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THE CHARACTERiSTIC FUNCTION OF A UNIFORMLY CONTINUOUS SEMIGRO'UP 

Brian W. McEnnis 

1. INTRODUCTION 

Let T(t) be a uniformly continuous one-parameter semigroup 

of operators on a separable Hilbert space 9£. Thus, for each 

t ~ 0, T(t) is a bounded operator on 9£, T(t1 )T(t2 ) = T(t1+t2 ) 

for each t 1 , t 2 ~ O, T(O) =I, and IIT(t)- Ill~ 0 as 

t ~ o+. Such a semigroup possesses a bounded infinitesimal 

generator A, defined as the limit· (in norm) of t-1 (T (t) - I), 

as t ~ o+. We can then write T(t) = exp (At) (See, for 

example, [2], [4], [5], [7], [8], [9].) 

As in [2], we define the following bounded operators on 9£: 

G A + A*, Q = jGj 112 , and J = sgn (-G) (this is the operator 

S in [2]). We have the relations 

(1.1) JQ2 = -G, 

d 
dt (T(t)T(t)*) = T(t)GT(t)*, 

d 
dt (T(t)*T(t)) = T(t)*GT(t) . 

and 

A Krein space g is defined by taking g to be the space 

J9£, equipped with the indefinite inner product 

(1.2) [x,y] (Jx,y) x, y E g 
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where ( . , . ) denotes the inner product on :J{. (For the theory of 

Krein spaces, see [1] .) The topology on q is that which it 

inherits as a subspace of J£. We also define the characteristic 

function 8 (!.,) : q-:, (j of the semigroup T by 

( 1. 3) 

for all complex numbers A for which (A- A*)-1 is bounded. 

(Compare 'chis vlith the characteristic function SA given in [7, 

p. 358] for a dissipative operator.) 

In this paper we consider semigroups for which T(t)* 

converges strongly to zero as t -:,oo. By the principle of 

uniform boundedness, this implies that there is a positive 

constant M such that 

( 1. 4) II T (t) II II T (t) * II :::;; M for all t 2: 0 

(i.e., T(t) is equi-bounded [9, p. 232]). Consequently [9, p. 

240], we have the following integral representation of the 

resolvent of the infinitesimal generator A* of T(t)*, valid 

in the right half-plane: 

(1. 5) (A- A*)-1 =fe-At T(t)* dt, 
0 

ReA>O. 

It follows that the characteristic function (1.3) is defined in 

the right half-plane. We will be considering the case where the 

characteristic function is also bounded: 
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(1. 6) sup { II e 0-l II Re A > 0 } c < 00 

and will prove the following theorem, analogous to [3]. 

THEOREM 1.1 Suppose T(t) is a uniformly continuous semigroup 

with bounded characteristic function, such that T(t)* converges 

strongly to zero as t -t co. T'hen T (t) is similar to a 

contraction semigroup. ~ 

As in [7], [3], and [6], the characteristic function is 

studied in the context of a unitary dila·tion, in this case, thP 

dilation constructed by Davis [2]. Before a proof of the theorem 

can be given, it is necessary to develop a theory of Fourier 

transforms on 9{ and to analyze the geometry of the dilation 

space (sections 2 and 3 below) . 

If fi is a Krein space, and if R denotes the real nur~Jers, 

then we denote by LP (R, (j) the Banach space of (equivalence 

classes of) functions f:R ~fi which are strongly measurable 

and for which 

00 1/p 
(2 .1) II fliP (f II f (t) liP dt) <=, p < ""'· 

For p (2.1) is replaced by 
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(2. 2) II f II~ ess sup {II f (t) II t E R } • 

The subspace of LP(R, y) consisting of all functions with 

support contained in the interval [0,~) will be denoted by 

the subspaces of functions supported on (-oo, 0] and [0, s], 

respectively. 

The space L2 (R, y) is a Krein space with indefinite inner 

product defined by 

(2. 3) [f,g] = J [f(t), g(t)] dt 

where (f(t) ,g(t)] denotes the indefinite inner product of q. 

We will be needing vector-valued versions of some classic 

theorems, which are stated here without proof. First, a 

vector-valued Fubini theorem (see [4], Corollary III.ll.l5): 

THEOREM 2.1. If f is a strongly measurable function of two 

variables which satisfies 

(2. 4) 

then 

00 

(2. 5) J J f(u,v) du dv = J J f(u,v) dv du. 
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When we need to interchange an order of integration, it will 

be done without explicit reference to Theorem 2.1; in such a 

case, verification of the condition (2.4) is left to the reader. 

Consider the Fourier transform of a function f E L1 (R, Y:l , 

defined for y E R by 

00 

(2. 6) E' (y) = - 1 - J e-iyc f (t) dt . 
,{; -oo 

We have a vector-valued Plancherel ·theorem (see [8, p. 139]) : 

Jet F (y) be the Fourier transform given .by (2. 6). Then 

Consequently, the definition (2.6) can be extended by 

to all f E L2 (R, g) . 

Now let f be a function in LP (R', (j) (1 ::::; p ::::; co) . Then 

the function e-A.tf(t) is in L 1 (R+, for all complex numbers 

A with Re A > 0, and we can define the holomorphic Fourier 

transform 

(2. 7) 
1 J e-A.t f (·t) dt , 

0 

Re A> 0. 

As above, when f E L2 (R+, (j), this definition can be extended 

by continuity to ReA= 0. 
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We will be needing the following uniqueness theorem: 

THEOREIJ!1 2. 3 Suppose f E LP (R+ 1 (j) 1 :::;; p :::;; '=, and that 

" f = 0 for all complex numbers A with Re A> 0. 

Then f = 0. Ill 

Let F(A) denote a function taking values in (j and 

holomorphic in the right half-plane Re l > 0, and for x > 0 

define Fx by Fx(y) = F(x+iy) (y E R) . The Hardy-Lebesgue 

space H2 (0, (cf. [9, p. 163]) is defined as the space of all 

such functions F(A), with e L2 (R, (j) for all x > 0 and 

(2. 8) II F II X > 0} < <X> 

For this space, we have a vector-valued Paley-Wiener theorem: 

THEOREM 2.4 If f E L 2 (R+, (j) , then f E H2 (0, (j) . Conversely, 

if F e H2 ( 0, {j) , then there is a function f e L2 (R+, (j) such 

" that F = f. Ill 

From the above results, we can get: 

THEOREM 2.5 The holomorphic Fourier transform (2.7) is a unitary 

operator from L2 (R+, {j) onto H2 (0, {j). • 

The above theorem shows that H2 (0, (j) is a Hilbert space. 

Since L2 (R+, (j) is also a Krein space, with indefinite inner 
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product given by (2.3), we can make H2 (0, g) into a Krein space 

too, by defining 

(2. 9) [ f' g] [f, g] ' 2 + f, g E L (R , {j) . 

3. THE DILATION SPACE 

Let us now return to the study of the semigroup T(t) by 

introducing i·ts unitary dilation, as constructed by Davis [2] . 

Define a Krein space 1(. by 

(3 .1) 

where (j is the Krein space introduced in section 1, with 

indefinite inner product given by (1.2). A vector k in ~ 

wiil be denoted by k. = <h, f>, where h e :;{ and f e L2 (R, (j); 

the indefinite inner product on ~ is given by 

(3. 2) [k, k. l (h,h') + [f,f'], k. <h,f>, k' <h',f'>, 

where (h, h') is the Hilbert space inner product on !J{ and 

[f,f'] is the indefinite inner product (2.3) on L2 (R, (j). 

It will be convenient to consider the dilation of T(t) as 

a system obtained by adding inputs and outputs to a state space. 

Specifically, consider 9{ as the state space of a system, with 

T(t)h representing the state of the system t units of time 

after being in state h. Functions in L2 (R-, (j) can be 

considered inputs to the state space, and functions in L2 (R+, (j) 
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can be considered outputs from the state space. 

The dilation semigroup U(s) has two components. One is 

its action as a shift on L2 (R, q), and the other is its 

interaction with 9£. The second part can be roughly described 

by specifying that U(s) acts as T(s) on 9{, with outputs to 

L2 (R+, q) leaving 9{ by means of the operator Q, and inputs 

means of the operator -JQ 

(>vhere J and Q are the operators defined in section 1) . ~1ore 

precisely, for s ~ 0, 

(3. 3) U(s)<h,f> <h',f'> 

where 

s 

(3.4) h' = T(s)h -- J T(s-t)JQf(-t) dt 

and 

(3 .5) f' f I ('t) 

0 

S-1: 

f('C-s) + X[O,s] ('t) [QT(s-'t)h- J QT(s-t-'t)JQf(-t)dt]. 
0 

Here, and in the sequel, we have adopted the convention 

(also used in [2]) of using a special symbol 't to denote the 

independent variable. Thus, for example, f('t) represents an 

element of L2 (R, q), whereas f(t) represents a vector in q. 

f('C-s) in (3.5) is the function obtained by shifting f to the 

right by s units. We will also be using A in the same role 

when discussing functions in H2 (0, q) 

In [2] it is shown that the U(s) defined above is a 

semigroup on 1(, and that it is a dilation of T (s) '1-l'hich is 

unitary in the sense of the indefinite inner product, i.e., U(s) 

is invertible and [U(s)k,U(s}k'] = [k,k'] for every 
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k, k' e ~ and s ~ 0. By defining U(~s) = U(s)* (where the 

adjoint is taken in the indefinite inner product), U(s) 

becomes a unitary group on ~~ again in the sense of the 

indefinite inner product. 

The characteristic function defined by (1.3) can now be 

derived in a manner tha·t is similar to that used in [7], [3], and 

[6] for the characteristic function of a single operator. We 

consider Fourier transforms of the spaces of input and output 

functions, and express the relationship between inputs and 

outputs by means of the characteristic function. The technique 

can be compared to the systems theory approach of representing 

inputs and outputs by their Fourier representations and relating 

them by means of a frequency response function. 

We will be considering the subspace ~+ of X.. given by 

(3. 6) X..+ {<h, f> E 1( 

and the semigroup 

(3. 7) u+(s) U (s) I~+ , for. s ~ 0. 

(Note that X..+ is invariant for U (s), for s 2: 0.) Then 

Theorem 1.1 will be proved by establishing: 

THEOREM 3.1 u+(s) is similar to a semigroup of operators which 

are isometries with respect to both an indefinite and a Hilbert 

space inner product . II 

The proof of this theorem, and Theorem 1.1, will be 
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completed in section 4 below, after investigating some of the 

structure of ~+. 

We consider two subspaces 9v{ and !M* of ~+' and their 

Fourier representations w and w*, corresponding to outputs 

and inputs, respectively. The simplest to describe is the output 

space 9v{ and its Fourier representation: 

(3. 8) 9v{ = {<O,f> E ~ f E L 2 (R+, (j)} and <P<O, f> 

where f is the holomorphic Fourier transform (2.7). By 

Theorem 2. 5 and (2. 9) , <l> is a unitary operator from 9v{ onto 

H2 (0, (j), preserving both the Hilbert space and indefinite inner 

products. Also, <P(U(s)<O,f>} is the holomoL~hic Fourier 

transform of f (t-s), so tha·t 

(3. 9) (~ (U (s) m) e -A,s<tlm for all m E 'M and s :2.: 0 . 

In order to parallel the theory for a single operator, we 

consider inpu'cs to ·the system in the following way. Take s > 0, 

and let f be a function in L 2 [O,s], (j). Shift f to the 

left by s units, so as 'co ge·t a function in the input space 

This gives a vector in ~+; 

we define :M* to be the closed linear span of such vectors: 

(3.10) \/{U(s)<O,f(t+s)> 
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The Fourier representation <P* of '.M* is densely defined 

(3 .11) ~*[U(s)<O,f(~+s)>] f, s > 0. 

For all s > 0 and for a dense set of vectors m* e '.M*, namely 

m* = U(u)<O,f('t+u)>, where f e L2 ([0,u], q) and u > 0, we 

have 

(3 .12) 

It follows immediately, from the fact that both U(s) and 

the holomorphic Fourier transform are unitary, that ~* 

preserves the indefinite inner produc·ts on '.M* and H2 (0, (j). 

We can, however, draw no conclusion about the boundedness of <P* 

without (as in [3]) first interpreting the characteristic 

function as a project.ion on '1(. 

Suppose m* e '.M* and m e '.M, where m* = U ( s) <0, f ("t+s) > 

for some f e L 2 ([0,s], (j), s > 0, and m = <O,g> for some 

g E L 2 ([0,N], q), N > 0. By (3.4) and (3.5) m* = <h • , f '>, 

where 

(3.13) h' 

and 

s 

- J T(s-t)JQf(s-t)dt 
0 

s 

-JT(t)JQf(t) dt 
0 
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Therefore 

(3.15) 
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S-'t 

f' = f ('t) - X[o, s] ('t) J QI' (s-t-t) JQf (s-t) dt 
0 
s 

= f ('t) - X[o, s] ('t) J QI' (t-'t) JQf (t) dt. 
't 

s 

[m*,m] =J [f' (u) ,g(u) l du 
0 

s s s 

=J [f(u) ,g(u) l du- J J [QI'(t-u)JQf(t),g(u)] 
0 0 u 

s s t 

=J [f (t) 'g (t) l dt- J J [QI'(t-u)JQf(t),g(u)] 
0 0 0 

dt du 

du dt . 

The second integrand in (3.15) can be written as 

(3 .16) 

and thus 

(3.17) 

where 

(3.18) 

[QT(t-u)JQf(t),g(u)] 

s 

(JQT(t-u)JQf(t),g(u)) 

(f(t),JQT(t-u)*JQg(u)) 

[f(t),QT(t-u)*JQg(u)] 

[m*,m] = J [f(t), g(t) - h(t)] dt, 
0 

t 

h(t) = J QI'(t-u) *JQg-(u) du. 
0 

Note that, for all t ~ O, the integrand of (3.18) is in 

L1 (R+, g), since by (1.4) 
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t N 

(3.19) J IIQT(t-u)*JQ:;r(u) II du s; J IIQT(t-u)*JQ:;r(u) II du s; Mllo{fi llgll2 , 

0 0 

for g e L 2 ( [O,N] fj) 0 Since the right hand side of the 

inequality (3.19) is independent of t, it also follows from 

(3.18) and (3.19) that he L~(R+, (j). 

The function h has the form of a convolution, and so it is 

to be expected that its holomorphic Fourier transform will be of 

the form of a product of two functions, one operator-valued and 

the other vector-valued. In fact 

00 00 

(3.20) h(/~<) = o(J e-A-t T(t)* dt)JQ-1 - f e-Aug(u) du 
0 [:;;. 0 

Q ( 1. 5) 

(I - e O.l l g: 0.-l . 

We are assuming that 9 is bounded for Re A> 0 (1.6). 

then g e H2 (0, g), and it follows 

immediately from the boundedness of e and the relation (3.20) 

that h e H2 (0, (j) 0 Thus, by Theorem 2. 4, h is the 

holomorphic Fourier transform of a function in L2 (R+, fj). The 

uniqueness theorem (Theorem 2 . .3) then implies that 

Now we can rewrite (3.17) as an inner product in L2 (R+, (j) 

and, using the fact that the holomorphic Fourier transform 

preserves the indefinite inner product (2.9), as an inner product 

in H2 ( 0, (j) : 
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(3 .21) " " " [f, g - h] = [f, g - h] 

for all m* of the form U(s)<O,f(~+s)> (f e L2 ([0,s], g), 

s > 0) and for all m of the form <O,g> (g e L2 ([0,N], g), 

N > 0). We are using S in (3.21) to represent the bounded 

operator on H2 (0, g) defined by (SF) (A) = S(A)F(A), for 

ReA> 0. If c is the bound for e, as given in (1.6), then 

for the operator e on H2 (0, g) we have II e II :s; c. 

(3.21) is valid for a dense set of vectors me ~. Since~ 

is a bounded operator from ~ to H2 (0, g) and e is a 

boundeq operator on H2 (0, g), (3.21) is in fact valid for all 

me !M. In order to extend (3.21) to all m* e ~*' it is 

necessary to first establish the boundedness of ~*· This can 

be done by using an approach that is formally the same as that 

used in the study of a single operator in [3], and thus the 

details can be omitted. As in [3], we get the estimates 

(3.22) 

and therefore (3.21) can be extended to give 

(3. 23) for all m e !M, m* e ~* . 
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4. PROOFS OF THEOREMS 1.1 AND 3. 1 

The relation (3.12) can now be extended to all of :M*, 

using the boundedness of ~*' i.e. 

( 4 .1) for all m* E :M* and s > 0. 

Thus the semigroup {U(s) i:M* : s ~ 0} on :M* is similar to the 

semigroup {W(s) : s ~ 0} of operators on H2 (0, q), where 

w (s) denotes multiplication by the function -As e . It is 

readily checked that each W(s) is an isometry on H2 (0, q), 

with respect to both the indefinite and Hilbert space inner 

products (it corresponds, via the holomorphic Fourier transform, 

to the shift to the right by s units on L2 (R+, q)). 

One of our objectives was to prove Theorem 3.1 by showing 

that u+ (s) (defined as the semigroup {U(s) I~+ : s ~ 0}) is 

similar to a semigroup of isometries. We have in fact already 

done this, since it is the case that M* = ~+: 

THEOREM 4.1 If T(t) is a semigroup such that T(t)* converges 

strong-ly to zero as t -+ oo, then ~ = ~+. 

PROOF. Suppose k E is such that (k,m*] 0 for a dense 

set of vectors m* E M*, namely 

( 4. 2) [k, U(s)<O,g(t+s)>] 0 
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for all s > 0 and all g e L2 ([0,s], ~). Since the indefinite 

inner product on ~+ is nondegenerate, it will follow that 

!M* = ~+ if we can show k = 0 . 

Let k be given by k = <h0 , f>, where h 0 e 1{ and 

f e L2 (R+, ~) . Define a function h by 

(4 .3) 

t 

h(t) = T(t)*h0 + J T(t-u)*JQf(u) du, 
0 

t ~ 0. 

(This function is analogous to the sequence {hn} used in [6, 

Theorem 4.2] .) h has the properties that h(O) = h 0 , f(t) 

Qh(t) for almost all t ~ 0, and T(t)h(s) = h(s-t) for all s 

and t satisfying 0 S t S s. The first of these properties is 

obvious, but the other two require some proving; details are 

omitted in this paper for the sake of brevity. 

The theorem will be proved by showing the function h must 

necessarily be zero. We begin by showing that h is bounded. 

Since the functions f9 (~) = X[O,s] (~)f(~) converge strongly 

to f in L2 (R+, ~), as s-+ ~, it follows that [f,f] can 

be obtained as the limit of [f9 ,f9 ], where 

s s 

(4.4) [f9 ,f9 ] =J [f(t),f(t)] dt=J [Qh(t),Qh(t)] dt 
0 0 

s s 

= J [Qh(s-t),Qh(s-t)] dt = J [QT(t)h(s),QT(t)h(s)] dt. 
0 0 

The integrand can be written in the form 
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( 4 '5) (JQT(t)h(s),QT(t)h(s)) - ( T ( t ) * GT ( t ) h ( s) , h ( s) ) , 

which is the derivative, with respect to t, of 

-(T(t)*T(t)h(s),h(s)) (by (1.1)). Thus we have 

( 4' 6) l!h(s) W- IIT(s)h(s) W llh(s) W- !ih(O) If. 

Since the limit of (f3 ,f8 ] exists, it follows that II h(s) II is 

bounded. 

Finally, we observe that for all h' E !}{, and for all 

t ~ 0 and s ~ t, we have 

( 4. 7) I (h(t),h') I= I (T(s-t)h(s),h') I= I (h(s),T(s-t)*h') I 
~ II h (s) II II T (s-t) *h' II . 

Let s ~ oo Since h(s) is bounded, and since, by assumption, 

T(s-t)*h' -7 0, it follows that (h(t),h') = 0 for all ·t;::; 0 

and for all h' E fJ{. Thus h = 0, and hence k = 0, and the 

proof that '}V[* 1(+ is complete. 

As was observed at the start of this section, Theorem 4.1 

provides the final link in the proof of Theorem 3.1. All that 

remains is to supply a proof of Theorem 1.1. 

Let P denote the projection on '!( defined by 

( 4. 8) P<h,f> 

Thus P is the orthogonal projection onto Jf, with respect to 

both the indefinite and Hilbert space inner products on 1(. The 
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dilation property of U(s) may be described as T(s) = PU+(s) 1.1£. 

Note that, by (3. 8), :!\:+ = .1{ ® 'Jvf, and that }.{ is invariant 

for u+ (s). Thus, .1{ is invariant for u+ (s) *, and vle may 

write the dilation property as 

( 4. 9) T (s) * u+ ( s ) * 1 .1£. 

Since u+(s) is similar to a semigroup of Hilbert space 

isometries (Theorem 3.1), it follovJS from (4.9) that T(s)* is 

similar to a contrac·tion semigroup. Thus, T (-t) is similar to a 

contraction semigroup, and Theorem 1.1 is proved. 
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