x:t) € ﬁx X[U](X,t) € Y

Note that with this definition, condition 12') is equivalent to the
requirement that

Me-t1(0,x) = (8,,(x), .., 8,.(x), 1) e ¥

Thus the restrictions on &) take on a purely pointwise form. It is also
clear that the class of domains thus defined is, apart possibly from the
smoothness requirement, the maximal class for the following theorem.

The main result of this articie is the obvious extension of Theorem 2 of

[CNS]

THEQREM 2 Suppose conditions 4) - 12') g/l hold, and that
¢ € CT(a0N). 7hen there exists a unique admissible solution u e CT(Q)
to the boundary value problem

13) Flul =9(x,t) n 0, u=19 on AN
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The method of proof is as before; apriori estimates are derived for
solutions, and then the method of continuity is invoked. The usual
bootstrapping methods give the higher regularity in the interior. The
estimates are proved in a manner parallel to those of [C.N.S.], and are all
global in nature. The only difficult estimate is the boundary second
derivative estimate, which makes strong use of all the structure
conditions. The lack of local estimates means that high powers of the
gradient in the inhomogeneous term cannot be handled by these methods.

An important example of a function f satisfying the conditions above
is given by the k-th root of the k-th elementary symmetric f unCtioﬁ on
n+1 variables. Thus inthe case k = 1 , one obtains the heat equation,
and in the case k = n+1, one obtains the Krylov equation. If ene now
asks the question what equation is the natural parabolic equation
associated with the elliptic equation arising from the k-th elementary _
symmetric equation on n variables, the obvious answer generalizing
from the relationship between Poisson's equation and the Heat equation is
that arising from the k-th elementary symmetric function on n+1
variables. To return to the question of the ‘correct’ analogue of the
Monge-Ampére equation, | would like to suggest that attention be given to
the equation

14)  det(D?u) - D,u.s,.,(D%u) = f(x,t,u,Du)

where s,., isthe n-1-th elementary symmetric function, as the

above reasoning suggests this as an appropriate analogue.
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