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ON THE BEHAVIOUR OF SOLUTIONS TO 

A SEMILINEAR NEUMANN PROBLEM 

Wei-Ming N-i 

§1. Introduction 

In this expository paper we wiab to survey some recent 

results an the following aemilinear Neumann problem (with the 

diffusion coefficient d varied as a parameter} 

( 
u + up 

C" 
= 0 in 0 

(L 1) u ) 0 in 0 , 

ou ~ 0 on 80 ' 8v -

where n is a bounded smooth domain in mn. v denotes the unit 

n 

outer normal to 80 • A - l and d ) 0 . p > 1 are two 

i=l Bx:i 

constants. ion {1.1) arises naturally in various models 

in mathematical biology; fur instance, it is equivalent to an 

elliptic chemotaxis system and Is also known as the "shadow" 

system of an activator-inhibitor system of Gierer and Meinhardt. 

Chemotaxis is the orient~d movement of cells in response to 

chemicals In their environment. For example, cellular slime 

molds (amoebae) release a certain chemical, move toward places 

of :l.ts higher concentration and then :form aggregates. In 1970 

Keller and Segel [KS) proposed a model, which in particular 

in~ludes the following system (see e.g. [S]). to describe the 

chemotactic aggregation stage of cellular slime molds: 
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I 'Pt ::: D1A.p - xv· (•pvlog·-1') in 0 X 
iR.I)-

\ +, " n,•• - a>Jl "c h<P :In n X m+ 

( 1. 2) O<f> {Jo/ 
0 on an X IR+ 

ov = flv = 
<P(x,O} (x) >Jl(x,O) = -f·o(x) in [! 

where D1 . D2 , a, b, J( are all positive constants, ~(x,t) 

denotes the population of amoebae at place x and at time t, 

and >J!(x,t) is the concentration of the chemical. It is 

expected that (1.2) possess inhomogeneous apatial patterns under 

some appropriate hypotheses. We are thus led to study the 

stationary solutions of (1.2); i.e. the following elliptic 

system 

in 11 

(1. 3) in 11 

should perhaps add one more constraint 

J11<P(x)dx = a given constant 

for all t > 0 

to {1.3), namely, 

( = J 'fJ . ( x) dx) . 
!1 0 

~ we 

But this can always be achieved once (1.3) is solved. See, e.g. 

[LNT].) 

While it is clear that the parabolic system (1.2) is not 

equivalent to the following parabolic system 
( 

up IR+ l ut = dlw - u + in 0 X 

(1. 4) l~~ = 0 
an + on X IR 

' 

u(x,O) u (x) in 0 ' 0 

it is nevertheless just an easy exercise to show that their 

elliptic counterparts are equivalent. That is, (1.1) is 
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equivalent ~ {1.3) (see, for instance, [S)). Indeed, rewrite 

the first equation in {1.3) as div(D 1 v~-~~vlog~) = 0, i.e. 

div[D 1 ~vlog(~/~P)] = 0 

where p = ~/D 1 . Setting p = ~~~p, we obtain 

{ 
div[~vlogp) 

£E.. - 0 8v -

Thus p satisfies 

n 

= 0 

{ 
Ap + l [(f.) R]p 

p xi~ xi 
i=1 

£E.. = 0 
8v 

in n 

on n 

= 0 in n . 

on an . 

Now, the Hopf Boundary Point Lemma implies that p = constant , 

say A . We have thus obtained the following relation between 

(1.1) and (1.3): 

( 1. 5) 
D2 

d = a •. p = ri 
1 

1 

Jl = (bA)p-1 and 
a u = Jl~ 

Conversely, it is straightforward to verify that if u is a 

solution of (1.1), then (1.5) gives a solution of (1.3). 

Equation (1.1} also arises in the theories of biological 

pattern formation. Following the idea of "diffusion driven 

instability" of A. Turing, Gierer and Meinhardt [GM) (see [M] 

also), in 1972, proposed to study several systems of 

activator-inhibitor type where stable nonconstant solutions are 

interpreted as spatially inhomogeneous state of cells. One of 

those systems, known as the non-saturated case, is as follows: 
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r 
dim - ll + "' 0 in fl , 

lt!q 

r 
p .6) ~ Dllv f:v u 0 in n - + s 

I 
v 

u > 0 v > 0 in i1 

! au Bv 
0 ao l. av Bv "' on 

where d, D, [ are positive constants, and the exponents p, q, 

r > 0 , s ~ 0 satisfy the condition 0 ( (p-1)/q < r/(s+l 

Heuristically, v approaches a constant, say f)O, as D -> oo 

(this may he verified in various special cases, see [NT]). and 

we are led to the shadow system of (1.6): 

r dilu - u + upf-q := 0 in n 

( 1. 7) J -H + f- 5 !0!-1J11urdx 0 l au an av = 0 on 

Again, (1.7) is equivalent to (1.1) if we suitably rescale the 

quantities involved. 

From the biological point of view, it is hoped that one may 

be able to find solutions of (1.1) which exhibit spiky patterns 

when d is sufficiently small. We shall see that this will be 

the case if 1 < p < (n+2)/(n-2) (In case n is a hall, we 

can actually obtain fairly precise information about the 

"desirable" solution, see Section 2 below.) A natural question 

arises: what happens if p ~ (n+2)/(n-2)? As far as the 

existence of nontrivial solutions of (1.1) is concerned, the 

primary parameter seems to be the diffusion coefficient d 

instead of the exponent p However, the exponent p (and thus 

the critical power (n+2)/(n-2)) does seem to play an important 
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role in studying the "spiky" behavior of nonconstant solutions 

of (1.1) especially when d is small. (See Section 2 below for 

more detailed descriptions.) 

§2. Existence of Spiky Patterns 

In this section we shall describe some results obtained in 

[LN], [LNT] and [NT] concerning (1.1). It would be helpful if 

we also consider the equation in (1.1) with homogeneous 

Dirichlet boundary condition 

ru - u + up = 0 in (} 

(2. 1} u ) 0 in (} . 
u = 0 on 80 

Problem (2.1) has long been studied and all the results stated 

below concerning (2.1} are well-known and standard except the 

uniqueness for (2.1) in a ball which was only recently proved by 

K. McLeod and J. Serrin [MS]. The following list compares 

results of {2.1) to that of (1.1) side-by-side. 
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dllu-u<~uP=o, d>O, p>i. 
iJ )I) !n n cc fin. 

[ Set n*= (n+2)/(n-2). ] 

Dlriciliet: u=o on en. 

Existeoce 
0 General: < ll* &V'cPO, 

3 :a solution. 

n star-shaped= 

3 solution +-+ p < nM. 

(iii) 0 annuli: 

'V p >1 3 a solution. 

Neumann: au/av=o on an. 

Existence 
0 General: < n;M 3 d0 .& d1 (both 

1Y1ay depend on p) s. t 
(a) < d0 3 a solution ~ l. 

(l:l) 'VC!>d1 3 no solution~ 1. 

(ii) 0 balls: V'1< pil'n~ 3 d0 .& s.t. 

(~) 'V d < d0 3 a radie~l solution~ i. 

(b) 'VcPd13 no radial solution~ I. 

(iii) 0 annuli: V p >1 3 d0 & o1 s.L 

(a) < d0 3 a radial solution~ L 

(b)Vd >d1 3 no radial solution ~ 1. 

Con/ect!J(B: (!)holds for p >I. 

Bemc:wl<: The existence depends on Bemari<: The existence depends on the 
the exponent p .& the dom?Jin 0, the diffusion coeWdent d. 
but is independent of d. 

Uniqueness 
let 0 be a ball. For n< 9, 

3 p0(n) < n~'~ s. t. Vp < p0(n) 

the solution is unique. 

Con lecture: Uniqueness hollis lor 
.5!1 p ( rJIW, ot lei!Jst for IJI!J/15. 

An Estimate: d0 2 (p-1)/:>..2 where :>.2 
is the 2nd eigenvalue of 6 in 0 with 
zero Neumann boundary value. 

Nonunigueness C"Point -Condensation"') 
let p< 11*. For each d, 3 a solution uel 

s.t u0 ~ o in measure as a~o but 

I< iu01 < C where C is independent of d. 

Question: Let pln"'. Foreaclu:t_ does 
iheree>dst a solution ud s.t. ud-;Jfn 

measure & Judi(!(?"" 1M B5 d..,.O ? 
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We see from the above list that for d > 0 small and 

1 < p < n* = (n+2)/(n-2) , (1.1) has a nontrivial solution. In 

fact, when d > 0 is small, there are lots of solutions of 

(1.1} (see Remark (4) below). However, what we would really 

like to know is that if any of those solutions exhibits "spiky" 

pattern as we have discussed in the Introduction. To answer 

this, we have the following 

rg~g~~~· Let p < {n+2)/(n-2) Then for each d > 0 , there 

exists a solution ud of (1.1) with the following properties: 

(i) ud ~ 0 in measure as d ~ 0 : 

(ii) there exists ~ constant C , independent of d > 0 , 

such that ----

for all d > 0 ----

1 < lludll .., < C 
L 

(iii) for each q ~ [1,"") , there exist constants Ci(q) , 

i=1,2. independent~ d > 0 , such that 

Cl{q)dn/2 ~ Jo udq ~ C2(q)dn/2 

for all d > 0 ; 

{iv) A1 (ud) < 0 ~ A2 {ud) for all d > 0 , where Aj(ud) is 

the j-th eigenvalue~ {1.1) linearized at ud : i.e. 

r· 1 p-1 
= 0 in 0 - + pud )~ + Aj{ud)~ . 

8~ 
= 0 on 80 : 8v 

(v) ud \ 1 if d < (p-1}/A2 where A2 is the second 

eigenvalue ~ A on 0 with ~Neumann boundary 

data 
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{vi) for any ~ ) 0 ' set o~.d = {xtO I ud(x) > ~} . 

Then there exists ~positive integer m which depends 

only on O,p and ~ (but independent of d) such that 

(vi:i) there exist ;eositive constants C , "r , independent 

of d ) 0 , such that 

inf ud ~ C exp(-~/·ld) 
0 

for all d ) 0. 

The existence proof is based on the well-known 

Mountain-Pass Lemma of Ambrosetti and Rabinowitz [AR]. In 

H1 (0), we define the variational functional 

J ( , d J,. I 12 1 I 2 1 J t 0 +) p+ 1 ., 
d u; = 2 o vu + 2 n u - p+l n \ 

and we look for the critical points of Jd It is standard to 

show that the value defined by 

cd = inf max J d ( h ( t )) 
her te[O,l] 

where r :is the class of all continuous paths connecting 0 

:and e :in H1(!1} (here e is an :arbitrary but fixed posi t:i.ve 

positive critical values of Jd . and thus gives a positive 

solution of (1.1). Since (1.1) always has a constant 

solution, namely, u = l, and we know that it is the only 

solution of (1.1) if d is sufficiently large, we conclude 

easily that the "Mountain-Pass solution" ud = l for d large. 

To show that ud' 1 for d small, we first observe that 

J 0 (1) = (~- p!l )!nl which is independent of d. Then we 
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for d ) 0 small. This the the first crucial estimate in 

proving the theorem above. For the rest of the proof, since it 

is somewhat long and technical, we omit it here and just refer 

the interested readers to [LN] and [LNT] for details. 

Remarks. 
~~~-~~ 

(1) It is easy to see, from integrating the equation (1.1) 

directly, that the set {xd1 I ud(x) ) 1} is non-empty for d 

small (since ud ~ 1 for d small). This, together with (i) in 

the theorem. imply that the cl norm of ud cannot ;eossibl:Jl be 

bounded independent £L d, fo~ d small. "" Nevertheless the L 

norm of is bounded independent of d as is guaranteed by 

(i i). This indicates that should have "peaks" of finite 

amplitude when d Is sufficiently small and thus exhibits 

"spiky" pattern. 

(2) Since p ) 1 in (1.1), no nontrivial solution of (1.1) can 

be stable (although~ do expect the systems (1.3) and (1.6) to 

have stable nontrivial solutions). In particular, :is 

unstable (which is equivalent to ~ 1 {ud) ( 0 , guaranteed by 

(iv)). However, (iv) also says that A2 (ud) ~ 0 which, in some 

sense, seems to suggest that ud , altho~ unstable, is the 

"most stable" nontrivial solution £L (1.1). Furthermore, (iv) 

may be strengthened as follows: A1 (ud) ( 0 < A2 {ud) for all 

ud ~ 1. This implies that the unstable manifold of ud is of 
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dimension one only. Since there Is one conserved quantity fn 

to (via 

likely to 

be 

(3) The estimate given by (v) in the theorem is, in general, 

best possible. This follows from Theorem 4, p. 218 in [T]. 

(4} {vi) is actually very useful in determining the "shape" of 

ud in the radial case. First we remark that the theorem above 

holds true without any change n is a ball and we 

restrict ourselves to class of functions. If we 

examine all the possible radial solutions of (1.1) in a ball, it 

is not hard to see that they may be categorized as follows (see 

[N], [LN]): 

(A) 

l : 
1[-\ . . ---; 
I\ ____ ~ 

0 ' T 

~~ 
f' 

1 r\ -~ 
I \ ' I 

l ~___!__, 
0 1 '{ 

(B) 

v 1 

(C} I 
i I 

I 

ol:-----~-f 

Note that only {A) exhibits ~spiky pattern, and the others 
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exhibit either boundary layer phenomena or combinations of 

spikes and boundary layers. It ~easy to ~ from (vi) that 

ud in this ~ must be (A). 

(5) In case n is an annulus, we claim that is non-radial 

if d is sufficiently small. For, again if we restrict 

ourselves to radial functions in H1 (n) , then the same 

arguments in proving the theorem may be carried through without 

change except now we have n=1. In particular, the estimate 

· (2.2) now reads c= - d 1/ 2 , where is the critical value of 

Jd given by the Mountain-Pass Lemma when restricted to the 

class of radial functions in H1 (n). Thus. for d small, cd ¢ 

tE 
cd and the corresponding critical points must also be 

different. In particular, this implies that ud cannot be 

radial. Notice that this observation applies equally well to 

the Dirichlet problem (2.1). However, the existence of 

non-radial solutions to (2.1) (i.e. the Dirichlet problem), in 

case n is an annulus, was established earlier by C.V. Coffman 

[C]. 

(6) In the "super-critical" case p > (n+2)/(n-2) , our progress 

is rather limited. However, we do know that in the radial case 

( n is either a ball or an annulus) {1.1) possesses a 

nontrivial radial solution if d is sufficiently small, and 

that {1.1) has no nonconstant radial solution if d is 

sufficiently large. This part seems to agree with the 

"sub-critical" case p < (n+2)/(n-2). We would also like to 

give some partial results just to indicate the difference 
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between these two cases. 

Let n be the unit ball. After a change of scale, a 

radial solution of (1.1} satisfies 

p ) (n+2)/{n-2) 

u ' ( 1 /Jd) = 0. 

It :is not difficult to show that there 

constant a , independent of d ) 0 , 

inf u ~ a 
n 

exists a positive 

that 

for all radial solutions u £.!_ {1.1) with u{O)) L This 

marks a basic difference between the behavior of solutions of 

these two cases p ( n* and p ) n*. It eliminates the 

possibility £.!..the existence of a :radial spiky solutions which 

approaches zero in measure as d aEEroaches zero in the 

super-critical case p ) n* 

The critical case p = (n+2)/(n-2) is a bit more delicate. 

Some of our methods do carry over to this case; however, we 

shall not discuss this case here. 

(7) Equation (1.1) may be viewed as a singular perturbation 

problem when d is sufficiently small. Methods and techniques 

developed in that field could be helpful here in locating the 

spikes of a particular solution of (1.1) for general domain 0. 

However, we are not able to do this using singular perturbation 

techniques, even in the radial case (when n is the unit ball) 

which we already know from Theorem (vi) (see Remark (4) above) 

that {1.1) possesses a solution which bas only one spike and it 

is located at the origin. 
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