
101 

On the Frobenius Reciprocity Theorem for 
Square Integrable Representations of 

Nonunimodular Groups 

RAY .-tL Kl!NZJ!k 

In the unimodular case, the Frobenius reciprocity 

theorem for irreducible square integrable representations 

asserts that certain intertwining spaces are canonically 

isomorphic; the essential analytic point is that square 

integrability implies the continuity of functions in 

particular subspaces of 12 spaces on which the group 

acts and leads to a characterization of these subspaces in 

terms of reproducing kernels. In the nonunimodular case 

this is no longer true. There is a canonical isomorphism 

between proper subspaces of the intertwining spaces, one 

of -.1hich is uniformly dense in the full intertwining 

space. 

The results in this paper v1ere motivated by observations made in 

connection with the problem of constructing explicit unitary half-space 

models of ladder representations for the Lorentz groups SO(l,n+l). That 

is joint work with J.E. Gilbert and K. Davis; It will appear elsewhere. 

*Partially supported by NSF Grant DHS-8505727 
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1. PRELIHINARIES" Let P be a locally compact group with a fixed right 

Haar measure dx Let /'!, be the modular function on P , defined so 

that Mx)dx is a left Haar measure. Suppose M is a compact subgroup 

of P and that a is an irreducible representation of M with 

representation space ~cr' Here and throughout representation will mean 

continuous unitary representation. Let p be the representation of P 

induced by cr • By definition, p(y) (y E G) is right translation by 

y on the space of square integrable maps such 

that 

( Ll) f(mx) o-(m)f(x) 

for all (m,x) in M x P . 

Now suppose '!! is an irreducible square integrable representation of 

P with representation space wnen the results of [ l J are 

formulated in the present context, this means that l! is unitarily 

equivalent to a subrepresentation of the right regular representation of 

P . Equivalently, n has a nonzero square integrable matrix entry 

E($,r):x ~ (w(x)$1 , x E P . 

Moreover, there exists a unique self-adjoint positive operator D in 

called the formal degree of 'If , with the following properties. 

( l. 2) For <jl " 0 E(ljl, is square integrable if and only if 

y G dom 

_l 
(1.3) F'or ljl,¢ in 'J{ and r,ll in dam D 2 

11 



( l. 4) 
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/(~(x)$lr)(~(x)¢1o)dx 

-1 
~(a)D 'JT(a ) -1 

~(a )D, a E P , 

If P is unimodular, D is a scalar operator which may be identified 

with the usual formal degree. But otherwise D is an unbounded operator 

with a dense 1r(P) invariant domain. 

Let Homp(~'JT'~p) denote the space of continuous linear maps of ~'IT 

to ~ 
p 

that intertwine 11 and p. Similarly, let HonL.(~ .~ ) denote the 
.M. 11 <1 

space of continuous linear maps of ~'IT to ~<1 that intertwine the 

restriction of 11 to M and <1 • In the unimodular case, these two 

intertwining spaces are canonically, even isometrically, isomorphic, [2]. 

Here we investigate the extent to which this remains true in the 

nonunimodular case. 

2. THE SPACE 0Homp(~ .~ ), The distinctive feature of the unimodular 
1T p 

case is that for any U E Homp(~ .~ ), U(~) is a Hilbert space, 
1T p ~ 

relative to the 12 norm, of continuous maps of p to ~ in which point 
<1 

evaluations are continuous [ 2' Theorem 1]. Because 1t is irreducible, 

Schur's lemma implies that u*u is a scalar multiple of the identity; 

this in turn implies that U is a scalar multiple of an isometry. Thus, 

it is always true that U(~ ) 
~ 

is a closed subspace of 2 L (P,a). But in 

the nonunimodular case, it is not always true that U(~~) may be 

identified with a space of continuous functions in which point evaluations 

are continuous. Let 0 Homp(~~'~p) denote the subspace of 

Hom....(~ .~ ) 
l' ~ p 

consisting of the maps U for which U(~ ) 
~· 

is a space of 

continuous functions in which point evaluations are continuous. 
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3. THEOREM. Suppose U ~ 0Homp(~ .~ ) • Ihen the equation 
'J[ p 

( 3 .1) A$ = ( U<l>) (1) ' 

defines an operator A in Hom..(~ .~ ) such that for arbitrary in P 
1'1. 'J[ (J 

and <j> in 

(3.2) (U<!>fl(x) = A'lf(x)<j> • 

Horeover, the adjoint A* of A has the property that 

Proof. It is clear that (3.1) defines a continuous linear map A of ~'If 

to ~CJ • Let m ~ M and <j> ~ ~ 
'J[ 

( U'lf( m)<l>) (1) 

Then 

( p( m)U<j>) (1) (U<!>)(m) CJ(m)A<j> • 

Thus, A~ Hom..(~ .~ ) moreover 
1'1. 'J[ (J 

(U<!>)(x) (p(x)U<!>)(l) (U'lf(x)<!>)(l) = A'lf(x)<l> 

for all <1> in ~ and x in P • To prove (3) let « ~ ~ and 
'J[ (J 

2 Then, since U<l> ~ L (P,CJ) , (2) implies 
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Now (A1r(x)(jljci) "' ('rr(x)$IA*a) , and by (L2), E(<jJ,A*a) is square 

_.l 
integrable for all $ iff A*a E dom D 2 

_.l 
dom D 2 

Thus, A* maps into 

4. THE SPACE 0 HomMUIL ,,1{ ) • Let 0 Hom..Ui ,'if{ ) denote the subspace of 
• 1! Cl J'1 ll G 

Hom..('if{ ,'if{ ) 
J'1 'iT G 

to 

( 4.1) 

<fr 

"" 1T 

consisting of the operators A such that A*('if{ ) C dom D-t 
(j 

then D-tA* is a continuous linear map of 

It follows that the equation 

(AlB) 

defines an inner product on °Honl1(9'L11 ,,'!£0 ) • If U and V are operators 

in Homp(ffL'lf ,'if{ a) , then from Schur's lemma one sees that there is a unique 

scalar (UIV) such that 

(4.2) V*U (U!V)Iw_ 
1! 

It follm.;s that the pairing 

U,V-+ (UIV) 

is an inner product on HompUt ,'if{ ) 
'I! p 

such that (UIU) is the square of the 

operator norm of U Since Homp('rli ,'if{ ) is complete relative to the 
'If p 

operator norm, it results that Homp('if{ ,'if{ ) is a Hilbert space when 
- 7f p 

equipped 1d th the inner product defined by ( 2) 

s. THEOREM. 

u = u A 

For each A in °HmR.('if{ ,iK ) , (3.2) defines £1fl operator 
M 7f r:J 

such that the map 



is an isometry of 

A-tU 
A 
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onto 0 Homp(~ ,;]{ ) . 
11 p 

Proof. Suppose A G: 0 HomM(;Jt ,ill ) . Let $ E 
• 'li (} 

and define f on P by 

f(x) An(x)$ . 

Then f is continuous and 

f(mx) = An(m)1l(x)$ cr(m)A11(x)$ a(m)f( 

for all (m,x) in M x P . If x E ;]{ then 
(j 

(f(x)la) (7r(x)¢1A*u) . 

Since A*a E dom D -t (1. 2) implies 

Jl(f(x)!a)! 2 dx < ro. 

Because 'iJ{ is finite dimensional, :i.t follo>vS that 
rJ 

Thus, ( 3. 2) defines a linear map u u of ;]{ 
A 1f 

Now suppose A and ]3 lie in 0 Homl'1(;Jt71 ,'iJlcr), 

f 6 

into 

let 

(P,cr) 

L2(P,r;) 

fl, ... 'fn 

orthonormal base for ;]{a , and let ¢ and ¢ be vectors in ~ 
11 

(U ¢1U ljl) A B 

by (1.3) . Therefore 

f (A11(x)¢1B'Il( ¢)dx 

E 
i 

be an 

Then 
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( 5.1) 

It follows, in particular, that 

( 5. 2) 

so that UA is an isometry multiplied by liAII , In addition 

for all x,y in D 
L and in 'JL • If I!AII denotes the operator norm 

11 "" 

of A , then 

Hence, (5.2) implies that point evaluations are continuous. Thus 

) , The map 

is evidently linear. It is surjective by Theorem 3. By (1) 

for all A,B and 4>, '·P 

from (4.2) that A~ UA is an isometry. 

6. EXAMPLE. Consider the special case 

in 

in 

iii 
'!! 

which M 

It no>v follows 

is the identity 

subgroup and (J the identity representation of M on 'J( = !r Then 
(J 

HomM('Jt ,'Jt ) is just the dual of 'J( The elements of 0 HomM('JL ,'Jl ) 
i 1f (J '1! '1! (J 

are 
_l_ 

the linear functionals determined by the vectors y in dom D 2 In this 



case, 1£ "' 1 2 ( P) 
p 

Specifically, if 

functional, then 

and 

y E 

u . 
y~ 
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p is the right regular representation. 
_l * dom D 2 and y is the corresponding linear 

in is defined by 

(U7*$)(x) = (w(x)$lr), x e p, 

For this case, the results proved in (9) and (10) were obtained by other 

methods in [ 4] , 

EXAMPLE. In general there is a distinction between 

Homp('J{ ,'J{ ) • To see this, consider the affine group 
7f p 

0 Homp('J{ ,'Ji ) 
'Jf p 

p 0 
1 a,b E I and a > 0 l 

of the line. Then the measure 

(7 .1) d(a,b) = 

is right invariant, and the modular function is given by 

(7. 2) a,b) = a 

As is well known, the formula 

(JT(a,b)$)(t) = 
. -1 
Hl bt 

e 
-l 

$(a t) 

and 

defines an irreducible square integrable unitary representation n of P 

on 

'I dt 
L'-((O,ro), t 

In fact, let and be any elements of and set 

h(a,b) (n(a,b)$1~') 
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Then since 

H(a,b) = f~ eibt $(t)~(at) d~ 

it follows by Plancherel's theorem that 

and hence from (1) that 

From this it is easy to see that the formal degree D is multiplication 

by the independent variable; thus y in ~ is in dom D-t iff 
'JT 

-1 _l 
and (D 2 y)(t) t 2 y(t) for all such y. This is a situation in 

which (6) applies. 

We shall construct a Cauchy sequence in °Homp(~'JT'~p) that conver.ges 

to an operator outside 0 Homp(~'JT'~p). For this purpose, let yn be the 

characteristic function of the interval [1,n) and set 

un u*' n 1,2, .... 
rn 

Then it follows from (5) or by direct computation that for the norms in 

( 4 • 1 ) and ( 4 • 2) 
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IIU - u 11 2 
n m 

_l_ 
(D z ( y 

n 

_l_ 

-y)jDZ(y 
m n 

- y )) 
m 

In d; 
m t'" 

(n > m). 

') 

Thus, HU - U H• ~ 0 as m,n ~ w, Let U = lim U 
n m n 

Then U is not 
n 

_l_ 

of the form u * with y E dom D z. For if it were, then by ( 5) 
y 

00 

A~ fo jy(t) - (t)l2 dt o. 1 n 2 t 

But this implies y is equal a.e. to the characteristic function of the 

interval [l,oo) and hence that y is not in ift • 
11 

The obvious question that one might ask at this point is settled by 

the following result. 

8. THEOREM. The subspace 0 Homp(i11:71 ,ili:P) is dense in the full 

intertwining space Homp(ilt ,ilt ) • 
11 p 

Proof. This is proved by an approximate identity argument. For this let 

N be an arbitrary compact neighborhood of the identity in P and lN 

its characteristic function. Set 

where dm denotes normalized Haar measure on M and the constant c is 

chosen so that 
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-1 Then eN(mym ) = eN(y) for all (m,y) in M x P, and for each 

neighborhood N1 of the identity there is a compact neighborhood N2 

the identity such that supp eN c Nl. 
2 2 

Now suppose f E L (P,a). Then the convolution 

(eN* f)(x) 
-1 -1 f eN(xy )f(y)dy = f eN(y )f(yx)dy 

of eN and f is a well defined continuous function from P to ~a· 

For m E M 

(eN * f) (mx) 
-1 J eN(y ) f(y mx)dy 

-1 -1 J eN(my m ) f(myx)dy 

a(m)(eN * f)(x) 

1 and f(myx) a(m) f(yx). We also have 

of 

2 Thus, eN* f E L (P,a). Moreover, standard arguments now apply and show 

that eN* f ~ f in L2(P,a) as N ~ 1. 

Next suppose that U is a non-zero operator in Homp(~ .~ ) that 
1T p 

is orthogonal to 0Homp(~ .~ ). 
1T p 

Choose in ~ • 
1T 

Then 

u~0 # 0 and there exists a compact neighborhood N0 of 1 in P such 

that eN * U 0 # 0. For compact neighborhoods of 1 with N c NO 
0 

define UN: ~.If~ L2(P,a) by 

Then since 
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it follows that UN is a non-zero continuous linear map of ~n into 

? 
~ = 1-(P,o). In addition 

p 

e * p(x)U$ N 

for all x in P and $ in ~. Thus UN E Homp(~ .~ ), Now 
~ • ~ p 

-1 J eN(y )(U$)(y)dy. 

Then one has 

-1 . 
I!AN!J>Ii -~ f eN(y )!i(U$)(y)lidy 

< lleNii 2 IIU$!1 2 

< lleN1! 2 IIU!III<ll!l 

-1 eN(y ). In addition 

so that ~'l!(m) o(m)~ for every m in M. Finally, since 

is square integrable for all a in ~ , it follows that 
I) 

AN E 0 Ho~(~~.~11 ). Therefore, UN E 0 Hom1,(~~'~p). By 

* assumption . (U!UN) ~ 0. Hence, by (4.2), UN U = 0. This implies 
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for every $ • But this is impossible because UN$~ U$ as N ~ 1. 

Therefore, 0Homp(~ .~) is dense in Homp(~ .~ ). n p n p 

9. THE SPHERICAL FUNCTION ~A. Let A be a non-zero operator in 

0HomM(~n'~a). Then by Theorem 5, UA(~n) is a Hilbert space, relative to 

2 the L -norm, of continuous vector valued functions for which the point 

evaluations 

E: f ~ f(x), x E P 
X 

are continuous. Because A # 0 and a is irreducible, A is surjective. 

Hence Ex is surjective for every x. Thus UA(~n) is completely 

determined by the corresponding operator valued reproducing kernel 

(9.1) * QA(x,y) = E E 
X y 

in the simple fashion described in [3]. But in the present context, QA\ may 

be described more explicitly in terms of A and the representation n. For 

this purpose, we define the operator valued spherical function 

(9.2) 

Then ~A is continuous and 

(9.3) 

- 1- A n(x) A*, x E P 
IIAII 2 

a-spherical in the sense that 

for all in M and x in P. Because is unitary 

(9.4) 
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and $A is positive definite in the sense that 

( 9' 5) 

10. THEOREM. Let A be a non-zero operator in °Hom...(8't ,8'{ ) 
1'1 11 (j 

Ihen the reproducing lcenJel for U A (8't11 ) is given by 

(10.1) 

Ihe spherical function iP A is squa.z-e integz-able on P 

(10.2) 

foz- all x in P, and the lllap 

(10.3) f ~~A* f, f 6 L2(P,o) 

is the orthogonal projection of L2(P, 

Proof. By (9.1), QA(x,y) 

8't0 , we have 

Thus, by (5.1) 

* (UA$IE a) y 

* E E 
X y 

(Aw(y)$lct) 

Nmv for <P in 

-1 
(ljlj'JI(y )A*a). 

'Jl and C< in 
'II 
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This implies 

(10.4) * l -1 * E, = ~ UAn(y -)A, yEP 
} IIAII- . 

and (1) is an immediate corollary. Since 

the matrix entries of ~A are square integrable on P; hence, PA is square 

integrable in the sense that 

To prove IJ)A * ~A = IJ)A , i.e., that (2) is valid note, that 

-2 IIAii (n(*x)A*odS) 

-4 
IIAII /(A!!(yx)A*cdAw(y)A*S)dy 

Thus, by (9.4) 

for all a,S in 
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To prove (10.3), let f E 2 L (P,o) Then for 

and (9.4) imply 

* (fIE ) 
X 

If f is orthogonal to UA(JL11 ) , it follows that 

for all X 

in p and 

Therefore, 

-1 f ~A(xy )f(y)dy 0 

On the other 

X in rj{ 
r:J 

(f(x)jo;) 

f = .p * f A 

hand, if f E u (JL ) A 11 

* (E fie!) (fiE I'<) 
X X 

Hence 

orthogonal projection of 

when f E UA(JL11 ) 

2 L (P,o) onto 
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