
O. BY WAY OF INTRODUCTION 

Amounts (the extensive quantities), modelled by set functions, are in general 

the primary quantities and states (densities or the intensive quantities), modelled by 

point functions, the derived ones. Therefore, mathematical models constructed in 

terms of integrals have conceptual and often also technical priority with respect to ones 

constructed in terms of derivatives. 

A relatively detailed description - with references but without proofs - of a 

m8,thematical model of homogeneous isotropic diffusion and of its superposition with a 

process of creation and/or destruction, illustrates this point. It also gives us an 

opportunity to introduce problems for which the classical (Lebesgue) integration 

structure is inadequate and to make a suggestion about the nature of this inadequacy. 

So, this chapter represents what is commonly, but inaccurately, called the 

motivation for the material presented in the subsequent chapters. Also, in Section G, 

the nature of that material is briefly described and so, the way of approaching the 

problems introduced in this chapter is indicated. This chapter does not form a part of 

the systematic exposition though; no reference to it is made in the subsequent 

chapters. 

A In this section, a mathematical model of homogeneous isotropic diffusion 

is described. 

Let E be the Banach space of all real or complex Borel measures in 1R3 , that 

is, real or complex valued a-additive set functions whose domain is the a-algebra, B , 

of all Borel sets in 1R3. The norm, II <p11 , of an element <p of E is the total variation 

of <p. By BL(E) is denoted the algebra of all bounded linear operators on E. By I 

is denoted the identity operator on E. 

Now, assume that the space, represented as 1R3 , is filled with a solvent into 

which some soluble substance was added. The distribution of that substance is 

represented by a (real) positive element of E. Its value on the whole space, which is 

equal to its norm, is the total amount of the substance added. 
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For every t ~ 0, x E 1R3 and BE B, let the number kix,B) have the 

following interpretation: If, at the time 0, a unit amount of the diffusing substance 

is placed at the point x, then, at the time t, the amount of that substance found in 

the set B is precisely kt(x,B). Consistently with this interpretation we assume that 

(i) ko(x,B) = (jx(B) , for every x E 1R3 and BE B, that is, ko(x,B) = 1, if 

x E B, and ko(x,B) = 0, if x ~ B; 

(ii) for every t ~ 0 and every x E 1R3 , the set function B H k/x,B) , 

B E B, represents a probability measure on B, that is, a non-negative element of E 

3 such that klx,1R ) = 1 ; 

(iii ) for every t ~ 0 and every BE B, the function x H k.(x,B) , x E 1R3 , is , . 

B-measurable. 

The set function B H k/x,B) , BE B , of the requirement (ii) is the 

distribution of the diffusing substance at the time t provided that a unit amount of 

the substance is situated at the point x at the time O. So, the requirement (ii) 

respects the principle of the conservation of mass. By (i), the requirement (iii) is 

automatically satisfied for t = O. Without imposing some condition, such as (iii), on 

the studied kernel not even the most basic analytic techniques would be applicable to 

it and it would be difficult to interpret it as describing any physical process. On the 

other hand, the condition (iii) suffices for drawing useful conclusions from the 

principles of the conservation of mass and of the superposition. 

So, assume that at time 0 the distribution of the diffusing substance is 

represented by the measure 'fJ E E, tp ~ O. For a fixed B E Band t 2': 0, let 

~(X) = /.L t B(X) be the amount of the substance which, at the time 0, was in a set 
tp, , 

X E B and at the time t, is found in the set B. Then the principles of superposition 

and conservation of mass applied to the given situation imply that ~ is an additive set 

function such that 

tp(X)inf{k/x,B) : x EX} :s ~(X) :s tp(X)sup{k/x,B): x EX} , 
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for every X E B. It then follows, from (ii) and (iii), that 

[1(X) = 1 k/x,B)<p(dx) , 

for every X E B. In particular, [1(1R3) is the total amount of the diffusing substance 

found in the set B at the time t. Hence, 

(iv) if the distribution of the diffusing substance at the time 0 is represented 

by a measure <p E E, then the distribution of this substance at a time t:::: 0 is 

represented by the measure 'IjJ E E given by 

(A.I) 

for every B E B . 

For every t:::: 0, let S( t) : E -? E be the map such that, for every <p E E, the 

element 'IjJ = S(t)<p of E is given by (A.1). Then, by (i), S(O) = I. Furthermore, by 

(ii), S(t) is a continuous linear map of E into E of norm equal to 1 . 

Now we restrict our attention to a time-homogeneous, space-homogeneous and 

isotropic diffusion. The time-homogeneity is expressed by the condition that S(t+s) = 

S(t)S(s) , for every s :::: 0 and t:::: 0, that is, the map t H S(t) , t:::: 0, from [0,00) 

into BL(E) , is a semigroup of operators. It means that the conditions of diffusion, 

that is, the properties of the environment and the diffusing substance influencing the 

diffusion, do not change in time. By (A.I), it can be stated explicitly by requiring that 

for every <p E E. This requirement is of course equivalent to the statement that 

(v) 

(A.2) 

the equality 

holds for every s :::: 0, t:::: 0 and B E B . 
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The requirement of the space-homogeneity means that the properties of 

diffusion are the same around every point of the space 1R3. Expressed formally, 

(vi) for every t:::: 0, there is a measure K t E E such that k/x,B) = 

KiB-x) , for every x E 1R3 and every BE B . 

Recall that B - x = {y - x: y E B} for any Be 1R3 and x E 1R3. By (ii), Kt is 

a probability measure in 1R3 , that is a non-negative element of E such that 

K/1R3) = 1, for every t:::: O. If the requirement (vi) is in force, then the equality 

(A.2) takes the form 

(A.3) 

for every s :::: 0, t 2:: 0 and B E B . 

The isotropy means that the diffusion is the same in every direction. In formal 

terms, it reduces to the requirement that 

(vii) for every t 2:: 0, the measure Kt is invariant with respect to the 

rotations of the space 1R3 about the origin. 

If we add to all these requirements also a certain requirement of continuity, 

then the maps S( t) : E -j E , t 2:: 0, describing the process of diffusion, are 

determined up to a positive parameter - the diffusion constant - which characterizes 

the speed of this process. In fact, the following theorem, due to G.A. Hunt, holds. 

THEOREM 0.1. Let J'i,t' t 2:: 0, be rotationally invariant probability measures on 1R3 

such that the equality (A.I) holds for every s:::: 0, t:::: 0 and BE B. Assume that, 

for every t > 0 , 

lim ~ x:/ {x: I xl ~ (}) = 0 . 
t-JO+ 
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Then, either "'t = 80 for every t 2: 0, or there exists a constant D > 0 such that 

"'0 = 80 and 

(AA) - 1 1 [hlJ "'i B) - 3/2 exp - 4Dt dx 
(41rDt) 'B 

for every t > 0 and every B E B . 

This theorem appeared in greater generality in [25]. It is also presented in 

Section 2 of Chapter IV of H. Heyer's book [22]. A convenient proof, of such degree of 

generality that corresponds to the formulation given here, can be found in the notes, 

[53], on Brownian motion by E. Nelson. 

Given aD> 0, let 

(A.5) - 1 [ hlJ p(t,x) - 3/2 exp - 4Dt 
(41rDt) 

for every t 2: 0 and x E 1R3. The formula (AA) says that the function x H p(t,x) , 

x E 1R3 , is the density of the measure "'t' for every t 2: O. The function p itself is 

the solution of the Cauchy problem 

u(t,x) = DLlu(t,x) , t 2: 0 , x E 1R3; lim 1 u( t,x)dx = 80(B) , BE B . 
HO+ 'B 

It is useful to note, for the indicated physical interpretation, that the dimension 

(unit of measurement) of the constant D is the reciprocal of the unit of time. The 

values of the measures "'t' t 2: 0, are dimensionless numbers. In fact, if a measure 

cp E E represents the distribution of the diffusing substance at time 0, then its values 

are given in a unit of mass. Further, at any time t 2: 0, the distribution of the 

substance is represented by the measure 1/J = S(t)cp, where 

1/J(B) = L "'iB-x)cp(dx) 

for every B E B, and the values of 1/J are of course too given in that unit of mass. 

Consequently, the values of p are given in the reciprocal of a unit of volume. 
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Using the notation (A.5), the semigroup 8: [0,(0) --l BL(E) , describing the 

considered physical process of diffusion, can be expressed in the following concise form: 

8(0) =: I and 

(A.6) 

every t > 0, cp E E and B E B . 

B. Now we describe a mathematical model of a chemical reaction. 

We have in mind the following (idealized) situation. The space, 1R3 , is filled 

with a medium (solvent) in which another substance is distributed. The distribution of 

this substance is represented by a non-negative or sometimes an arbitrary real valued 

element of E. The substance reacts with the environment or is in an unstable state so 

that it changes and thereby increases or decreases in amount. At the same time, we 

assume that the concentration is so small that the reaction does not alter the 

environment. On the other hand, we assume that the reaction-rate is proportional to 

the concentration of the reacting substance and admit that the coefficient of the 

proportion varies with place and possibly also with time. 

To arrive at a formal description of such a process, we assume that, for every 

t 2: 0, an operator T( t) E BL( E) is given which has the following meaning. If a 

measure 'P E E represents the distribution of the reacting substance at the time 0, 

then T(t)cp represents the distribution of the reacting substance at the time t 2: 0 . 

Consistently with this interpretation, we assume that T( 0) = I, the identity 

operator. 

The assumption that the reaction-rate is proportional to the concentration of 

the reacting substance is then expressed by assuming that a function V on [O,oo[ x 1R3 

is given such that 

(B.I) (T(t)cp)(B) = JB V(t,x)( T(t) cp) (dx) 
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for every t ~ 0, every cp E E and every B E B . 

Besides (B.l) we assume that 

(B.2) 

for every cp E E . 

lim T( t) cp = cp 
HO+ 

OB 

The conditions (B.1) and (B.2) strongly suggest the presence of the exponential 

function about. It actually enters formally in the following way. 

For every BE B, let P(B) E BL(E) be the operator defined by 

for every cp E E and every X E B . 

Then, clearly, 

(i) 

(ii) 

(iii) 

P(1R3) = I; 

P(BnC) = P(B)P( C) for every BE Band C E B; 

if cp E E and B. E B, j = 1,2, ... , are pair-wise disjoint sets whose union 
1 

is the set B, then 

00 

P{B)cp= L P{B.)cp. 
j=1 J 

Given a B-measurable function W on 1R3 , we denote by 

P{ W) = IIR3 W(x)P(dx) 

the operator, whose domain is the set of all measures cp E E such that W is 

cp-integrable, such that 

(P( W)cp)(X) = Ix W(x)CP(dx) = IIR3 W(x)(P(dx)cp)(X) 

for every X E B . 
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In plain Slovak, P( W)<,O is the indefinite integral of the function W with 

respect to <,0 interpreted of course as an element of the space E. For this reason, 

some authors, in their depravity, denote P( W) simply as W, i.e. W = P( W). So, 

W<,O then stands for the indefinite integral of W with respect to <,0. If <,0 is 

absolutely continuous, then so is P( W)<,O and the density of P( W)<,O is equal to the 

(point-wise) product of W and the density of <,0. 

Note that the domain of the operator P( W) is a vector subspace of E. If W 

is bounded then the domain of P( W) is the whole of E and IIP( W)II = sup{1I W(x) II : 

x E 1R3} . 

It is immediate that 

(i) 

(ii ) 

P( c W) = cP( W) for any number c and a measurable function W; 

P( WI + W2) J P( WI) + P( W2) for any measurable functions WI and 

W2 ; and 

(iii) 

Using this machinery, we deduce from (B.1) and (B.2) that 

(B.3) 
t 

T(t) = p(exp [ Io V(s,· )dS] , 

for every t ~ 0, which means just that 

for every <,0 belonging to the domain of the operator (0.9) and every X E B . 

More generally, let 

for any 0 ~ (J ~ t. The interpretation of the operators T( t,s) is clear. 
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C. In this section we describe a mathematical model of evolution of the 

distribution of a substance which simultaneously undergoes the processes of diffusion 

and a chemical reaction. 

What we are set up to do is to produce a family of operators U( t) E BL( E) , 

t ::: 0, which have the following meaning: If rp E E is the distribution, at the time 

0, of a substance which diffuses in 1R3 and also is subject to a reaction which causes 

its creation or destruction, then U( t) rp is the distribution of this substance at any 

time t::: 0 . 

For the sake of simplicity, we will assume the diffusion to be 

time-homogeneous, space-homogeneous and isotropic, as in Section A, so that there is 

a constant D > 0 such that the semigroup of operators S: [0,00) -t BL(E) describing 

it is given by (A.6), for every t::: 0, rp E E and BE B. Further, we will assume 

that the reaction-rate does not change in time so that the process of reaction is 

described by the semi group T: [0,00) -t BL(E), where T(t) = exp(tP( V)), for every 

t ::: 0, and V is a function on 11<3. This is a special case of the situation discussed in 

Section B, in particular the formula (B.9), when the function V does not depend on 

time. 

Then, of course, U( 0) = I. For t::: 0, we can expect that U( t) will be well 

approximated by the operators of the form 

( C.I) U (t) = S(t-t )T(t -t l)S(t -t 1) ... 
ann n- n n-

... T(t3-t)S(t3-t2)T(t2-tl)S(t2-tl)T(tl)S(tll , 

where a is a sufficiently fine partition of the interval [O,t] given by the points 

o = to < tl < t2 < ... < tn- 1 < tn:s t. 

Let us introduce a mathematical structure in which this suggestion can be 

conveniently explored. 

For a given t::: 0, let Tt be the set of all continuous maps v: [O,t]-l1R3 . 

The elements of Tt are usually referred to as paths in 1R3 based on the interval [O,t] . 

Let 1I.t be the family of all sets 
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(C.2) Y={VETt:v(t.)EB., j=1,2, ... ,n} 
J J 

such that n is a natural number, 0 ~ tl < t2 < ... < tn_l < tn ~ t and Bj E B for 

every j = 1,2, ... ,n. 

Then 1 t is a semiring of sets in T t. Let 

for every set Y E I t given in the form (C.2). Then Mt : I t -) L(E) is an additive set 

function. 

Before returning to our problem, let us note a point about integration with 

respect to M t . Namely, if 0 ~ tl ~ t and WI is a function on 1R3 and if 

hI ( v) = WI ( v( tl )) , for every vET t' then 

provided the function hI is Mt-integrable. Similarly, if 0 ~ tl < t2 ~ t and WI 

and W2 are functions on 1R3 and if h2(v) = WI (v(tl ))W2(v(t2)), for every VETt' 

then 

provided the function f is Mt-integrable. And so on. 

You may note that we have not yet specified what we mean by integrability 

with respect to Mt . The presented statements and their obvious inductive extensions 

simply mean that if the integral with respect to Mt is introduced with the slightest 

regard to reasonableness, then these formulas must be true. Moreover, the function 

h2 , say, should be Mrintegrable on Tt if the function (xl ,x2) H WI (Xl) W2(x2) , 

(XI 'X2) E 1R3 x 1R3 , is integrable on 1R3 x 1R3 with respect to the additive set function 
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So, the operator (C.l) can be written as 

u () t) = J [IT 'exp( V( v( t.) )(t.-t._1))] M/dv) = 
T j= 1 J J J 

t 

= f [exp [f V( v(t,) )(t.-t._1)]] M/dv) . 
T j=l J J J 

t 

Accordingly, we define 

(C.3) 

for every vET t' Then we would expect that 

(C.4) 

for every t ~ O. Let us show that this expectation is warranted. 

First, the formula (C.4) means to say that if u(t) = U(t)cp, for any given 

cp E E, then 

(C.5) 

That is, u(t) is equal to the integral of the function et with respect to the E-valued 

additive set function YH M/ Y)cp, Y E 1/,t' Comments about integration with respect 

to this set function are postponed into the next section. 

Now, assuming t ~ 0 given, let 

(C.6) f(s,v) = V(v(s))exp[f: V(v(r))dr] , 

for every s E [O,t] , and v E Tt . Then 

J f(s,v)Mldv)cp = S(t-s)P( V)u(s) , 
Tt 
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for every s E [O,t] , and 

J>(S,V)dS == exp[J~ V(V(S))dS] - 1 , 

for every vET t' Therefore, by the Fubini theorem, 

== J: S(t-s)P( V)u(s)ds, 

or 

(C.7) u(t) == S(t)rp + J~ S(t-s)P( V)u(s)ds . 

If the function V is not 'too large', then, for any t > 0, the measure 

u( t) E E, given by (C.5), is absolutely continuous (with respect to the Lebesgue 

measure in 1R3 ). (This is of course obvious for V == 0.) If we then abuse the notation 

and denote by x H u( t,x), x E 1R3 , the density of u( t), we can re-write the integral 

equation (C.7) as 

u(t,x) = IIR3 p(t,x-y)rp(dy) + J~ J[R3 p(t-s,x-y) V(y)u(s,y)dyds, x E 1R3 , 

which represents the initial-value problem 

(C.8) 
u(t,x) == DD.u(t,x) + V(x)u(t,x), t 2: 0, xE [R3; 

lim r u(t,x)dx = rp(B) , BE B . 
HO+JB 

Our original problem of the superposition of diffusion and a chemical reaction is most 

commonly formulated as this initial-value problem. 

It is clear that formula (C.5) has certain advantages against the integral 

equation (C.7) and the problem (C.8). For it represents u(t) in a form which allows 
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various calculations and estimations which are not possible directly from (C. 7) or 

(C.8), Secondly, (C.5) may have a good meaning also when (C.7) or (C,8) do not have 

a solution (in some sense) or cannot even be written down. 

D. Generalizations, considererd in [31] and [34], of the situation discussed in 

the previous section give us the opportunity to introduce problems for which the 

classical integration theory is inadequate. 

Let E be an arbitrary Banach space, BL(E) the space of bounded linear 

operators on E and S: [0,(0) -+ BL(E) a continuous semigroup of operators. So, 

0) S(t+s) ::: S(t)S(s) , for every s :::: 0 and t :::: 0 ; 

(ii) S( 0) ::: I, the identity operator; and 

(iii) limt-lo+8(t)ep:::ep, forevery epEE. 

Let A be a locally compact Hausdorff space, the a-algebra of Baire sets 

in A and P: 8(A) --) BL(E) a u-additive spectral measure. That is to say, 

(1) p(BnC) == P(B)P{ C) , for every BE B(A) and C E 13(1\) ; 

(ii) P(!1) ::: I; and 

(iii) the set function B H P(B)ep, BE 13(A), is (7-additive, for every ep E E. 

For a Baire function W on A, we denote by 

the operator such that 

P( Wj == [ WdP 
c'A 

P( W)rp = r W(x}P(dxh, 
JA 

for every ep E E for which the right-hand side exists as integral with respect to the 

E-valued measure B H P(B)ep, BE B(A). (A standard reference for integration with 

respect to spectral measures and also with respect to Banach valued measures is the 

monograph [14] of N. Dunford and J.T. Schwartz.) The operator P( VV) is bounded, 

that is, belongs to BL(E) , if and only if the function W is essentially bounded. In 

general, P( W; is a densely defined closed operator on E. 
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Given a Baire function V on A, assume that the function exp V is 

essentially bounded on A. Then, for every t::: 0, the function exp( t V) too is 

essentially bounded. In that case, let 

T(t) ;;;: P( exp(t V)) , 

for every t::: o. The resulting map T: [0,(0) -l BL(E) is a continuous semi group of 

operators such that P( V) is its infinitesimal generator. That is 

P( V)cp;;;: lim t (T(t)cp-cp) 
HO+ 

for every cp in the domain of P( V). Then we also write 

T( t) ;;;: exp(tP( V)) 

for every t::: 0, as customary in the theory of continuous semigroups. 

The semigroups Sand T are interpreted as describing two evolution processes 

in which an element cp of the space E is transformed, during a time-interval of 

duration t::: 0, into the element S( t)cp and T(t)cp, respectively. Our problem is to 

determine the element of the space E into which a given element cp evolves in a time 

t ::: 0 if both these processes go on simultaneously. In other words, we wish to 

construct a semigroup U which describes the superposition of the processes described 

by the semigroups Sand T. 

This problem is traditionally formulated in terms of differential equations. Let 

Acp;;;: lim t (S(t)cp-cp) 
HO+ 

for every cp E E for which this limit exists. The operator A, the infinitesimal 

generator of the semigroup S, is not bounded in general. 

So, we are seeking a semi group whose infinitesimal generator is A + P( V) , 

that is, a solution of the initial-value problem 

(D.l) u(t) = AU(t) + P( V) U(t), t 2c 0; U(O+) = 1. 
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In other words, we look for the fundamental solution of the differential equation 

u(t) = Au(t) + P( V)u(t) , t 2: 0 

with the unknown E-valued function, u, right-continuous at O. 

This problem is non-trivial because, strictly speaking, it is not even 

unambiguously formulated. The point is that the operator A + P( V) is not necessarily 

the infinitesimal generator of a continuous semi group of operators. On the other hand, 

this operator may have an extension which is an infinitesimal generator, but such an 

extension may not be unique. It is conceivable that the obvious generalizations of the 

objects introduced in the previous section would be helpful in clarifying the issues 

involved in this problem and in solving it. 

For a t 2: 0, let Tt be a 'sufficiently rich' set of maps v: [O,tj-l A, to be 

called paths in A. Let 1t be the family of all sets (C.2) for arbitrary n = 1,2, ... , 

o ~ tl < t2 < t3 < ... < tn- 1 < tn ~ t and Bj E B(A) , j = 1,2, ... ,n. Let 

for any such set Y. 

Then a heuristic argument, similar to that presented in the previous section, 

suggests that the operators U(t) can be expressed by the means of the Feynman-Kac 

type formula: 

(D.2) u(t) = J [exp [{ v(v(r))dr]].M/dv), 
Tt 0 

for every t 2: O. In fact, an integral equation for U can be derived in an manner 

precisely analogous to that of deriving (C.7). Namely, assume that t 2: 0, that the 

function et is given by (C.3) for every v E Tt and that the function f is given by 

(C.6) for every SE[O,tj and VETt' Then 

for every s E [O,tj and 

J f(s,v)Mt(dv) = S(t-s)P(V)U(s) 
Tt 
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J;f(s,V)ds=exp[J; v(v(r))dr] -1, 

for every v E Tt . Therefore, by the Fubini theorem (!), 

U(t) - S(t) = J [exp[f v(v)r))dr] -l]M/dV) = 
Tt 0 

= J [f f(s,V)dS] M/dv) = f [J f(s,V)M/dV)] ds = 
Tt 0 0 Tt 

= J; S(t-s)P( V) U(s)ds . 

The obtained integral equation, 

(D.3) U(t) = S(t) + J; S(t-s)P( V)U(s)ds, 

replaces the initial-value problem (D.l). 

It goes without saying that once we have a solution of the problem (D.1), then 

we have solutions of the initial-value problems 

(D.4) u(t) = Au(t) + P(V)u(t) , t ~ 0; u(O+) = cp, 

for all cp E E. Indeed, it suffices to put u(t) = U( t) cp, for every t ~ 0, where U is 

a solution of (D.1). On the other hand, the point of the formula (D.2), or the formula 

(C.5) for a given cp E E, is that U( t) or u( t) could possibly be defined by these 

formulas even when the initial-value problems (D.1) or (D.4) do not have a solution or 

perhaps could not even be meaningfully formulated. 

The question then arises whether the formulas (C.5) and (D.2) can be put on a 

solid footing. Or, rather, whether a formal framework can be erected in which these 

formulas have a good meaning and the conditions for a legitimate use of the operations 

lading to them can be formulated. 

Now, integration with respect to the BL(E)-valued set function Mt is reduced 

to integration with respect to the E-value set functions Y H Mt( Y)cp, Y E 1lt' for 

every cp E E. 
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Accordingly, the equality (D.2) is defined to mean that 

U(tllo= IT [exp[J~ V(v(r))dr]]Mt(dv)<p , 
-t 

OD 

for every <p E E, where the integral is understood with respect to the E-valued set 

function. This reduction is analogous to integration with respect to spectral measures. 

It has the advantage that one may attempt the construction of a solution of the 

problem (D.4), for some <p E E, by the means of the formula (C .. 5) and thus avoid the 

fundamental solution. In fact, it is conceivable that the integral (C .. 5) may exist for 

some <p E E while the integral (D.2) does not. 

So, there remains the problem how to integrate with respect to the E-valued set 

functions Y H M/ y)<p, Y E It' for <p E E. 

EXAMPLE 112. In the case when S is the diffusion semi group (see Section A) and 

T the creation/destruction process semi group (see Section B), the means for an easy 

solution of this problem are provided by the Vv'iener measure. In fact, given a set 

Y E I t of the form (C.2), the number 

tu( Y) = Jf 3 J J" ... J I p{t-t ,y-x )p(t -t l'X -x ") ... 
IR B B n 11 11 11- 11 n-1 

11-1' n-1 B2 B1 

... dx Idx Idx dy = n- n- n 

where the kernel p is given by (A.5), is equal to the Wiener measure (or variance 2D 

per unit of of the set Y. To be sure, W is a probability measure on the whole 

of the (I-algebra 8" generated by the family of sets 1 •. , , 
3 for a set Y c and x E IR , let Y - x be the set of all paths 

SHV(S)-X, SE[O,t], suchthat vE Y. Let tu( =w( x for every Y E 1 i and 

x E 1R3. Then is a probability measure on 8t such that 

for every Y E I t . Furthermore,if <p E E, let 
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for every Y ESt' Then w<p is a real or complex valued O"-additive measure on St 

such that w<p( Y) = ( Y)<p)(1R3) for every Y E I t . Hence, if ~L is the variation of 

the measure <p , then wfL is a finite positive measure on St such that 

I (M/ Y) <p)( :S w~/ Y) for every Y E 1 t and every B E B(1R3 ). So, if <p E E is 

real-valued then the norm of the element Mt( Y)<p of E, that is, the total variation 

of this measure, is not greater than wfL (y), for any Y E 'il t' If <p E E is complex 

then the norm of M t( Y) <p is not greater than 2wfL (y), say, for every Y E 

Consequently, there exists a unique continuous linear map i : [l( W ) --l E such that 
<p ~L 

i<p(f) = JYJ) Y)<p , whenever f is the characteristic function of a set Y E 'ili . 

Therefore, we may declare a function f on It to be integrable with respect to the 

E-valued set function Y H Y) <p, Y E llt' if it is wfL -integrable and define 

for every f E [1( W ) • 
fL 

IT !(v)M/dv)<p= i<p(f) 
t 

EXAMPLE 0.3. Let E = L2([R3). The Fourier-Plancherel transform of an element 
1\ 

<p E E is denoted by <p. Let m be a (strictly) positive number. For every real t, 

let S( t) : E --l E be the map uniquely determined by the requirement that 

1\ [ t i 2] 1\ (S(t)<p) (~) = exp - 2m I ~I <p(~) 

for every <p E E and (almost) every ~ E 1R3. The Plancherel theorem implies that 

S( t) : E --l E is a unitary operator and the resulting map S: IR --l BL( E) is a continuous 

group of operators. 

(D.5) 

Then, 

For every t if: 0 and x E 1R3 , let 

p(t,x) = .1 3/2 exp[im 1~12] 
(27f1t/ m) 
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(S(tllo)(x) = J 'J t,x-Yho(y)dy 
IR" 

for every <p ELI n £2(1R3) 0 The kernel (Do5) is obtained from (k5) by substituting 

D= 2/mi. 

The group tH 8( t), t E (-00,00), is called the SchrOdinger groupo It is 

interpreted as the description of the motions (evolutions) of a free non-relativistic 

quantum mechanIcal particle of mass m with three degrees of freedomo The states of 

such a particle are detennined elements of the space E with norm equal to 1 0 The 

word 'free' indicates that no external forces are acting on the particleo Then, if the 

particle is at a state (,0 at time t:::: 0, then, at any other time t E (-00,00), the 

particle was or will be at the state S( t)~? 0 

Let A:::: lR3 
0 For every BE B(lR3) :::: B, let P(B) be the operator of point-wise 

multiplication the charaeteristic of the set B 0 Then, clearly, 

P: J3 -1 BL(E) is a spectral measureo If W is a measurable function on 1R3 , then 

W) is the operator of multiplication W 0 Therefore, one usually writes simply 

W instead of P( tV) . 

let V be a real-valued function on 1R3 interpreted as the potential of the 

forces acting on the particleo Let 

T( t) :::: V)) 

for every t E (-00,00) 0 The group T describes the fictitious motions of the particle 

under the influence of the forces with potential V assumlng that 'inertial motions' are 

suspendedo 

The superposition, U, of these groups Sand T describes the real motions of 

the particle in the force-field of potential 11 0 The group U can be considered the 

fundamental solution of the equation 

o ( ') i ur::::')o 
~rh 

t) - i Vu(t) , t E (-00,00) 0 

That is to say, if ~ E E and 'u,(t):::: U(t)<p, for every t E (-00,00) , then 
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(D.6) u(t,x) = ~m ~u(t,x) - i V(x)u(t,x) , t E (-00,00) , X E 1R3; U(O,X) = cp(X) , X E 1R3 , 

assuming that cp is represented by a sufficiently smooth function and the potential V 

is not 'too bad'. 

However, there are considerable difficulties associated with the construction of 

the semigroup U by the means of the formula (D.2) because it is not at all clear how 

to integrate with respect to the BL(E)-valued set function Mt . Indeed, for most 

vectors cp E E and 'I/J E E, the scalar valued set functions YH ('I/J,M/ Y)cp), YE It' 

(the scalar product in E) has infinite variation on every 'non-trivial' set in I t . 

E. Because of its significance, Example 0.3 deserves further comments. 

Although the problems posed by Example 0.3 are much more difficult to handle, 

historically it precedes Example 0.2. In his Thesis, [15], R.P.Feynman suggested the 

replacement of the initial-value problem (D.6) by the formula 

(E.l) u(t,x) = f exp[~[~ r Iv(s)1 2ds-r V(v(S))dS]]cp(v(O))~V) 
Tt 0 0 

(with some insignificant changes of notation) which is to be understood as 

n times 

(E.2) 

.--_-'A ____ ...... 

u(t,x) =~: [2~~·r·/\, IR, '" I~, 

where X = x. The possibilities of an approach to quantum mechanics based on this 
n 

suggestion are systematically explored in the book [16] by R.P. Feynman and 

A.R. Hibbs. 

The formula (E.l) has a great heuristic value. Its attractiveness to physicists is 

to a considerable degree based on the fact that, apart from the factor i/n., the 

argument of the exponential function is equal to the classical action along the 

trajectory v. This heuristic value seems to be responsible for the resilience of this 
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formula, its popularity and that of its variants and generalizations, in spite of serious 

conceptual difficulties associated with it. 

The main difficulty presented by (E.l) is that the integration 'with respect to 

the variable v 'over the space, It' of paths in IRS refers to integration with respect 

to the infinite product of copies of the Lebesgue measure in IR3 indexed by all the 

time-instants from the interval [O,t]. However, such an infinite-dimensional analogue 

of the Lebesgue measure does not exist. This is caused by the fact that the measure of 

the whole space IR3 is infinite so that the measure of any (presumably measurable) set 

in It would be either ° or (](). This state of affairs cannot be remedied by admitting 

into It more (or even all) maps v: [O,tj-., 1R3 besides the continuous ones. This 

difficulty is intrinsic and directly insurmountable. Therefore, (E.l) cannot be taken as 

anything more than a suggestive way of writing (E.2) 

By interpreting (E.I) as the limit (E.2), the mentioned difficulty is to a certain 

degree circumvented together with that which is related to the existence of the 

derivatives v(s) for v E Tt and s E [O,t]. However, it should be born in mind that 

the integrals with respect to xl' X2 , ... , Xn- 1 are not absolutely convergent because 

the integrand has constant absolute value. So, one cannot arbitrarily change the order 

of integrations. 

There is considerable literature devoted to definitions of the Feynman integral, 

interpreted as the lim.it (E.2), exploiting, roughly speaking, a suitable summability 

method for the calculation of the finite-dimensional integrals in (E.2) and/or its 

approximation which facilitates the subsequent passage to the lim.it. 

In a somewhat different manner, a rigorous meaning can be given to (E.l) by 

constructing the superposition U of the sem.igroups Sand T, defined in Example 

0.3, through approximation of the operators U(t) by operators of the form (C.l). In 

fact, H.F. Trotter, [65], and T. Kato, [27], have found conditions under which the 

limit 

U( t)", =: lim(S( tn-I) T( tn-I)) n", 
n-tO 
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exists for every r.p E E = L2([R3). A variant of this approach is used by G.N. Gestrin, 

in his paper [17]. 

However, with this approach integration over the function space Tt is to some 

extent suppressed and with it the heuristic value of (E.1) diminishes. In a way, the 

same can be said about many definitions of (E.l) using sequential limits. A certain 

useful compromise in this direction is achieved by E. Nelson in his influential paper 

[52]. He uses the Trotter-Kato formula to guarantee the construction, by the means of 

integrals over the space T t of continuous paths, of the operators U (( t) analogous to 

U( t) but with the mass m replaced by complex numbers ( with positive imaginary 

parts. For any r.p E E, the so obtained E-valued function (H U((t)r.p is then 

analytic in the upper complex half-plane and the vector U( t) r.p = U m ( r.p) is obtained as 

the boundary value of this function at m, that is, as the non-tangential limit for 

(H m, Im( > o. Unfortunately, the boundary value exists only for almost every m 

(in the sense of the Lebesgue measure). 

Nelson's approach led to considerable insight into the situation, especially in the 

cases of some badly behaved functions V, but still, it did not solve completely the 

problem of maintaining the heuristic value of the formula (E.l) and, at the same time, 

turning it into a sufficiently flexible and reliable analytic tool. It seems that a solution 

of this problem cannot be tied too closely to the specific properties of the SchrOdinger 

group. A structure or a method is called for which is applicable in a wider class of 

cases. A hint that such a structure might exist can be derived from the work of Mark 

Kac. He noted that, if the factor lin. is dropped from the exponent in (E.I), then the 

integral can be given a perfect meaning in terms of the Wiener measure. (Cf. the 

exposition in [26] Chapter IV.) Of course, by dropping the factor lin. we switch to a 

different problem. One of the possible physical meanings of the new problem is 

described in Section C; to another one is devoted the book [61] of B. Simon (see also 

its review [54] by E. Nelson). 

The 'derivation' of the equation (D.3), or (C.7), shows that an integration 

scheme which allows 'integration with respect to sufficiently wild set functions of 
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infinite variation' and for which a Fubini-type theorem holds, would do for the 

required structure. Such an integration scheme is presented in Chapters 2 and 3. 

F. To emphasize that the difficulties observed in Example 0.3 are caused 

neither by the fact that the underlying space, Tt , is infinite-dimensional nor the fact 

that the values of the integrator belong to an infinite-dimensional space, in this section 

we mention a classical case in which both, the underlying space and the space of 

values, are one-dimensional, none-the-less the same difficulties as in Example 0.3 

occur. In fact, if the function 9 has infinite variation in every non-degenerate 

sub-interval of the interval [a,b] , then the difficulties associated with the (definition, 

existence, properties, ... of the) Stieltjes integral 

(F.l) 

are in principle the same as with 

f f(x)dg(x) 
a 

f f(v)('I/J,M/dv)cp) , 
Tt 

if E, Mt ' cp , 'I/J etc. have the same meaning as in Example 0.3. 

Stieltjes integrals (F.l) are the subject of attention for many reasons. Perhaps 

the most prominent among them is the exploration of the possibilities of integration 

with respect to (individual) sample paths of stochastic processes, such as the Wiener 

process, and of the analysis of the solutions of stochastic differential equations. In 

spite of marked successes, such as that of H. Sussmann, [63], the progress in this 

direction seems still not satisfactory. 

An interesting approach to integrals (F.l), exploiting the moduli of continuity 

of the functions f and g, was initiated by L.C. Young in [69]. The best result is due 

to A. Beurling, [3], who used a most ingenious method for introducing integrals of this 

type. Unfortunately, Beurling's method is difficult to extend to cases in which the 

interval [a,b] of the real-line is replaced by a more general space. Secondly, it does 
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not provide a complete metric in the space of functions integrable with respect to a 

fixed integrator. 

Go The classical theory of absolutely convergent integrals proved to be 

inadequate in the situations described in previous sections. So, it is desirable to 

produce a more general theory of integration which would be applicable not only in the 

classical situations but also in the situations similar to those mentioned above. 

Because a generalized theory necessarily lacks certain features of a more specific 

one, the question arises: which aspects of the classical theory of integration should be 

considered so essential that also the more general theory mus~ retain them? This 

question is a result of two related concerns, namely that about the actual erection of 

the new theory and that of its usefulness. That is, we wish to choose those aspects of 

the classical theory on the basis of which the new theory could be conveniently 

developed and, at the same time, would guarantee that the new, more general, theory 

would be sufficiently powerful in the situations for which it is intended. Such a choice 

is of course a matter of an interpretation of the integration theory. 

A short reflection would reveal that an interpretation which is formulated in 

terms of a particular method, or procedure, used for introducing integrable functions 

and/or integral, is not really helpful. Then the most fruitful of the 'objective' 

interpretations of the integration theory, that is, those which are independent of any 

such procedure, seems to be one that characterizes the L I-space as the completion of 

simple functions (continuous functions, ... ) in the L1-norm. The point of a particular 

construction of integral is in showing that the completion is represented by functions 

on the original underlying space or equivalence classes of such functions. 

This interpretation can be further refined by noting that there exist families of 

functions which generate the L I-space and are not necessarily vector spaces. That is, 

the L 1-space is the completion of the linear hull of such a family and its norm is the 

largest norm with a given restriction to the generating family of functions. 

Characteristic functions of sets belonging to a sufficiently rich family of measurable 

sets can serve as a typical example. To make this remark more perspicuous, we recall 
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the following fact concerning the classical integration theory. 

Let n be an abstract space and Q a semiring of its subsets. For simplicity, a 

subset of n and its characteristic function are denoted by the same symbol. Let l be 

a real-valued (finite) non-negative O"-additive set function on Q. 

A function, f, on n is integrable with respect to (the measure generated by) 

t if and only if there exist numbers c. and sets X. E Q, j = 1,2, ... , such that 
J J 

00 

(G.1) L 
j=l 

I c.1 t(X.) < 00 
J J 

and 

00 

(G.2) f(w) = L c.X.( w) 
j=1 J J 

for every WEn for which 

00 

(G.3) L 
j=l 

1 c .1 X.( W) < (]() . 
J J 

Moreover, the L1-norm, 

IIfll = In Ifldt, 

of such a function f is equal to the infimum of the sums (G.1) taken for all such 

choices of the numbers c. and sets X. E Q, j = 1,2, .... A proof of this fact is given in 
J J 

Section 2E below. The vector space of all (individual) functions integrable with 

respect to t is denoted by C( [) . 

In the case when n is an interval of the real-line, Q consists of intervals and 

[ is the Lebesgue measure, it can be easily visualized. This case is commented on in 

more detail in the Preface to the book [50] of J. Mikusinski and in [33]. More 

comments can be found in Section 3B. Now we mention just a straightforward but 

important consequence of this fact. 

If j.1 is an additive set function on Q (which may, possibly, be vector valued) 

such that I t!(X) I ::; i(X) , for every set X E Q, then there exists a unique linear 

functional, e = on C(t) such that £(X) = j.1(X) , for every X E Q , and 



OG 26 

I£(f) I :s 11/11 , for every function IE £(t) . In particular, the integral with respect to t 

is the linear functional, £, on £(t) such that £(X) = t(X), for every X E Q, and 

I£(f) I :s 11/11 , for every IE £(t) . 

Now, assume that I" is an additive set function on Q and that there does not 

exist a finite u-additive set function, t, such that I I"(X) I :s t(X) , for every X E Q . 

In the previous sections, we have shown that such set functions occur abundantly and 

are of considerable interest. In such case, I" does not generate a continuous linear 

functional on any Ll-space containing the characteristic functions of all sets from Q. 

Nevertheless, there may still exist a complete normed space (strictly .speaking, a 

seminormed space), £, consisting of functions on n and containing the characteristic 

functions of sets belonging to Q, such that I" can be extended to a continuous linear 

functional on £. 

So, we may look for a non-negative set function, p, on Q, which is a 

restriction to Q (interpreted of course as a family of functions) of the norm on some 

such space £, such that I 1"( X) I :s p( X), for every X E Q. If the space £ is 

generated by Q, that is, it is the completion of the linear hull of Q, and if the norm 

on £ is the smallest norm coinciding with p on Q, then I" can be uniquely 

extended to a continuous linear functional on the whole of £. 

Let us turn the tables and call a non-negative set function, p, on Q an 

integrating gauge, if 

00 

p(X):S L I c.1 p(X.) 
j=1 J J 

for any set X E Q, numbers cj and sets Xj E Q, j = 1,2, ... , such that 

00 

X(w) = L c.X.(w) 
j=1 J J 

for ever wEn satisfying the inequality (G.3). 

Given an integrating gauge, p, on Q, let £(p,Q) be the family of all 

functions, I, on n for which there exist numbers, c., and sets, X. E Q, j = 1,2, ... , 
J J 

such that 
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00 
GA) L I c.lp(x') < 00 

j=l J J 

and the equality (G.2) holds for every wEn for which the inequality (G.3) does. For 

any such function, f E C(p,Q) , let 

00 
q(f) = inf L I c.lp(X.) , 

j=l J J 

where the infimum is taken over all choices of numbers c. and sets X. E Q, j = 1,2, ... , 
J J 

satisfying condition (GA), such that the equality (G.2) holds for every wEn for 

which the inequality (G.3) does. 

It turns out that C(p,Q) is a vector space and q is a norm (strictly speaking, a 

seminorm) under which the space C(p,Q) is complete and the linear hull of Q is dense 

in it. Moreover, if J1 is an additive set function on Q such that I J1(X) I :S p(X) , for 

every X E Q, then there exists a unique linear functional, C, on C(p,Q) such that 

e( X) = J1( X) , for X E Q, and I C(f) I :S q(f) , for every f E C( t,Q) . 

Now the problem naturally arises of producing a sufficient supply of integrating 

gauges. Of the various ways of solving this problem, let us mention the following one. 

If t is a finite non-negative v-additive set function on Q and IfJ a continuous, 

increasing and concave function on [0,00) such that 1fJ(0) = 0, then the set function 

p, defined by p(X) = lfJ(l(X)) for every XE Q, is an integrating gauge on Q. 

To show the usefulness of this construction, let us indicate how it solves the 

problem of Stieltjes integration with respect to functions of infinite variation. So, let, 

for example, n = (0,1], let Q be the family of all intervals (s,tj such that 

O:s s:s t:S 1, let g beafunctiollon [O,lJ such that Ig(t)-g(s) I :S It-sit, for any 

s E [0,1] and t E [0,1] , and let J1(X) = g(t) - g(s) , for any X = (s,t] E Q. If we define 

p( Xl = (i( X)) t, for every X E Q, where i is the Lebesgue measure, then we obtain 

an integrating gauge, p, on Q. Now we can define 

1 1 L fdJ1 = J 0 f(x)dg(x) , 
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for any function f E C(p,Q) , to be the value, e(f), of the continuous linear 

functional, .e, on C(p,Q) such that .e(X) = /1(X) , for every X E Q . 

Other applications are presented in Chapter 7 in which we return to the 

problems described in this chapter. Hopefully, they suffice as an indication that the 

attention payed to the introduced notions is warranted. Nevertheless, it is natural and 

convenient to introduce a still more general structure which generalizes simultaneously 

integrals with respect to O'-additive set functions and Daniell integrals. To do so, it 

suffices to replace the family of characteristic functions of sets belonging to Q by any 

sufficiently rich family, X;, of functions on n. It is assumed that a functional, p, 

to be called an integrating gauge, is given on X; such that there exists a complete 

(semi)normed space C(p,X;) , consisting of functions on n such that the linear hull of 

X; is dense in C(p,X;) and the norm of C(p,X;) is the smallest norm whose values on X; 

coincide with those of p. The construction of C(p,X;) is of course analogous to that of 

C(p,Q); it is briefly described in the pre-amble to Chapter 2. The definition of 

integral is sketched in the pre-amble to Chapter 3. Some of the possibilities inherent 

in this more general structure are exploited in Chapter 6 which deals with the spectral 

theory of operators. Not without interest may also be the fact, adverted to in Chapter 

3, that many classical function spaces may be defined as instances of the space C(p,X;) , 

for suitable choices of X; and p. 




