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1. Introduction 

Commutator theory has its origins in constructive quantum field 

theory. It was initially developed by Glimm and Jaffe as a method 

of establishing self-adjointness of quantum fields and model 

Hamiltonians, but it has proved useful for a variety of other 

problems in field theory, quantum mechanics, and Lie group theory. 

We will describe the basic results of the theory and illustrate them 

with applications to first and second order partial differential 

operators. 

The basic ideas of commutator theory and perturbation theory are 

very similar. One attempts to derive information about a complex 

system by comparison with a simpler reference system. The nature of 

the comparison is different, however, in the two theories. 

Perturbation theory applies when the difference between the systems 
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is small. Commutator theory only requires the complex system to be 

relatively smooth with respect to -the reference system. No small 

parameters enter in the latter theory. 

In order to be more precise suppose H is a self-adjoint 

operator on a Hilbert space h with domain D(H) and with 

Coo - elements h"" = nn~lD(Hn) 
symmetric operator from hoo 

, and further suppose that K is a 

into h Then the simplest theorem 

of perturbation theory states that K is essentially self-adjoint 

whenever 

//(K-H)a// ~k//Hal/+.t//a/1, aEh00 

for some k l ~ 0 with k < 1 i.e., the difference K- H 

between K and H is small in comparison with H In contrast 

the simplest commutator theorem states that K is essentially self­

adjoint whenever Khoo c D(H) and the commutator (ad H)(K) = KH - HK 

satisfies //(ad H)(K)a// ::: k'I/Ha// + .t•Jia/1 aEh"" for some k' 

t' ~ 0. The bound on the commutator can be viewed as a smoothness 

condition as we will see in the subsequent discussion of partial 

differential operators. It reflects smoothness of K with respect 

to H , and since (ad H)(H) = 0 it can alternatively be viewed 

as smoothness of the difference K - H with respect to H Note 

that in contrast to perturbation theory there is no upper bound on 

the coefficient k' which measures the size of the commutator with 

respect to H 

Refinements of both of the above results occur if K ~ 0 

Somewhat surprisingly, in this case, commutator theory gives self­

adjointness and smoothness properties from a bound on the double 
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commutator (ad H) 2(K) 

2. Basic Theorems 

There are two basic theorems of commutator theory on Hilbert space, 

both of which have more refined variants in terms of quadratic form 

bounds, or for the special case H ~ 0 For simplicity we will only 

describe the results in terms of operator bounds and we will use the 

notation 11·11 n for the graph norm 

n 
on D(H ), for each n = 1,2, •• 

Theorem L Let K be a symmetric operator with domain h"" and 

suppose 

"00 

~ D(H) , 1. Kh 

2. II (ad H)(K)all ::: kllall 1 aEh"" 

It follows that K is essentially self-adJoint. Moreover the 

unitary group Vt exp{itK} generated by the closure K of K 

satisfies the following : 

D(H) 

2. llvtall 1 ::: ekltlllall 1 tEJR O!ED(H), 

3. VID(H) is 11-11 1 continuous. 

The first statement of this theorem is contained in Nelson's 

version of the original Glimm-Jaffe theorem. The latter authors 

also subsequently proved invariance properties of the type contained 

in the second statement. 

The next theorem gives similar results from a weaker commutator 
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bound but with an additional stability hypothesis K ~ 0 

Theorem 2. Let K be a positive operator with dOmain hoo and 

suppose 

It follows that K is essentially self-adjoint. Moreover the 

self-adjoint contraction semigroup Tt = exp{ -tK} generated by the 

closure K of K satisfies the following for n = 1, 2 

l. TtD(Hn)~D(Hn) t ~ 0 

2 · IITtalln :S e tn 2k/ 211alln t ~ 0 

3, 11 ·11 -continuous. 
n 

n 
aED(H ) • 

We will not attempt to prove these theorems but we will indicate 

the basic method for establishing essential self-adjointness. First, 

consider the case of Theorem l. 

In order to establish that K is essentially self-adjoint it 

suffices to prove that the subspaces (I+iaK)hoo are norm-dense in 

h for small real a Now assume 

(a,(I+iaK)b) = 0 bEh00 

Next introduce the self-adjoint semigroup 2 
t ~ o 4 st = exp{-tH } 

Then, by spectral theory S h c h_ for all t > 0 
t - ~ 

(a,(I+iaK)S2ta) = 0 t > 0 

Consequently 

Therefore 
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-ia --2-- {(KS2ta,a) - (a,KS2ta)} 

and one concludes that 

llall 2 ::= ( lal/2) lim sup I (KS 2ta,a) - (a,KS 2ta) I 
t-+0+ 

Now the key point is that the expression on the right hand side 

essentially involves the commutators Ct = (ad s2t)(K) But one 

deduces by standard reasoning from the hypotheses of the theorem 

that the Ct are bounded operators from hoo into h with the 

property that 

Therefore 

c = lim sup llctll < + oo 
t-+0 + 

2 2 
llall ::=(ial/2)cllall 

and if laic< 2 then one must have a = 0 

density of (I+iaK)hoo for small a 

This establishes the 

A similar argument works if K ~ 0 , and one adopts the hypotheses 

of Theorem 2. But now it suffices to prove that (I+aK)hoo is norm-

dense for small positive a Hence assume 

(a,(I+aK)b) = 0 

Consequently 

and one deduces that 
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The last step uses the positivity of K Now one observes that this 

estimate involves the double commutators 
2 

Ct = (ad St) (K) and one 

can establish from the assumed bound on (ad H) 2(K) that the Ct are 

bounded operators from h"" into h and llctll is uniformly bounded 

as t -+ 0 + . Thus one concludes, as before, that K is essentially 

self-adjoint. 

3. Partial differential operators 

As an illustration of the foregoing theorems we consider first and 

second order partial differential .operators acting on h = L2 (JRn) 

Let H = ~ where ~ denotes the usual self-adjoint Laplacian 

Then h consists of the functions in L2(JRn) 
co 

which are infinitely often differentiable with all their derivatives 

in Now if denote continuously differentiable 

functions over JRn and A1 , ... An denote the associated multiplication 

operators then 

K 
n 

i E 
j=l 

A. _a_+ _a_ A. 
J ax. ax. J 

J J 

is a symmetric operator from h"" into h But if the a. are 
J 

three times continuously differentiable then Kh"" ~ D(H) and (ad H)(K) 

is a second-order partial differential operator with bounded 

coefficients. Hence it follows by standard estimates on the mixed 

derivatives of second order by the Laplacian that one has a bound of 

the form 

IICad H)(K)all ::: kllall 1 
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Therefore Theorem l can be applied to K In particular K is 

essentially self-adjoint and the unitary group generated by K leaves 

D(H) invariant and is 11·11 1 - continuous in restriction to D(H) 

Next consider a second-order differential operator 

K 
n n 

i z (A. _a_ + _a_ A.) + z _a_ A. a 
j=l J axj axj J j ,k=l axj Jk axk 

where Ajk denotes an operator o:f multiplication by a continuously 

differentiable complex-valued function ajk Now if a.k(x) = ak.(x) 
J r J 

then K is symmetric. Mo·reover, i:f the aj , ajk 

continuously differentiable then Khoo ~ D(H) but 

are all three-times 

(ad H)(K) is now 

a third-order partial differential operator with bounded coefficients. 

Hence (ad H)(K) is dominated by H in the sense of Theorem 1 if, 

and only if, the third-order terms vanish, i.e. the ajk 

Nevertheless Theorem 2 can be applied if K is positive. 

are constant. 

Assume the a a are five-times continuously differentiable 
j ' jk 

then (ad H)(K) is a fourth-order partial differential operator with 

bounded coefficients and the double commutator bound o:f Theorem 2 can 

be verified. Thus this theorem applies whenever K is positive. But 

for this it suffices ·that K is strongly elliptic in the sense that 

there is an s > 0 such that (Ajk s//A.// 28.1 I) is positive-definite, 
J J ~ 

The foregoing discussion illustrates the different scopes of application 

of the two commu·tator theorems. The first applies to first order 

differential operators and the second to second order elliptic operators. 
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But these specific applications can be generalized in various ways, 

e.g. by using quadratic form estimates one can weaken the 

differentiability requirements on the coefficients, or by introducing 

a more general notion of differentiability one can consider operators 

with coefficients which are quite general bounded operators on L2(llin) , 

or one can discuss differential operators on more general Lie groups 

than Th n 
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