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On the Frobenius Reciprocity Theorem for
Square Integrable Representations of
Nonunimodular Groups

RAY A, RUNZEX

In the unimodular case, the Frobenius reciprocity
theorem for irreducible square integrable representations
asserts that certain intertwining spaces are canonically
isomorphic; the essential analytic point is that square
integrability implies the continuity of functions in
particular subspaces of L2 spaces on which the group
acts and leads to a characterization of these subspaces in
terms of reproducing kernels. In the nonunimodular case
this is no longer true. There is a canonical isomorphism
between proper subspaces of the intertwining spaces, one
of which is uniformly dense in the full intertwining

space.

The results in this paper were motivated by observations made in
connection with the problem of constructing explicit unitary half-space
models of ladder representations for the Lorentz groups SO0(1l,n+l). That

is jeint work with J.E. Gilbert and K. Davisj; It will appear elsewhere.
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1. PRELIMINARIES. Let P be a locally compact group with a fixed right
Haar measure dx ; Let A be the modular function on P , defined‘so
that A(x)dx is a left Haar measure. Suppose M is a compact subgroup
of P and that ¢ 1is an irreducible representation of M with
representation space %0. Here and throughout representation will mean
continuous unitary representation. Let p be the representation of P
induced by ¢ . By definition, p(y) (y € G) is right translation by

y on the space %p = Lz(P,U) of square integrable maps £f:P = ﬂc such
that

(1.1) f(mx) = o(m)f(x)

for all (m,x) in M x P ,

Now suppose 7 1s an irreducible square integrable representation of
P with representation space ﬂﬂ . When the results of [1] are
formulated in the present context, this means that 7 dis unitarily
equivalent to a subrepresentation of the right regular representation of

P . Equivalently, 7 has a nonzero square integrable matrix entry
E(9,y)ix 2 (m(x)o]y), x € P .

Moreover, there exists a unique self-adjoint positive operator D in %w’

called the formal degree of 7 , with the following properties.

(1.2) For ¢ # 0, E(¢,y) is square integrable if and only if
1

y € dom D ¢

roj—

(1.3) For ¢,$ in %ﬂ and 7,8 in dom D



103

1
H

Fr(8 1) (1(x0v] 8)dx = (4]9)(D T80 Ey)

(1.4) w(a)D ﬂ(a_l) A(a-l)D, a€P .

If P is unimodular, D is a scalar operator which may be identified
with the usual formal degree. But otherwise D dis an unbounded operator
with a dense #(P) dinvariant domain.

Let Homp(%w,&p) denote the space of continuous linear maps of %ﬂ
to %p that intertwine % and p. Similarly, let HomM(ﬂﬂ,WG) denote the
space of continuous linear maps of %w to &0 that intertwine the
restriction of m to M and ¢ . In the unimodular case, these two
intertwining spaces are canonically, even isometrically, isomorphic, [2].
Here we investigate the extent to which this remains true in the

nonunimodular case.

2. THE SPACE °HomP(%ﬂ,ﬂp). The distinctive feature of the unimodular
case is that for any U € HomP(ﬂﬂ,%p), U(ﬂﬂ) is a Hilbert space,

relative to the Lz norm, of continuous maps of P to %G in which point
evaluations are continuous [2, Theorem 1]. Because 7 is irreducible,
Schur's lemma implies that U®U is a scalar multiple of the identity;
this in turn implies that U 1is a scalar multiple of an isometry. Thus,
it is always true that U(%ﬂ) is a closed subspace of L2(P,c). But in
the nonunimodular case, it is not always true that U(&ﬂ) may be
identified with a space of continuous functions in which point evaluations
are continuous. Let °H0mP(ﬂﬂ,%p) denote the subspace of

HomP(%ﬂ,ﬂp) consisting of the maps U for which U(%ﬂ) is a space of

continuous functions in which point evaluations are continuous.
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3. THEOREM. Suppose U € °HomP(%ﬂ,%p) . Then the egquation

(3.1) Ap = (UO)(), ¢ €

defines an operator A in HomM(%T,ﬂo) such that for arbitrary in P

and & in %“

(3.2) (UoB(x) = An(x)o .

Moreover, the adjoint A* of A has the property that
-1
20

(3.3) A*(#) C dom D

Proof. It is clear that (3.1) defines a continuous linear map A of

to %G . Letm& M and ¢ € %ﬂ . Then
An(m)d = (Un(m)¢)(1) = (p(mUP (1) = (UP)(m) = o(m)Ad .

Thus, A € HomM(%ﬂ,%G) ; moreover

(U9 (x) = (p(x)UGI(L) = (Un(x)9)(1) = Am(x)¢

for all ¢ in %w and x in P . To prove (3) let « € %G and

2
¢ € %w . Then, since U¢ € L°(P,0) , (2) implies

fl(Aw(X)¢lu)lz dg ¢ o ,



105

Now (An(x)¢la) = (w(x)¢[A%w) , and by (1.2), E(¢,A%y) is square

Fafis

integrable for all ¢ iff A%y € dom D 2. Thus, A¥ maps %U into

-1
dom D ?.

4, THE SPACE °HomM(%ﬂ,%G) . Let °HomM(%",%6) denote the subspace of

-

HomM(%m,%U) consisting of the operators A such that A*(%o) C dom D 2,
-1
If A€ °HomM(%ﬂ,%6) then D %A* 1is a continuous linear map of %6

to %ﬁ . It follows that the equation

. -1 .
(4.1) (AlB) = tr(D ‘A%)*(D %B%)

defines an inner product on °HomM(%ﬂ,&U) . If U and V are operators
in HomP(%ﬂ,%g) , then from Schur's lemma one sees that there is a unique

scalar (U]V) such that

(4.2) VEU = (U]N)T,,
ki
It follows that the pairing

U,V 2 (U|V)

is an inner product on HomP(%ﬂ,%D) such that (U|U) is the square of the
operator norm of U . Since Homp(%ﬂ,%p) is complete relative to the
operator norm, it results that HomP(&ﬂ,Wp) is a Hilbert space when

equipped with the inner product defined by (2) .

5. THEOREM. For eachk A in °HomM(%ﬂ,%G) , (3.2) defines an operator

= o .
U=10, in HomP(%ﬂ,%p) such that the map
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A-?UA

. . ) o R
is an Isometry of HomM(%”,Wo) onto Homp(%w,%p) .

Proof. Suppose A € °HomM(%ﬂ,ﬂU) . Let ¢ € ﬂﬂ and define f on P by
f(x) = An(x)¢ .

Then f 1is continuous and

f(mx) = Am(m)m(x)o = o(m)Am(x)d = o(m)f(x)

for all (m,x) in M x P . If x € %0 then

(£(x)ja) = (m(x)¢|A%a) .

-1
Since A%y € dom D ¢, (1.2) implies

I )] dx < o .

Because %0 is finite dimensional, it follows that f € L2(P,U) .
" Thus, (3.2) defines a linear map U = UA of &w into LZ(P,G) .

Now suppose A and B 1lie in °HomM(Ww,%o), let SRR be an

orthonormal base for %0 , and let ¢ and ¢ be vectors in %ﬂ . Then

(UA¢{UB¢) = [ (An(x)¢|Bn(x)¥)dx

i

L f(ﬂ(X)¢[A*ei)(w(x)wlB*ei)dx
i

-1 -1
L (910)(D *B¥e, |D PA%e,)
1

by (1.3) . Therefore



107

(5.1) (0,61U5%) = ($19)(AlB)

It follows, in particular, that
2 A
(5.2) 10,605 = 1Al Hel

so that UA is an isometry multiplied by JJAl . In addition

(UAﬂ<y)¢)(x) = An(xy)¢ = p(y)(UA¢)(X)

for all x,y din P and ¢ in %ﬂ . If I]AﬂQD denotes the operator norm
of A , then

10,0COl = HanCGaell < A Hel -

Hence, (5.2) implies that point evaluations are continuous. Thus

T o
U, € Homp(%ﬂ,%p) . The map

A

A UA , AE HomM(ﬂﬂ,%G)

is evidently linear. It is surjective by Theorem 3. By (1)
(v = B)(

for all A,B in °H0mM(%ﬂ,%0) and ¢,9 in %ﬂ . It now follows

from (4.2) that A =2 U, is an isometry.

A
6. EXAMPLE. Consider the special case in which M is the identity
subgroup and o the identity representation of M on %U = T . Then

N 3 o
HomM(%W,%U) is just the dual of %w. The elements of HomM(%ﬂ,Wa) are

_1
the linear functionals determined by the vectors ¥y in dom D ?. 1In this
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case, %p = LZ(P) and p is the right regular representation.

z

- *
Specifically, if y € dom D ? and v is the corresponding linear
I3 I » [+] . .
functional, then Ly* in HomP(%ﬁ,%p) is defined by
(U0 (x) = (n(x)¢]y), x € P.
For this case, the results proved in (9) and (10) were obtained by other

methods in [4].

7. EXAMPLE. In general there is a distinction between °Homp(ﬂﬂ,%o) and

Homp(%ﬂ,%p) . To see this, consider the affine group

( 2 ? ] . a,bER and a> 0 }

of the line. Then the measure

dadb
2

a

(7.1) d(a,b) =

is right invariant, and the modular function is given by
(7.2) Ala,b) = a

As is well known, the formula

ia_lbt

(1.3) (1(a,b)$)(t) = e o(a L)

defines an irreducible square integrable unitary representation m of P

on

- 12(0,m, &
= 150, )

In fact, let ¢ and ¢ be any elements of %ﬂ and set

h(a,b) = (n(a,b)¢|¥) .
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Then since

H(a,b) = [ ™% o(t)i(ar) £

it follows by Plancherel's theorem that

S 12 a1 %ae = 1000 1 Tucan) (22 ae

and hence from (1) that

= fo 1128 2 e fah &

From this it is easy to see that the formal degree D is multiplication
by the independent variable; thus y in ﬂw is in dom D—% iff

-1 2 dt

lr(e)]” £ < @

D
ot t

1
[

- -1
and (D %y)(t) = t Zy(t) for all such y. This is a situation in

which (6) applies.

We shall conmstruct a Cauchy sequence in °HomP(Ww,%o) that converges
to an operator outside °HomP(%W,%p). For this purpose, let 4 be the

characteristic function of the interval [1,n] and set

Un =U g, n=1,2,.0.
"n

Then it follows from (5) or by direct computation that for the norms in

(4.1) and (4.2)
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2 * *2
- v’ =t -l

(D‘%(yn - Ym)]D_%(Yn -7,

= [ = (n > m).

\
Thus, IIUn - Um"L >0 as myn > o, Let U = lim U . Then U is not

of the form U , with y € dom D—%. For if it were, then by (5)
Y

o 2 de _
lig jo r(®) =7 (0175 = 0.

But this implies ¥y 1is equal a.e. to the characteristic function of the
interval [1,o) and hence that ¥y is not in %ﬂ.
The obvious question that one might ask at this point is settled by

the following result.

8. THEOREM. 7he subspace °HomP(%w,%p) is dense in the full

Intertwining space Homp(ﬂﬂ,ﬂp).

Proof. This is proved by an approximate identity argument. For this let
N be an arbitrary compact neighborhood of the identity in P and IN

its characteristic functien. Set
e(y) = [ c 1. (nly m)dm, y € P
N M N ’

where dm denotes normalized Haar measure on M and the constant c¢ is

chosen so that

/ eN(y—l)dy 1.



111

Then eN(mymnl) = eN(y) for all (m,y) din M x P, and for each

neighborhood N1 of the identity there is a compact neighborhood

the identity such that supp en c Nl'
2
Now suppose f € LZ(P,G). Then the convolution

(e * £)(x) = | eN(xy_l)f(y)dy =f eN(y—l)f(yX)dy

of ex and f is a well defined continuous function from P to

For mEM

(e * D)(m0) = [ ey(y™) £(y mo)dy

f eN(my—lm—l) f(myx)dy

o(m)(eN * £)(x)

since A(m—l) =1 and f(myx) = o(m) f(yx). We also have

9 1/2
/ eN(y-l)[ [ £y dX} dy

in

ley * £l,

Iy J eg(y)ay.

Thus, ey

2
that e, ®* £ 3 f din L°(P,0) as N 2 1.

N

Next suppose that U 1is a non-zero operator in HomP(%ﬂ,%p) that

is orthogonal to HomP(%”,%p). Choose ¢O # 0 in &w. Then
U¢O # 0 and there exists a compact neighborhood NO of 1 in P
that e, * U

N
0 2
define UN: %w 2 L°(P,0) by

0 # 0. For compact neighborhoods of 1 with N C NO

= %
UN¢ ey Ud.
Then since

logoll, < leygly IUoll, < Nlegl; Hullol

N

2

of

* f e LZ(P,G). Moreover, standard arguments now apply and show

such
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it follows that UN is a non-zero continuous linear map of ﬂﬁ into

%p = L2(P,o). In addition

UNﬂ(x)¢ = ey * p(x)Ud = p(x) Uy

for all x in P and ¢ in ﬂw. Thus UN € Homp(%w,%p). Now

define AN: %ﬂ d %6 by
A = (D) = [ ey(y DU (y)dy.

Then one has

lagel < [ ey IS (N lldy
legll, Iuoll,
leyl, Hullol

| A

A

where eN(y) = eN(y~1). In addition
Ay m(x)o = (UNW(X)¢)(1) = (UN¢)(X)

so that ANﬂ(m) = G(m)AN for every m in M. Finally, since

(n(x)8lAg) = (Ugp(x) |a)

is square integrable for all « in %G, it follows that

AN € °HomM(%ﬂ,%o). Therefore, U € °HomP(%ﬂ,%o). By

N
*
assumption (UIUN) = 0. Hence, by (4.2), UN U= 0. This implies

(081U ) = 0
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for every ¢ . But this is impossible because UN¢ 2> U as N 1.

Therefore, HomP(%ﬂ,%p) is dense in HomP(%ﬂ,%p).

9. THE SPHERICAL FUNCTION QA‘ Let A be a non-zero operator in
°HomM(%ﬂ,%6). Then by Theorem 5, UA(%ﬂ) is a Hilbert space, relative to
the Lz—norm, of continuous vector valued functions for which the point
evaluations

EX: f2f(x), xEP

are continuous. Because A # 0 and ¢ is irreducible, A is surjective.
Hence E_ is surjective for every x. Thus UA(%ﬂ) is completely

determined by the corresponding operator valued reproducing kernel
(9.1 (x,9) = EE
1) Qlxsy) = BB

in the simple fashion described in [3]. But in the present context, QA‘ may
be described more explicitly in terms of A and the representation 7. For
this purpose, we define the operator valued spherical function

@A: P & End (%o) by

(9.2) 8,(x) = —5 A m(x) A%, x € P

Al
Then ¢A is continuous and o-spherical in the sense that
(9.3) @A(mlxmz) = o(ml)QA(x)G(mz)

for all my, m, in M and x din P. Because T is unitary

(9.4) @A(x‘1>* = 8,(x), x€ P
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and @A is positive definite in the sense that
-1
(9.5) By 4(0u(x ;" dayl ) > 0

for all finite sequences RysKgyees in P and Ogs0gseee in & .

10. THEOREM. Zet A be a non-zero operator in °HomM(%”,%0) .

Then the reproducing kernel for UA(%“) 75 given by
~ -1
(10.1) Q(x,y) = @, (xy *)
The spherical function QA 1s square iIntegrable on P
_ -1
(10.2) 8,(x) = f ¢, (xy ) ¢, (y)dy
for all x in P, and the map
(10.3) £0, % £, £e1%2,0)
is the orthogonal projection of L2(P,0) onto UA(ﬂw).

%
Proof. By (9.1), QA(x,y) = ExEy . Now for ¢ in %W and o in
%0, we have
% -1
(U 01E,0) = (an(y)ola) = (bln(y k).

Thus, by (5.1)

% ___.l._ -1
(UA¢lEya) = nAn2 (UA¢lUAw(y YA*q) .



115

This implies

% - *®
(10.4) E =—=Un(y JA, y€P

and (1) is an immediate corollary. Since

(8,(alB) = A1 (n(x)a%a|a%p),

the matrix entries of @A are square integrable on ©Pj; hence, ®, is square

A

integrable in the sense that
(0,0 0, (x))dx ¢ o
[ tr A(x A(%))dx .
To prove @A *® QA = @A , i.e., that (2) is valid note, that

1AL 2 (n(*x) A% | B)

(8,(x)alB)

IURCRIETINS

TAIT* [(An(yx)A%a]An(y)A%B)dy

J(8,(yx)ale, (y)B)dy .
Thus, by (9.4)

(8,()alB) = [(3,(y" )2, (yx)alB)dy
= [(8,(xy 18, (y)alB)dy

for all «o,8 in %0 .
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To prove (10.3), let f € Lz(P,o) . Then for o € %0 , (10.4)
and (9.4) imply

(FIE, ) = [(£() 18,5 DHayay

f(e (xy—l)f(Y)la)dy .
A
If f is orthogonal to UA(Wﬂ) , it follows that

J ¢A(xy~1)f(y)dy =0

for all x . On the other hand, if f € UA(%ﬂ) , then for arbitrary x

in P and x in ﬂo

(£(x)]a) = (E flo) = (flEz o)

Therefore, f = @A * f when f € UA(%ﬂ) . Hence £ = @A * f 4is the

orthogonal projection of LZ(P,O) onto UA(%n) .
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