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ON REMOVABLE ISOLATED SINGULARITIES OF SOLUTIONS 

TO A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS 
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1. INTRODUCTION 

Let !l be some open subset of JRN containing 0 and 

n' n"' {o} Let u be a solution of 

in n' . (1.1) 

Brezis and Veron [2] proved that u can be extended to be a solution 

of (1.1) in all of !l if q ~ N/(N - 2) , N ~ 3 . Hence isolated 

singularities of (1.1) are "removable". Veron [8] showed that the 

exponent N/(N 2) is the best possible because there exist singular 

solutions when 1 < q < .N/(N - 2) Aviles [1] generalized the result 

in [2] by replacing the Laplacian by some linear operators in diverg-

ence form. Vazquez and Veron showed that we can also replace the 

Laplacian by the quasi-linear p-Laplacian div(IDujP- 2Du) , N > p > 1. 

Here Du = (D1u, ... , DNu) denotes the gradient of the function of u . 

A natural question is to ask whether the Laplacian can be replaced 

by a more general class of quasi-linear elliptic operators which include 

the above mentioned examples. 
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In this paper, we shall show that the Brezis-Veron result is 

indeed 'crue for a •lide class of quasi-lineal" operators satisfying 

certain grmvth and ellipt:ici ty conditions. Specific e:camples are 

given in section 4. 

2. PRELIMINARIES 

For simplicity we assume that n = {x E JRN : I xI < 2} , N > 2 , 

and we set Q' = rl ~ {0} . We consider the following equation 

-div A(x, Du) + B(x, u) 0 • (2.1} 

\>lhere A(x, p) = (A1 Cx, p), .•• , AN(x, p)) is a vec·tor-valued function 

belonging to C0 (ll X JRN) n c 1 (Q X (JRN~ {o})) for (x, p) En X JRN 

and B(x, u) E C0 (ll X JR) for (x, u) E n X lR. Denote 

E(x, p) 

T (x, p) 

D A. ( x, p )p. p. 
pj ~ ~ J 

N 
I a .. (x, p) • 

i=l ~~ 

(2.2) 

(2.3) 

From now on, we shall use the convention that repeated indices repres-

ent summation from 1 to N . Furthermore, we assume the folloHing 

ellipticity and growth conditions: for some constants c1 > 0 , 

c2 > 0 , l < rn < N , 

N 
IPI<IA<x, p)! + lnx.Ai(x, p)I)+NIP1 2 . '4= 1 lnp.Ai(x, p)l ~c1 1Pirn, 

~ ~.J= J 

for all X E n ' !PI ~ c2 • 

p.A.(x, p):::: IPim - cl ' for all (x, p) E n X JRN. 
~ l. 
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A(x, 0) 0 • for all X E n • 

IA(x, p)l ~ cl , for all X En • IPI ~ c2 • 

D A.(x, p)~i~J· ~ c~l(K + IPI)m-21~12 , 
pj ~ 

(Al) 

for all x E Q , 0 -:j p E JRN , ~ E JRN , for some K E [ 0, 1] , ( A2a) 

for all 
N N 

(x, p, q) E n X JR X JR • 

1 . . f B(x, t) 
~m ~n N(m-1) 
t ++ CX> "N=iil 

t 

uniformly on n 

> 0 , lim sup 
t+-CX> 

B(x, t) 
N(m-1) 

ltl--w:iil 

(A2b) 

< 0 ' 

(Bl) 

Definition 2.1. A function u E W~~(Q') n L~0c(Q') is said to be a 

(weak) solution (resp. sub-solution) of (2.1) in n• if 

( 

J A.(x, Du)D.~ + B(x, u)~ dx = 0 (resp. ~ 0) 
n ~ ~ 

(2.4) 

for all ~ E c1<n') (resp. 0 ~ ~ E c1(0') ). 
0 0 

Remark 2.2. By an approximation argument, we can take the test function 

in (2.4) to be in ~ E w1 •m(Q') 
0 

Remark 2.3. By the regularity result of [4], any weak solution of (2.1) 

in n' has to be in c1 'a(Q') for some 0 <a< 1 • So without loss 

of generality, we can always assume that u E c1•a(Q 1 ) 
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3. MAIN RESULT 

Theorem 3.1. Suppose 1 < m < N and (A1), (A2), (Bl) (as stated in 

section 2) hold. Let u E c1 'n(Q') , 0 < 0! < 1 , be a solution of 

-div A(x, Du) + B(x, u) 0 in n' . (3.1) 

Then u can be extended to all of n so that the resulting function 

u is a (t-reak) solution of (2.1) in n - 1 a Hence by [4], u E C ' (Q) 

for some (may be different) a E (0, 1) . 

To prove Theorem 3.1, we need ·the following two lemmata. 

Lemma 3.2. Assume (Al), (A2), (Bl). Suppose that 1 < m < N , 

N(m-1) 1 m oo 
q = N-m , u E W l~c n Lloc (!1') satisfies (in the weak sense) 

-div A(x, Du) + a uq- C :':: 0 (3.2) 

on {x E Q' : u(x) > o} , for some positive constants a and C • 

Assume ~hat (Al), (A2) hold. Then 

a.e. on {x 0 < lxl < 1} , (3.3) 

where 

Lemma 3.3. 

is a constant depending on N, m, q, a, C 

Under the hypotheses of Lemma 3.2, we have 

and max u(x) 
Jxl=1 

Proof of Lemma 3.2. We shall use the convention that c(m, q, •.• ) 

denotes some constant depending on m, q, •••. 
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Let r 0 > 0 be given such that 4r < 1 . 
0 

Consider the function 

v(x) = )-t + M (3.4) 

defined on the annulus 

L, M, t are some positive constants to be chosen. A routine comput-

ation shows: 

D.v(x) 
~ 

-2Lt 

Div A(x, Dv) = D A.(x, Dv)D .. v + D A.(x, Dv) 
pj ~ ~J xi ~ 

(t+1 ) ( 2 r 2 )t ( Dv) - 2Lt(r2 - r 2 )-t-l T(x, Dv) u- r 0 Ex, 0 

+ D A.(x, Dv) 
X. ~ 
~ 

by (Al). We shall check that I Dv I ?. c 2 after L, t, M have been 

chosen. 

2)-(m-l)(t+l)-1 (t ) rn1m-1 r 0 c 4 , m r , 
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(3.5) 

Hence Div A(x, Dv) - av(x)q + C ::: 0 if we choose 

t 
m 

q+l-m ' 
l 

l 

and M ::: max jl( 2ac ) q , max u ( x ) } • 
l lxl='+r J 

0 

(3.6) 

By these choices, it can be easily checked that for.sufficiently small 

P 0 > 0 , I Dvl ::: c 2 . We now proceed to shO\-r that u{x) :::: v(x) in D . 

Choose 
l 

0 :::: ~n E C~(D) so that ~n = 1 on {x: (l+!)r ::::r(x)S(4-!)r} 
n o n o 

and 8 a c1 bounded function vanishing on (-oo, 0], nondecreasing on. 

[0, +oo) . Then '"e have 

JD-div(A(x, Du) - A(x, Dv))S(u- v)~n dx 

( 
I (A(x, Du)- A(x, Dv))S'(u- v)(Du- Dv)<.p dx 
Jn n 

+ J D (A(x, Du) - A(x, Dv))S(u - v)D<.pn dx 0 

because u < v near Cl D and (A2) ., Hence 

for all n , 

which implies u :::: v in D . In particular 

u(x) + M 

( 3. 7) 

( 3. 8) 

(3.9) 

for x such that r(x) 2r 
0 

By an iteration argument, vie proved 

our assertion. Q.E.D. 
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Proof of Lemma 3"3. Let 

= 

and 0 ::: z;;n ::: 1 , 

if JxJ< 2~ or JxJ 

if 
1 JxJ l 
-< <2' n 

IDs I s c 6n , for some constant 
n 

>1 ' 

( 3.10) 

s 
be a bounded function vanishing on (-oo, 0) , nondecreasing on 

[ 0, "') Denote 

T 
n 

{x ]_< Jxl <!} 
2n n 

1 

Choose M ?.: max { (~)q , sup u(x)} 

~::: jxJ :Sl 

legitimate test function and 

( 

0 :S J&"l (auq - C)S(u M)i;; dx - I 
n n 

Then 

S -J A.(x, Du){S(u- M)D.s + 1;; S'(u- - M)+}dx 
~ ~ ~ n n 

::: J S(u - M) JA(x, Du) J Jm; jdx by (A2) , 
n n 

1- .!':!. m m-1 

m { J jA(x, Du) lm-1dx}m. 
T n{x: u(x) >M} 

n 

(3.11) 

is a 

(3.12) 

Here we use the fact that p.A. (x, p) ?.: 0 '"hich follows from (A2) 
~ ~ 

and A(x, 0) = 0 Letting S(t) ~ sign+t (= 1 if t > 0 , = ~2 if 

t = 0 ' = 0 if t < 0) , we have 

1-.!:!. m m-1 

0 ::: I ::: c7 n m {L jA(x, Du) Jm-1dx} m 
n n{x:u(x)>M} 

(3.13) 

n 

As in (3.12), taking 
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vJhich implies (by (A1)) 

J 1D' M)+ lrn. m d I \ u - i;;2n x 
Q 

m-1 

m m 

::: c1 jnj + (rn-l)sm-l J r;,m jAjrn-l dx 
2n 

Q n {x : u(x) > M} 

+E-mf [(u-M)+Jn~;;2nj]mdx • 

T2n 

1 

(3.14) 

by Young's inequality. s > 0 is to be chosen sufficiently small. 

By (Al) and (3.14), we have 

rn m 

f ~;;;njAjm-ldx 
Qn{x:u(x)>M and 

::: f l;;~n(cljDujm-l)m-ldx 
jDuj :::c2} Qn{x: u(x) >M and jDuj :::c2 } 

m rn rn 

m:T { j J rn-1 f m I 1m-l ::: c 1 - c 1 Q + (m-l)s r; 2n A dx 

Qn{x: u(x)>M} 

But by (Al), 

+E-m JT [(u- M)+jn~;; 2njJrndx} . 

2n 

m 

f m I 1m-l r;, 2n A - dx 

Qn{x: u(x)>M and jDuj :::c2} 

(3.15) 

( 3.16) 
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Combining (3.15) and (3.16), we obtain 

m 

f rn 1 lm-1 ( 1;; 2 ,11 dx:::c8 c 1 , 
Q n{x: u(x) > M} n -

, m, jnp 

m m 

{1 + (m - 1)Em-lJ i;;~ jAJm-l dx 
fl n{x: u(x) >M} ~n 

+ £-mL [(u- M)+jD?;;2n\Jmdx} 

2n 

(3.17) 

Choose E > 0 small enough so that (3.17) 'then 

gives 

By Lemma 3.2, 

JT [(u-M)+jD?;; 2nJ]mdx :=: 

2n 

2 
m 

m q+l-m -N 
c 6 (2n) c 3 (4n) wNn 

2 
m-N+-m __ 

::: c10 (m, c 3 , c6 , N)n q+1-m 

where WN the volume of the unit ball in JRN • 

Going back to (3.13), in view of (3.18), (3.19), we have 

m-N+~ }m-1 
+ a+1-m m 

clO n ~ . 

(3.18) 

(3.19) 

(3.20) 

As 1 - !! + (m - N + ~) mrn-l = 0 , 0 ::;: I < c for some constant 
rn q+1-m n - 11 

c11 > 0 , independent of n Letting n + oo , we conclude that 

(auq - C) sign+(u - M) E L1(n) Knowing this fact we can further 

improve the estimate of I 
n 
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Case (i): If q :::m (i.e. 
2 

m ?: N) , then 

1-!:!. 
m 'I + I I II m-1 n · 1 (u-N) 1DI:;2 , 

n Lm(T ) 
2n 

N m- ~~ 

<f 2 )m-1 m -, c6 n 

+ 0 as n + oo • (3.21) 

Case (i"l): If q < m (i.e. 
2 

m < N) , then 

rn-1 

q) II ( u - M) +II mq + 0 as n ·+ ""' 

Lq(T2n) 
(3.22) 

So in any case 

I (auq-C) sign+(u-M)dx 0. 
lxl :::1 

This implies that u(x) ::: M for almost all lxl ::: 1 . Q.E.D. 



82 

Proof of Theorem 3.1. By (B1) we have B(x, u) ?.: auq- C for u::: 0 , 

where a and C are positive constants. So we have 

-div A(x, Du) + auq - C S 0 on {x E Q u(x) > 0} • 

00 00 

By Lemma 3.3, E L m In the same way u E 1 £oc 
(Q) So 

and B(x, u) are both in 
00 

(n) L!oc 

Let ~n be as before and Substituting the test 

function ~ = u(~ n)m in the equation, we get 
n 

J A. (x, 
ill J. 

Du)D.u(s n)rn + u ·D.(~ n)m(s n>m-1 
J. n J. n n 

u 

(3.23) 

We proceed as in (3.13) - (3.18) to conclude that 

Then in (2.23) with m replaced by 1 , we let n 7 oo and conclude 

that u is indeed a weak solution of (2.1) in all of Q . By regul

arity theory [4], u is almost everywhere equal to a c1 'a(ill) function 

for some 0 < a < 1 Q.E.D. 

4. EXAMPLES 

Example 4.1. Consider 

0 in ill' , 

where N 
q ?.: N- 2 and N > 2 . It is easily checked that (Al), (A2) and 

(Bl) are all satisfied with m = 2 . This was Brezis and Veron's 

result [2]. 
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Example 4.2. Consider 

0 in n' , 

where 
N and N 2 We that a .. (x)'s q > --- > assume are Lipschitz 

N-2 l] 

functions in n Again (Al), (A2) and (Bl) hold Hith m = 2 

Example 4.3. Consider 

I lm-? ' lq--1 - Div( Du ·· -Du) + Ju · u 0 in n' 

•J>There 
~ N(m-1) 

q :::: N-m - , 1 < m < N Then (Al),, (A2) and (Bl) hold and 

we obtain Vazquez and Veron's result [5]. 

Example 4.4. Consider> 

m 

- Div((l+ jDuj 2 ) 2 
l 

Du) + jujq-lu 0 in n' ' 

TN here l N > N(m-ll 
- < m < ' q - N-H Then (Al), (A2) and (Bl) hold and 

He can apply Theorem 3.1. 

Example 4, 5, More generally, 1-:e can consider the Euler-Lagrange 

equation of the folloHing functional 

I(u) = J F(x, Du) dx + I r ru(x) 
z)dz J dx I B(x, 

n n--o 
(3.1) 

where F is a c2 function in n x JRN 
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The Euler-Lagrange equation has the form 

- div Du) + B(x, u) = 0 . 

Then (x, p) = F (x, p) = D F(x, p) . Condition (Al) simply says 
pi pi 

that F(x, p) grov-rs like jpJm when IPI is large" The condition 

(A2a) is a natural assumption for minimizing problems. Notice that 

if (A2a) holds for all 
N 

p E JR , then (A2b) is automatically satisfied. 

Remark. 4.6. In the cases of the uniformly elliptic or rn-Laplacian 

operator, the singular set can be taken to be larger by appropriately 

increasing the value of q cf. [1, 7]. Our proof fails to l.]Ork in 

this more general case since we are only assumingthe various growth 

conditions when !PI is large. Notice -that in Example 4.4, A(x, p) 

behaves like or depending on whether IPI is near "' 

or 0 " 

Remark 4.7. The exponent in (Bl) is sharp as shown in [8] in the 

Laplacian case. 
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