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* PARTIAL REGULARITY FOR SOLUTIONS OF VARIATIONAL PROBLEMS 

N. Fusco and J.E. Hutchinson 

We report here on some recent results of the authors [FH1,2] 

within the context of a general discussion of problems in the calculus 

of variations. Some results (those in [FH2ll were not included in the 

delivered lecture. 

(l) 

where 

We will consider minima of f~~ctionals F of the form 

u 1-+ F[u] 

0, c Rn , Q is open, and 

JQ F(x,u,Du) 

N 
u: Q +R It will always be assumed 

that F is a Caratheodory function, i.e. F = F(x,u,p) is measurable 

in x for all (u,p) ERn XRN and is continuous in (u,p) for almost 

all X E Q This ensures that F(x,u,Du) is measurable if u is 

measurable. 

Here will be interested in the general case n ~ l and N ~ l 

If N = 1 , one can obtain much stronger results, for this we refer to 

[Gl], [G2], (GT], [LU], and [M]. 

There are two questions of fundamental interest. First, one wants 

to show (subject to various boundary conditions) the existence of 

minima of F in suitable function classes. Second, one is interested 

in the regularity (i.e. smoothness) properties of such minimisers. 

The exis·tence problem in a general sense is solved as a sta.'lldard 

consequence ~f the following result by Acerbi and Fusco [AF]. 

* Lecture delivered by the second author. 
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Theorem Suppose F F(x,u,p) is a Caratheodory function. Assume 

that 

for some m ~ 1 . 

Then the functional f is weakly sequentially lower semi­

continuous in H1 'm(~;EN) iff F is quasiconvex. 

We say that F is quasiconvex if linear functions are local 

minimisers of the "frozen" functionals corresponding to F More 

precisely, F is quasiconvex if for a.e. x0 E ~ and for all 

N nN 
(u0 ,p) E R XR one has 

For further discussion on the existence question we refer to the 

book [Gl] and the references therein. 

D 

We now discuss in somewhat more detail the regularity question for 

minima of F 

Suppose F is a Caratheodory function, F ~ F(x,u,p) is c2 in 

p for all (x,u) E ~ XRN , and F satisfies the following conditions 

(i) 

(ii) 

(iii) 

(2) i for some A > o and all 

(iv) (l+lpl 2)-lF( ) x,u,p is Holder continuous in (x,u) 

uniformly in p . In other words 
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where w(t) ~ tG , 0 < G ~ ~ , and w is bounded, non-negative, 

concave, and increasing on {t ~ O} 

Then we have the following result due to Giaquinta and Giusti [GG]. 

Theorem 2 Suppose F is as in (l) and (2). Suppose 

is a local minimum for F (i.e. f[u] ~ f[u+¢] for all 

¢ E Wl,2 (Q;:RN) with spt ¢ cc Q ) . Then there exists an open set 

Qo c Q such that u 1,am 
E ClOC 0) for some o < a < l and such that 

Hnm Slol = 0 • Moreover3 

(3) Qo {x0 E Q :lim sup I (Du) I < 00 

r-+0 xo,r 

and lim inf f tnu- (Du) 12 O} 
r-+0 B(x0 ,r) xo,r 

'l'he theorem is proved by ultimately establishing a local decay 

estimate in r10 of the form 

(4) 

as p ->- 0 , for some a > 0 

2a cp 

The ke:;,• idea is to compare u with the 

minimum v in B(x0 ,r) of the frozen functional 

w ~'-->-I F(x0 , (u) , Dw) 
. B(x0 ,r) xO,r 

with boundary condition 

In particular, one uses the fac-t tha'c w , being a solution of a 

IJ 

constant coefficient equation, satisfies a decay condition analogous to 

(4). Finally, one uses results of Companato [cf. [Gl, Chapter III]) to 

deduce the Holder continuity of u in Sl0 from (4). 

It is an open question whether one can improve the dimension of 
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the singular set n ~ n0 ~ For particular classes of functionals this 

is indeed the case. On the other hand;. one cannot generally e~ect 

everywhere regularity, as well-known counterexamples show. :Again we 

refer to[Gl] for further discussion. 

Aside from the question of the dimension of the singular set, 

there are some other gaps between the existence results which follow 

from Theorem 1 and the (partial) regularity results of Theorem 2. 

In particular~ the convexity condition of (2) (iii) implies quasi-

convexity but not conversely; see [M, Chapter 4.4] and [Gl, Chapter 

IX.2]. However, it has recently been shown" that if one replaces 

(2) (iii) by the requirement of strict quasiconvexity (see below), then 

one again has partial Holder continuity.of first derivatives of local 

minimisers. 

one says that F is strictly quasiconvex if there exists y > 0 

such that for a.e. x0 € n , for all (u0 ,p) € RN XRnN., and for all 

1 n N cf> E c0 (R ;R ) , one has 

(2) (iii)* Jn [F(x0 ,u0 ,p) +rlnct>l 21 s; Jn F(x0 ,u0 ,p +Dcf>) 

The following theorem was proved by Evans [E] in case F depends 

only on p , and then later for general F by Fus~o and Hutchinson 

[FHl] and also by Giaquinta and Modica [GM]. 

Theorem 3 Under the same hypothesis as Theorem 2, but with 

(2) (iii) replaced by (2) (iii)*, we have that if u E w1 ' 2 (n;RN) is a 

local minimum then 1J E ci~~ W0> , for some o < a. < 1 and some open 

n0 satisfyinq Hn (Q ~ n0 > = o . 

The ·proof in· [E]. was by means of a •iblow..:.up" argument. The key 

new point was to establish the following Caccioppoli type estimate 

' * assuming (2) (iii) rather than (2)(iii): 
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provided 
nN I; E :R , and 

I u - a -I; (x - x } 12 
0 

lt;l ~ L • 

One is naturally tempted to extend the result in [E] (where F 

depends only on p to general functionals F (depending on x and 

u , as well as p as follows. Suppose u is a local minimiser of 

F Try to obtain an estimate in n0 of the form 

(5) 

by first estimating I Du - Dv 12 , where 

2(). 
cp 

v minimises 

F (x , (u} ,Dv} 
xo,r 

subject to 
1 2 v E u +W0 ' (B(x0 ,r}) , and then 

by combining this with the estimate (5), with u replaced by v , 

which estimate is proved in [E]. 

However, one cannot readily estimate J IDu -nvl2 with 
B(x0 ,r} 

as above, precisely because F a. B (x,u,p) satisfies a Legendre 
p.p . 

v 

. ,l.J 2 2 
Hadamard condition F a. B 1;1 1;] na.nB ~ rlt;l lnl rather than a Legendre 

P.P· 
i li >l. Jl 12 condition F a. B l;a.I;S - y I; • 

pipj 
This problem is solved in [FHl] by invoking a lemma of Ekeland 

(cf. [Gl, Theorem 2.3, p.257]}, from which one can deduce the existence 

for any B(x0 ,r) cc Q of a function v such that 

and v minimises the problem 

r B 
f ~--+- t F (x0 , (u} ,Df} + cr 

B(x0 ,r) . xO,r 

1,2 N 
f E v + w0 (B(x0 ,r}; :R) , 

2a. 
r 
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for some small positive a,~ . For further details ~ee[FHl, §4]. 

The estimate (5) is obtained by means of a "blow-up" argument. 

Thus one supposes such an estimate is not true, blows up minimisers 

vm obtained as above in appropriate balls B(xm,rm) , and obtains a 

contradiction by passing to a limit of the v 
m 

As remarked above, the results in [E], [GG] and [FH], allow a 

weakening of the hypotheses of Theorem 2 by replacing convexity by a 

strengthened form of quasiconvexity. Another natural weakening of the 

hypotheses of Theorem 2 is to replace the quadratic growth of F(x,u,p) 

· th · abl b th t f d I pI m for some m • ~n e var~ e p , y a grow ra e o or er 

Motivated by a functional given by 

F(x,u,p) = a(x,U) (1 + IPim> m <: 2 , 

we consider the following structural conditions to replace (2) (where 

m <: 2 ): 

(2) (i) I 

(ii) I 

(iii) I 

(iv)' 

IPim -1 $ F(x,u,p) $ a(l + IPim> 

IF (x,u,p) I $ b(l + IPim-2) 
pp 

F t;t; <: A (1 + IPI m-2> t;t; 
pp 

(l+IPiml-l F(x,u,p) is Holder continuous on 

(x,u) uniformly in p • 

Then one can still prove c1 'a regularity (some 

open ~(n ~ n ) = 0 1 aS in Theorem 2. 
0 

Moreover, one 

even replace (2) (iii)' by (2) (iii)'* 

(2) (iii) I* In [F(xo,uo,pol + y<IDc!>]2 + IDc!>lmll 

$ In F(xo,uo,po +Dcpl 

can 

for a.e. XO E n 1 for all 
N nN 1 n N (u,p) E R XR , for all cp E C0 (R ;R ) , 

and for some y > 0; see [E~ .. [FHl] and [GM]. 
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However, if one considers a functional given by (1) and 

(6) F(x,u,p) = a(x,u) IPim , 

one sees ·that one should replace the structural condition (2) (iii)' by 

(2) (iii)'' 

Although (partial) regularity results are not known for such a 

general class of functionals, there are some results. Uhlenbeck [U] 

has shown complete cl,a (some small a > 0 ) regularity for 

minimisers (even stationary points) of J joulm in case m :2: 2 . This 

has been extended to m > l by Tolksdorff [Tl]. Moreover, examples 

show that one cannot expect Cl,a regularity for all 0 < a < 1 

(cf. [T2]). 

In [FH2], partial regulari-ty was shown for minimisers of 

functionals corresponding to (6). More generally, we have the 

following result. 

Theorem 4 Suppose u E: w1 'P <m 
loc is a local minimum for 

m f[u] 
= JQ 

aS i D uj]p/2 
[G (x,u)g .. (x,u) D u 

l.J a i3 

where p ~ 2 , Suppose G and g satisfy 

and G 3 g are 

1"12 $ '"" " Gc;s 

on 

for all 

for all n E RN , 

Then U E for some o < a < 1 and some 

0 for some q > p 

Moreover 

(8) no {x0 E fl :lim sup I (u)x ) < 00 

r-+0 0' 

and lim inf ~-n J !Dulp O} . 
r+O 

0 
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The main idea in· the prbof is to first obtain an appropriate decay 

estimate for minima .of functionals of the ~orm 

where [GaS] , {gijl are constant inner products on RN and Rn 

respectively. 

By a change of coordinates, one reduces the problem to considering 

functionals of the form 

J loujP , 

I I i. i ~ 
where Du = (Dau Dau ) •. Indeed, we work more generally with 

solutions of the Euler Lagrange equation 

(9) 0 

One might hope for an estimate on solutions u of (9) which has 

the form 

for all B(x0 ,R) cc Q and 0 < T < 1 • However, it is not clear that 

such an estimate is true. What is done instead in [FH2] is to obtain 

an estimate of the form 

(10) cp (x0 ,TR) for 0 < T < 1 I 

where one defines 

ct><xo,p> = f , lou- (Du) piP+ I (Du) Plp-2 f lou- (Du) p12, 
( ) x, x, ( '). x, B x0 ,p 0 0 B x0 ,p 0 

whenever B(x0 ,p) cc Q 

The proof of (10) uses earlier. estimates of Uhlenbeck [U]. 

One finally proves Theorem 4 by comparing a minimum of (7) with a 
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minimum of the problem 

f OlS 
[G (x0 , (u) R) 

B(x0 ,RJ xo, 

' ' p/2 
g (X (u) ) Dav1 DsvJ l . ' 0' R l.J xo, 

where B(x0 ,2R) cc Q . One combines an estimate of the type (10) 

(with u there replaced by v ) together with an estimate of the form 

r P * E t Jnu-Dvl :::; c R 
B(x0 ,R) 

* f JouJP for some small E > 0 , where here c depends on 

and if uj 
B(x0 ,2R) 

B(x0 ,R) 

'I'he resulting estimate which one obtains is 

(11) 

for some small a > 0 and all sufficiently small T , provided 

** B(x0 ,2R) cc Q0 where QO is defined in (8). Here c has the same 

* dependencies as c By the usual Compariato estimates it follows 

U E 

Finally, we remark that if in (7) the matrix G does not depend 

on u , and u is a locally bounded minimum, then the dimension of 

the singular set is at most n- [q] -1 for some q > p ( q does not 

depend on u ) , where [q] is 'che integer part of q If n :::; q + 1 , 

then u can have at most isolated singularities. The proof is a 

modification of a similar argument in [GG]. 
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