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BERNSTEIN" THEOREMS FOR HARivlONIC MORPHISMS 

P'avlBaird 

0. ll"'fTRODUCTION 

Let ¢1 : M -J> N be a continuous rnapping between connected smo.:>th Riemannian 

manifolds. Then ijl is called a harmonic morphism if for every function f harmonic on an open 

set VcN, the composition foljl is hannonic on $-1(V)o\1. It follows by choosing smooth 

harmonic local coordinates on N [1 that any harmonic morphism is necessarily smooth. 

The harmonic morphisms are precisely the hannonic maps which are horizontally weakly 

conformal (see [10], [14]). For a map ljl: R3 -J> C this is equivalent to Qi satisfying the 

equations 

(0.1) 

(0.2) 

Hannonic morphisms are a subject of considerable interest. Their history goes back to 

Jacobi [15] in 1847, who considered the problem offinding compex-valued (hmmonic) functions 

$ on R3 satisfying (0.1) and (0.2) above. More recently they have been studied in the context of 

stochastic processes, where they are found to be the Brownian path preserving mappings (see [5]). 

In fact our main Theorem (Theorem 1) solves a problem first posed by Bernard, Cambell and Davie 

in [5]. 

The study of harmonic morphisms from domains in Rm to a Riemann surface has 

striking analogies with the study of minimal surfaces in Rm. For exmnple, the fibres of such a 

hm!nonic morphism are minimal and the associated Gauss map (see [4] for definition) obeys a 

holomorphicity condition similar to that for a minimal immersion (see[6]). L'l fact the analogies are 

so striking that on expects to find corresponding results more generally. This turns out to be true 

for the well known Bernstein Theorems for complete minimal surfaces in R3 (see [16]). We show 

that the only non-constant harmonic morphism <1> defined on the whole of R3 , taking values in a 

Riemann surface N, is the simplest possible, nmnely an mthogonal projection R3 -7 R2 followed 

by a weakly conformal mapping R 2 -7 N . 

Similarly for S3 , where the only non-constant harmonic morphism <j> : S3 -7 N taking 
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values :in a Riemann surface N is the Hopf map S3 ~ S2 follwed by a weakly conformal map S2 

~N. 

Below we state our main Theorems precisely and outline the proofs. The reader is 

referred to [4] for a detailed exposition. This is joint work with J.C. Wood, and the authors 

would like to express their thanks to 1 Eells and T. Ransford for helpful comments. 

L MAIN THEOREMS 

Theorem 1 Let <!> : ~ N be a harmonic morphism. Either (i) <jl is constant, N=R or 

S1 an.d '¢ is a hannonic map, (iii) djm N = 2 and 1J fs the ; !!J = r:io1t whe:•e n: : 

R3 ~ R 2 is orthogonal projection and cr : R2 ~ N is weakly conformal or (iv) N = R.3 and 4> 

is an affine transformation. 

Remarks 1) By orthogonal projection we mean that after a suitable choice of axes is made in R3 , 

then 1t can be considered as the projection n(xp x2, x:3) = (xp x2) . 

2) An affine transformation $ : R3 ~ R3 has the form lj>(x) = 'AAx: + b , where A e O(R3) is 

orthogonal, b £ R3 is a fixed translation and 'A e (0, oo). These are precisely the homothetic 

transformations. 

Coroll~ Let <1>: R3 ~ N be a non-constant harmonic morphism. Then N = R, S1 , R3 or N 
equivalent to the plane C , the punctured plane C \{point}, the torus T2 or the sphere S2 • 

Proof of Corollary By composing with complex conjugation if necessary we may assume that cr : 

C ~ N is holomorphic. But then it lifts to a map into the universal cover of N . This must be C 

or S2 (the disc being excluded by Liouville's Theorem- since otherwise cron would be a bounded 

harmonic function on R3). 

Theorem 2 Let <I>: S3 --t N be a non-constant harmonic morphism. Then either (i) dim N = 2 

and <I> is the composition $ = cro1t , where 1t : S3 ~ S2 is a Hopf map and cr : S2 ~ N is a 

weakly conformal map, or (ii) N = cS3 , c e (0, co), and $ is an isometry followed by a scaling. 

Remark By a Hopf map, we mean that after a suitable choice of axes in R 4 , we may assume rr; 

is the Hopf map 1t(Zp Zz) = -z11Zz e C u{ oo} = S2 , for (z1 , z2) e S3 . 

Corollary If <jl is a non-constant harmonic morphism on S3 then N = cS3 , c e (0, oo) or N 

is conformally equivalent to S2 and $ is surjective. 

Proof of Coronary Similar to the previous Corollary. Surjectivity follows since any non-constant 
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conformal map from S2 to a Riemann surface must be smjective. 

2. SKETCH PROOF OF THEOREM 1 

Let $ : R3 ~ N be a non-constant harmonic morphism onto a Riemann surface N . 

Without loss of generality we can assume cj) is surjective. Let K denote the critical set of <iJ , K = 

{x e R 3 I dcj)x = 0}. The fibres of ¢>IR3IK are minimal [3], and so are straight lines in R 3 . We 

define a Gauss map '¥ : R3\K -~ S2 , which at each point x e R3\K gives the direction '.P(x) z S2 

of the fibre through x . 

Step 1 the Gauss map '¥ : R3\K ~ S2 extends across K to a smooth harmonic map, which we 

also denote by '¥: R3 ~ S2 , such that the fibre of 4> through a point x e K is the line through 

x with direction determined by '¥(x) . 

That '¥ extends continuously across K is a result of Bernard, Cambell and Davie [5]. 

Furthermore '¥ turns out to be a harmonic morphism and is hence smooth. From this we see that 

the fibre components of <)> define a smooth foliation on R3 by complete straight lines. 

Step 2 We define N , the space of fibre components of $ . Ii is simply the leaf space of the 

foliation associated to $ and we give N the quotient topology induced from R3 . Then N is 

connected and Hausdorff. 

For more general domains, N may not be Hausdorff. For example, let $ : R3\{0} ~ 
R2 be the projection mapping (jl(x,y,z) = (x,y). 

I --"-- N 
"' 

M 

0N 

Then the fibre over the origin in R2 consists of two disjoint connected components which 

correspond to two distinct points of N . No two neighbourhoods of these points in N can be 

disjoint. 

The map $ now factors as $ = l;;o(J), where 4)': R.3 ~ N is the natural projection and 

1;($(x)) = (j)(x). Then N can be given the structure of a smooth Riemann surface with respect to 
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,.., 
which q> is a submersive harmonic morphism. 

We do this by using local slices in a:s coordinate neighbouhoods about a point yEN. 

The transition functions are obtained by passing from one slice to another along the fibres. The 

smoothness of this structure follows from the smoothness of 'P . 

The conformal structure on N is determined by requiring $ to be horizontally 

conformal. That is, at y E N , choose some x belonging to the fibre determined by y . Then we 

may define a conformal structure at y by requiring &PiHxM : HxM ~ T ~ be conformal. That 

this is independant of x follows from the horizontal conformality of 4> • With respect to this 

complex structure, ~: N ~ N is a weakly conformal mapping and x e R 3 is a critical point of $ 
if and only if <j)(x) is a branch point of ~ . 

By construction, ~: R3 ~ N _is a fibre bundle. By the homotopy exact sequence of 
such [21], all the homotopy groups 1ti(N) vanish. Thus by the Riemann Mapping Theorem (see 
e.g. [7]), N is conformally equivalent to either the complex plane C , or the disc D . However, 

if N is conformally eqivalent to D , then $ is a bounded harmonic function. By Liouville's 

Theorem any such must be constant. Hence N is conformally equivalent to C . 

~ We study the submersive harmonic morphism (j): R3 ~ N. We may associate to ij) a 

meromorphic mapping ~ : N ~ (C u{""} )3 such that, writing ~ = (~1' ~2 , ~3) , L ~? = 0 . In 

fact the fibre of <jl over z eN is determined by the equation 

(*) 

The meromorphic mapping ~ may be written uniquely as 



21 

.-1 

where h is a holomorphic and g a meromorphic function on N (see [16]). Furthe1more g(z) 

represents the direction of the fibre over z and h(z) represents the postion of the fibre (in charts 

given by stereo graphic projection). In particular g is constant if and only if the Gauss map 'I' of 

$ is constant. We study the properties of h and g which follows from the fact that $ is defined 

on the whole of R3 . 

In fact g is injective . For suppose not, then there exist z1 , z2 £ N , z1 :;C z2 , with g(z1) 

= g(z2). Furthermore we may assume z1 is not a branch point of g. We choose a conrplex 
,.., 

coordinate z on N such that z1 is the origin. 

Clai.<n: As we circle the origin in N , some fibre must hit the fibre at ~ , contradicting the fact that 

the fibres of $ cannot intersect 

This claim is intuitively obvious if we think of the fibre at a point z as a searchlight beam 

emanating from a point c(z) s R3 (which corresponds to h(z)), which is, to a first approximation 

(az, 0) s R 3, where a is a non-zero constant (see [4]). 

As z rotates, this point rotates once. Because the searchlight beam has direction whose horizontal 

component is governed by g(z) and so rotates in the same sense, there must be a point where the 

searchlight beam hits the fibre at 2::2 . • 

By the little Picard Theorem (see e.g. [6]) and injectivity, it follows that g(C) is 

biholomorphically equivalent to S2\{point}. By a rotation in R.3 we may choose this point to be 

oo , so g has no poles and g : N ---') C is a holomorphic diffeomorphism. Thus we may choose 

a global coordinate z on N such that g(z) = z . .... 
We now consider fibres over points of the circle lzl = 1 in N = C . Under inverse 

stereographic projection , u'1e circle C : lzl = 1 is mapped to the equator in S2. Fibres of (j) over 

points of C are all parallel to the (xpx2)-plane containing the equator. Consider the height 

function he , defined on C , which at each point z £ C , is defined to be the height of the fibre 

¢-1(z) over the (xpx2)-plane. By continuity there is some z0 e C which is a maximum (or 

minimum) for he . Then, close to z0 , there are points zl' ~, z1 * z2 with he (z1) = he (z2) • 
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Since g is injective the fibres over zp z2 are not parallel and hence must intersect 

Steu4 From the arguments of Step 3 we conclude that g is constant . Without loss of generality 

we may assume g(z) = 0, for all zEN. Then all fibres are parallel to the x3-axis. We may then 
,..., 

identify N with the (xp x2)-plane with its usual conformal structure and $ is just the projection 

(ii(x1, x2, x3) = (x1, x2). Since cj> = ~o$ where ~: N ~ N is weakly conformal, Theorem 1 is 

proven. 

Similar arguments apply to the S3 case to establish Theorem 2. 
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