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ON THE STRUCTURE OF BRANCH POINTS OF MINIMIZING DISKS 

Mario J. MiaaUef 

Brian White 

§1. Introduction and statement of results. 

Let B be the closed unit disk in C. A smooth map F of B into an n-dimensional man-

ifold N is said to have a branch point of order Q - 1 at 0 f B if there exist local co-ordinates 

(xh ... , xn) of a neighborhood of F(O) with respect to which F takes the form 

Xt + Ax2 zq +o(l z lq) 

3$ k $ n, 

where Q is an integer ~ 2. 

Branch points fall into two categories, true and false. A branch point of order Q - 1 at 

0 f B is false if there exists an immersion F : B -+ N and t/J : B -+ B of degree Q with t/J(O) = 0 

such that F = F o t/J. A branch point is true if it is not false. Thus, the image of a map with 

a false branch point is a smooth submanifold of N, whereas the image of a map with a true 

branch point is singular in the usual sense of differential geometry. 

Branch points arise very naturally in the theory of minimal surfaces. They are the simplest 

type of singularity that a minimal surface could possess. A recent spectacular result of Sheldon 

Chang [C] shows that in fact they are the only possible singularities of area-minimizing two 

dimensional integral currents. For a history of the study of branch points we refer to [02]. The 

results most closely related to the ones in this article are the following. 

THEOREM 1 {Osserman {01]} Let F : B -+ R 3 define a minimal surface which has a true 

branch point at 0. Then, given an arbitrarily small neighborhood V of 0, there exists a piecewise 

smooth map F: B -+ R 3 which agrees with F on B\V and such that Area (F(V)) < Area 

(F(V)). 
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Corollary The Douglas solution to Plateau's problem ~n R:s defines a 

interior. 

THEOREM 2 {Federer tpp. The 

c~ = 

Douglas :wiution in R", n ;:::: 4, may very weU be singular in the interior. 

the 

Federer'a result is much more He shows in fact, any complex subvariety of 

a. Kah!er ma:nifol.d minimize!:' vohxms in its 'u'·'-"•'''"·'-'::;."<• d.:russ. Motivated by t.he!!e we 

have 

elsewhere. 

Theorem 3 below, In we outline the proof of this theorem; details wm appear 

THEOREM 3 Let F : B --+ .l'l be a branched minimal immersion of the u-nit disk with a true 

lm:nu:h1point at OeB. We assume that F(B) lies in a co-ordinate chart and that with 

respect to this chart, F is the f(z)) where z~:B, R" = R 2 X R"-2 = C X R"-2; 

I= o(i z IG); Q is an ;:::: 2. Then, the Taylor exparn;ion off has a 

first term p(z) whose degree is not divisible Q. IfF minimizes area among disks on some 

arbitrarily small neighborhood V 0;;: B, then p is harmonic and therefore p(z) = a~' zi'l +a~' z" 

for some a,. IE c"-2 
0 Moreover, a/, . al' = 0 where, if v, w f C"-2' 'I) • w = E?;;;A "• W;. 

Remarks: 

(i) The requirement that F is of the form (zQ, f(z)) with I f(z) I= o(j z IQ) places 

no restriction on F, i.e. this form for F can always be achieved by suitable change 

of local co-ordinate (see, for example, IGJ, Lemma 2.2 on page 279). 

(ii) If n = 3, then a,. = 0 and we recover Theorem 1. 

(iii) If n = 4, then ap, = o:(l, ± N) for some a E C. In this ca.se the map 

z H< (zq, a~' z" +a,. z") is holomorphic with respect to the complex structure on 
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R • defined by the matrix 

( [ -~ ~ ±~ ) 
0 0 =rt 0 

This, together with Sheldon Chang's work, provides a partial answer to Yau's 

question [Y, page 54] on comparing the singularities of a minimizing surface in R" 

to the singularities of a complex curve in C 2• 

(iv) The minimizing assumption cannot be replaced by stability with respect to 

variations by means of compactly supported sections of the normal bundle of F. 

This is because the usual second variation of area formula is still valid, even in the 

presence of branch points (see, for example, [Mi]). 

Acknowledgement. We would like to thank the Institute of Advanced Study and the Cen-
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research environment and a most congenial atmosphere during Autumn of 1985 when this re-
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§2. Outline of proof of Theorem 3. 

Let M C B X R"' be a closed two-dimensional disk for which 1r : M-+ B is a branched 

covering of B of degree Q. (1r : B X R"' -+ B is, of course, the obvious projection.) We shall 

define what it means forM to minimize Dirichlet's integral. 

We assume that M has finitely many branch points, mb ••• , m~c, all of which occur in 

the interior. Let Zi = 1r(m1), let Zo be any point in 8B and let r be a smooth curve in 

B passing through Zo, zb ••• , z~c such that B\f is simply connected. It then follows that 

1r-1 (B\f) = tf,1 M;, where each M; is a graph off, over B\f, i.e. M, = {(z, /;(z)) I ZEB\f}. 

We define Dir(M) = }:?:,1 J8 I V /; 12 dx dy. M is said to be Dirichlet minimizing if Dir(M) $ 
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Dir (M) for all disks M which are branched covers of B of degree Q and which have the same 

boundary values as M. (M has the same boundary values if, after a possible re-ordering of 

]~, ... , ]q, ];(z) = /;(z) for all zt:aB\{Zo} and for all i £{1, ... ,Q}.) In particular, if M is 

Dirichlet minimizing, each /; is harmonic. The converse need not be true (except for Q = 1, 

of course). The preceding discussion is a very special case of the general theory developed in 

(AJ of multi-valued functions minimizing Dirichlet's integral. 

Theorem 3 follows from Theorem 4 and Lemma 5 below. 

positive integer not divisible by Q > 1, then a·a = 0 where, if v, w £ C"', then v·w = :E~1 v; w;. 

The proof of Theorem 4 runs as follows: 
zq + tzQ-l ~ 

Let t/l(z; t) = - ' t £ c, I t I< 1. Define 9t : aB - R"' by g,(e'6) = a(t/l(e''; t)J"'q + 
1 + tz 

a(tJI(e-.,; t)J"fq where the branch of (t/1 I8B)l/Q which is chosen is the one which is smooth 

in t and for which (t/l(e'6 ; 0)]1/Q = e16 • Let h1 be the harmonic extension of g1 to B and 

set M1 = {(t/l(z; t), h1(z)) I zt:B}. Then M0 = M and aM1 =aM for all complex t with 

I t I< 1. By expanding Dir(M1) as a power series in t we show that Dir(Mc) < Dir(M) for 

some t sufficiently close to zero unless Q divides p, or a • a = 0. 

A similar idea has been previously employed by M. Beeson (B] who gave an analytic proof 

(i.e. no cut and paste) of Theorem 1 of Osserman. 

LEMMA 5 Let F: B- N satisfy the hypothesis of Theorem 9. Then, the Taylor expansion 

of/ has a first termp(z) of degree not divisible by Q. Moreover {(zq, p(z)) I zt:B} is Dirichlet 

minimizing. 

Sketch Proof: Let ~be the primitive Q11' root of unity and let <P(z) = f(z)- f(~z). As in 

Lemma 8.1 on page 301 of (G], <P satisfies an equation of the form a'i <P~+a? <P: +ap ~ = 0 with 

a'i £ C 1, a'i (0) = O;; and a? and ap continuous. Now <P is not identically zero because f has 
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a true branch point at 0 a.ru! therefore, a theorem of Hartman and Wintner !H-W] generalized 

to systems of the type satisfied by ¢ then asserts that, there <eXists a positive integer tt such 

that 

() l . 1-paq; ·-t d" * ... tmz-o z f)z ex!"' s an !S non-zero. 

The axistence of p now follows. Note that ( *) already implies that p is harmonic and that it 

is of degree Jt. 

Let M = {(zQ, p(z)) I z ~:B}. If M is not Dirichlet minimizing we may find a disk 

M C B x R"'-2 such that M and M have the same boundary values and Dir (M) < Dir (M). 

We modify the notation used in the first paragraph of this section as follows: mg, o •• , m~o are 

the branch points of M; r not only passes through Z;J, Zl, ••• , ZQ but through 0 as well; li(z) is 

now replaced by Pi(z) where p;(z) = p(f7;(z)) and ~h(z), o •• , l'lQ(z) are the Q different branches 

of z11Q on B\f. Finally, we let f;(z) be the function which has the same values as p;(z) on 

8B\{Zo}. 

Given .At (0, 1] and HB\r with I z 1:5 >.., let f;(z) = f(ru(z)) - p;(z) + l"' ];(z/l)o Let 
Q 

S;. = U{(z, ];(z)) I uB\f and I z 1:5 .X} and let = {zeB I )\ :51 z 1:5 1}. We now 
i=l 

define LAc R" to be the disk S>.Uc.AF(A;.) where CA = F({zEB I I z I= A.}) and s). = 

closure of S;... For .\. sufficiently small, one then finds that Area (:E.d < Area (F(B)), 

thereby contradicting the least area property of F. 
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