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ON CONTINUATION OF QUASI-ANALYTIC SOLUTIONS 

OF PDE'S TO COMPACT CONVEX SETS 

R.F.Bonner 

The aim of this talk is to present and explain to non-specialists 

in this subject an extension theorem for regular solutions of systems of 

PDE's with constant coefficients. The theorem was obtained by Kaneko 

[2,3,4] in the real analytic case and was then generalised by the author 

[1] to quasi-analytic solutions. 

Let us first describe the problem considered. Let K be a compact 

subset of an open set n c ffin n > 1 , and let P(D) be a matrix of 

complex polynomials Pjk(D) j l, ... ,J, k = l, ... ,K, in the 

Let u be a 

distribution solution of the homogeneous system 

(1) P(D)u 0 

defined on 0\K . One may now ask the following questions: 

Ql. Can u be continued to Q as a distribution solution [u] of (1)? 

Q2. Does it help to assume u "regular"? Does there then exist a 

"regular" extension [u]? 
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The answers to these questions can be formulated in terms of a 

family of irreducible algebraic varieties {NA (P)}A = O, 1 , ... ,L 

associated with the matrix P(C) . Let us recall some definitions. 

DEFINITION 1 (cf. [5,Ch.iv]). Consider P(C) as a matrix 

multiplication operator between the !lli-modules !lliK and !lliJ (here !lli 

denotes the ring of complex polynomials in the variable 

r = H: 1 .... , (n)) , let P(O • !lliK = n ' ... ' n I1 be a reduced 

decomposition of the range of P(() into primary components, and, 

finally, let NA(P) be the set of common zeros of all polynomials in !lli 

which multiply pX into P(C) • !lliK, A= O,l, ... ,L. 

The family } is then uniquely determined by 
A=O, 1, ... ,L 

P(O and provides a decomposition of the set N(P) = { ( E !Cn : rank 

P(() < J} into irreducible components. 

DEFINITION 2 (cf. [5,Ch.viii]) The operator P(D) is called 

determined if N(P') d:f{ C E ~n : rank P(C) < K} is not all of (Cn 

and overdet.enlliined if, in addition, the only non-empty component in 

{N (P)} is equal to (Cn 
A /\=0, 1, ... ,L 

REIARK 1 The "degree of determinacy" of P(D) is best defined in terms 

i i §iK 
Ext = Ext ( J . ~) 

P(z)·~ 
of the vanishing of modules up to some order, 

or, equivalently, in terms of the dimension of N(P'); here P' is the 

transpose of P . Thus P(D) is determined iff Ext0 = 0 (alt. iff 

dim N(P') < n) and P(D) is overdetermined iff Ext0 = Ext 1 = 0 (alt, 

iff dim N(P') ( n-1) . In order to have a definition which is well 
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adapted to our purposes and avoids introducing Ext-modules we have used 

here the observation [5, ch.viii, §14, 4°, Proof of Cor. 4] that, except 

for the n-dimensional component, the family of varieties associated 

with the module Ext1 is the same as the family associated with the 

matrix P(() . 

EXAMPLE 1 If K = 1 , i.e. the matrix P = (P1, ... ,PJ) is a column of 

polynomials, then N(P') is the set of common zeros of and 

N(P) decomposes into ~n and the zero-set of the greatest common 

factor of P1 , ... ,PJ (cf [5, Ch viii, §13 Prop.3] and Remark 1). 

Hence, in this case, P(D} is determined unless it is the zero operator 

and it is overdetermined if the polynomials P1 , ... , have no common 

non-trivial factor. A very well kno'vn and important example of an 

(elliptic) overdetermined operator of this form is the Cauchy-Riemann 

operator in ~n = m2n , n ) 1 . 

Returning to our problem, let us give an answer to the first 

question (Ql). 

THEOREM 1 (Ehrenpreis; cf [5, Ch viii, §14, 3°]). Let 0 be a 

neighbourhood of a convex and compact set K In order that every 

distribution soLution of (1) on 0 ~ K have a unique extension to 0 

as a distribution solution of (1), it is necessary and sufficient that 

the operator P(D) be overdetermined. 

REMARK 2 The condition is no longer necessary for the existence of 

non-unique extensions; see the quoted reference. 
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It turns out however that regular solutions of (1) on r1 \. K do 

have extensions to Q as solutions of (1) under a weaker hypothesis on 

P(D) Before stating the result which provides an answer to Q2 let us 

recall the notion of ellipticity of an algebraic variety. 

DEFINITION 3 Let V be an irreducible algebraic variety in ~n . We 

consider en imbedded in the complex projective space wn by means of 

a mapping ~ which to a point C = (C1 , ... , associates the point in 

Wn with homogeneous coordinates (1, , .... Cn) The points in the 

closure of ~(V} (in the metric of Wn) but not in ~(V) itself are 

called the points at infinity of V The variety V is called 

elliptic if none of its points at infinity has a real coordinate 

representation. The operator P(D) is called elliptic if all the 

varieties NA(P') associated to the transpose P' of P are elliptic. 

1HEOREN 2 ([1-4]) Let 0 be a neighbourhood of a convex and compact 

set K . In order that every solution of (1) on Q\K in a given 

quasi-analytic cLass have a (necessariLy unique) extension to Q as a 

solution of (1) in the same quasi-analytic class it is necessary and 

sufficient that P(D) be detenained and that none of the irreducible 

varieties NA(P) associated with the matrix P(() be elliptic. 

Moreover, if the quasi-analytic class considered is the real analytic 

class, the convexity assumption on K may be replaced by the condition 

that ~n\K be connected. 

REMARK 3 Again, the condition is no longer necessary for the existence 

of a non-regular (e.g. hyperfunction) extension; see the quoted 

references. 
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~ 2 When P = (P1 , ... ,PJ) is a non-zero matrix with a single 

column, the condition in Theorem 1 means that the polynomials P1 , ... ,PJ 

have no common factor, while the conditions of Theorem 2 require only 

that the polynomials P 1 , ... , P J have no common elliptic factor. In 

particular we must have J > 1 in the first case but not in the second. 

~ 4 Concerning the convexity assumption on K . The method of 

proof of both Theorem 1 and 2 outlined below involves solving a system 

P(D)v = f for v with support lying in an arbitrarily given 

neighbourhood of the support of f (which is essentially equal to K). 

While for general P(D) this can only be done if K is convex, for 

elliptic P(D), K may be arbitrary with connected complement. It 

follows that this is the right assumption on K (easily seen to be 

optimal) in Theorem 1 if P(D) is assumed elliptic. In Theorem 2 

elliptic P(D) are excluded; however, in the real analytic case, a 

cohomological argument [4] using the triviality of the cohomology group 

H1(U,A) for the real analytic sheaf A in ffin ~~d any open U C mn 

shows that Theorem 2 with K convex yields the stronger (optimal) 

version which only requires that the complement of K is connected. It 

is still not knovrn to the author whether H1(U,cL) 0 for a 

quasi-analytic sheaf cL and, consequently, whether the corresponding 

stronger version of Theorem 2 holds in the quasi-analytic case. 

REMARK 5 The quasi-analyticity of u in Theorem 2 cannot be relaxed if 

K contains interior points, cf [1, Remark 3]. If K is a single 

point, however, the hypothesis of no elliptic component implies that K 

is removable for (non-quasi-analytic) u in a Gevrey class determined 

by the operator P(D) (private communication by A. Kaneko). 
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Outline of proof of ~r~ 2 For the necessi~ part for general P(D) 

see [1,3]; for the particular of the form considered in Examples 

1 and 2 , if P 1 , ... , P J have an elliptic factor Q let u be a 

fundamental solution of translated to a point x0 € K Clearly 

u is real analytic (hence quasi-analytic) on 0\K and, by the 

uniqueness of quasi-analytic continuation, lli~Y quasi-analytic extension 

[u] must agree with u on !Rn\.{x0 } . Hence, if [u] was smooth at 

x0 the singularity of u at x0 would be removable, which it clearly 

is not. 

Turning now to the sufficiency part, proceed in three steps as 

follows: 

STEP 1 Extend u as a distribution U in U . not necessarily 

satisfying (1) there. Of course, this will not always be possible 

unless we agree to modify u near K So let w be any open 

neighbourhood of K and assume that U = u on Q - w observe that 

P(D)U has compact support contained in w , and tru'tt U can be chosen 

smooth if u is smooth. 

STEP 2 Solve P(D)V = P(D)U for V with compact support K1 C 0 , K1 

being arbitrarily close to w (for general P(D) this cannot usually 

be done if w is not convex, hence the convexity assumption on K). 

Then [u] = U - V thus constructed clearly satisfies (1) in Q and 

agrees with u on O\K1 . 
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STEP 3 Invoke uniqueness and regularity results for solutions of 

homogeneous determined systems to conclude that the extensions [u] 

obtained in STEP 2 are actually independent of K1 and thus define a 

single unique extension, which, being regular near the boundary of D , 

must necessarily be regular also in the interior. 

The non-trivial part of the above procedure is, of course, the 

second step. In general, when f is a (vector) distribution with 

compact support, the solvability of the system 

(2) P(D)v f 

for v with compact support depends on the behaviour of the 

Fourier-Laplace transform ~ of f (and of its derivatives) on the 

varieties NA(P) A= O,l, ... ,L associated with the matrix P (cf 

Definition 1). More precisely, a necessary a_nd sufficient condition is 

the following: to each NA(P) there is associated a (matrix) 

differential operator with polynomial coefficients BA = BA(C,DC) (a 

so-called "Noetherian operator"), which applied to ~ should produce a 

(vector) function vanishing on NA(P) . Moreover, as the Noetherian 

operator associated with the component, say N0 , of dimension n (i.e. 

N0 = ~n) one can take the operator of multiplication by a matrix of 

polynomials P1 (a "compatibility matrix"), the rows of which (by 

definition) generate the module of relations between the rows of P 

(thus P1P = 0 and if P2P = 0 for some matrix of polynomials P2 

then the rows of P2 are generated over the ring of polynomials by the 

rows of P1). Consequently, if the right side in (2) is of the form 

F = P(D)U considered in STEP 2 above, then 
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0 

for all C € ~n . Hence, what remains to be shown in order to carry out 

STEP 2 are the equalities: 

(3) 0 1.2, ... ,L . 

As a· side comment we may at this stage recall Definition 2 to observe 

that for over-determined P(D) the varieties ~(P) h = !, ... ,L 

are empty. hence in this case the equalities (3) are trivially 

satisfied, ultimately yielding the sufficiency part of Theorem 1. 

Returning to the proof of Theorem 2, let us now indicate how the 

hypothesis implies the inequalities (3). The regularity of U outside 

of a neighbourhood of K causes the functions to 

have more restricted growth at infinity than what should be expected 

knowing that (P(D)U)A is the Fourier transform of a (smooth) 

distribution with compact support. Specifically, the estimates 

(4) 

hold for ( € Nh(P) , A= l, ... ,L. Here C is a positive constant and 

the function L determines the quasi-analytic class of U outside a 

neighbourhood of K ; in particular 
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log L(t) dt = +00 • 

1+t2 

To show (4) observe that the restriction of aA(P(D)U)A to NA(P) 

actually does not depend on the extension U of u chosen in STEP 1 

(because the difference u1 - u2 of any two such extensions ui has 

compact support and therefore the difference 

is zero on NA(P) by the defining property of the Noetherian 

operators). This allows us to take as an estimate for the growth of 

8A(P(D)U0 )A on NA(P) • for any fix extension u0 • the infimum of the 

usual growth estimates of aA(P(D)U)A over all extensions U which 

agree with u0 outside a given neighbourhood of K . A "minimizing 

sequence" of such extensions Uk, k = 1,2, ... can be obtained by 

cutting off u near K by smooth functions ~k , the derivatives of 

which up to order k grow like those of a real analytic function, cf 

[4]. Having established (4), the next step is a Liouville type result 

([4. Lemma 2]) stating that if an algebraic variety V has a real point 

at infinity, then no non-trivial analytic function on V can satisfy an 

estimate of the kind (4) if (5) is to hold. Hence, if none of the 

varieties NA(P) , A= 1, .... L. is elliptic and u is in a 

quasi-analytic class on 0\K then the equalities (3) hold and the proof 

of Theorem 2 can be carried out as indicated above. 
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