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REMARKS ON SEMI-SIMPLE REFLEXIVE ALGEBRAS 

W.E. Longstaff 

1. INTRODUCTION AND PRELIMINARIES 

Below, we discuss the problem: For which subspace lattices C on a complex Banach 

space X is Alg£ semi-simple? Our first proposition gives a lattice-theoretic necessary 

condition on C in order that Alg C be semi-simple, and an improvement of a result of 

Lambrou [5] follows from it. The converse of this proposition, though not true in general, 

is shown to be valid for two large classes of subspace lattices, each of which contains 

every completely distributive subspace lattice amongst its members. Each of these two 

classes also contains every pentagon. The Alg of every pentagon is shown to be semi

simple. For certain subspace lattices which belong to both these aforementioned classes 

we obtain a result (Theorem 3) which has another result of Lambrou [5] as a corollary. 

Examples are given to show that, in general, the semi-simplicity of Alg C cannot be a 

purely lattice-theoretic property of C; more precisely, we show that it is possible to have 

£1 and £2 lattice-isomorphic with Alg £ 1 semi-simple and Alg £2 not. We also show 

that any double triangle on X with elements K, L # X satisfying K + L = X has a 

semi-simple Alg. 

We use the notation, terminology and definitions of the preceding article [10]. Some 

of these are repeated here for the convenience of the reader. In particular, throughout 

X denotes a complex non-zero Banach space. Also, by a subspace lattice on X we mean 

a collection C of subspaces of X satisfying (i) (0), X E £,and (ii) for every family {My} 

of elements of £, both nM7 and V M7 belong to C. For every subspace lattice C on X 

we define Alg C by 

Alg£ = {T E B(X): TM ~ M, for every ME£}. 

For every C, Alg C is a unital Banach algebra and the class of operator algebras of the 

form Alg C for some subspace lattice C (on X) is the class of reflexive operator algebras 
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(on X). On any subspace lattice £ on X, we define the map L 1---t L_ of£ into itself by 

L_ = V{K E £: L <£. K}. 

The conventions n0 =X and V0 = (0) are observed (then (0)_ = (0)). 

DEFINITION. Let £be a subspace lattice on X. Define the subset :J <;;;;£by 

:J = {L E .C : L =f- (0) and L_ =f- X}. 

In what follows, we will refer to this subset :J often. Its importance lies in its 

intimate relation with the set of rank one operators in Alg £. The following lemma will 

be used repeatedly. 

LEMMA 1. ([9), see also [7, 10]) If£ is a subspace lattice on X, the rank one operator 

f* ® e belongs to Alg£, if and only if eEL and f* E (L_).L for some L E :f. 

Recall that if e E X and f* E X*, the operator f* ® e E E(X) is defined by 

(f* ® e)(x) = J*(x)e. Note that, for every T E B(X), T(f* ®e)= f* ® Te and 

(f* ® e)T = T* J* ® e where T* E B(X*) denotes the adjoint ofT. Also note that 

(f* ® e)2 = f*(e)(f* ®e). 

A subspace lattice £ on X is distributive if I< n (LV M) = (I< n L) V (I< n M) holds 

identically in £. We call £ V-distributive if K n (V L7 ) = V(I( n L 7 ) holds for every 

K E £ and every family { L7 } of elements of £. This notion is obviously stronger than 

distributivity. Stronger still is the notion of complete distributivity. We will need the 

following two characterizations. (These were mentioned in [10] and proofs can be found 

in [9]. The latter proofs are based on a characterization of complete distributivity due 

to Raney [11].) A subspace lattice£ on X is completely distributive, if and only if 

L = V { M E £ : L <£. M _} , for every L E £ , 

if and only if 

L = n{M-: ME£ and M <£. L}, for every L E £. 
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The abbreviation ABSL will be used for atomic Boolean subspace lattice (see [10]). 

Every ABSL is completely distributive (see [9]) and we will need the fact that, for any 

ABSL £ on X, the subset :1 is precisely the set of atoms of£; moreover }( _ = J{' (the 

Boolean complement of K) for every atom K of£ [9]. 

Recall that a complex unital Banach algebra .A is semi- simple if and only if it has 

no non-zero left ideals (or no non-zero right ideals) consisting entirely of quasinilpotent 

elements. Also, .A is semi-prime if and only if it has no non-zero left ideal whose square 

is zero. Clearly, .A is semi-simple implies A is semi-prime. 

2. SOME RESULTS 

Our first two theorems concern two classes of subspace lattices on X. The first 

class consists of those subspace lattices £ which satisfy V { L E £ : L E :J} = X and 

the second, those which satisfy n{L- : L E .J} = (0). Note that since V0 = (0) and 

n0 = X, :J is non-empty for any member of either class. We will show (Example 2) that 

neither of these classes includes the other. Our theorems show that, for each of these 

classes, the semi-simplicity of Alg £,for any member .C, is a lattice-theoretic property of 

.C. (In these theorems we may, of course, take £ = LatA where .A is a reflexive algebra; 

then Alg£ =.A.) First we prove a result of some independent interest. 

PROPOSITION 1. Let .C be a subspace lattice on X. If Alg£ is semi-prime, then 

either .:J = 0, or for every L E .J, L n L_ = (0) and LV L_ =X. 

Proof. Let Alg .C be semi-prime, and suppose that .J is non-empty. Let L E .]. 

Let e E L and f* E (L-)_1_ be arbitrary non-zero vectors. By Lemma 1, the operator 

R = f* ® e belongs to Alg .C. By semi-primeness, RT R =f 0 for some operator T E Alg £ 

(otherwise the left ideal of Alg £generated by R has square zero). Now RT R = f* (Te )R 

so J*(Te) =f 0. It follows that L n L_ = (0) (since J;(T1 e1 ) = 0 for every e1 E L n L_, 

T1 E Alg£ and f{ E (L-)_1_, because T1e1 E L n L_) and that LV L_ = X (since 

J;(T2e2) = 0 for every J; E (LV L_)_l_, T2 E Alg£ and e2 E L, because T2e2 E L). 

This completes the proof. 

An element L of a subspace lattice £ is called comparable if, for every }/[ E £, 
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either M ~Lor L ~ M. Notice that L_ ~ L for every comparable element L of£. It 

follows that the necessary condition for the semi-primeness of Alg C given in the above 

proposition is stronger than the condition that£ has no comparable elements except (0) 

and X; in fact it is strictly stronger as Example 1 below shows. Since semi-primeness 

is weaker than semi-simplicity, the above proposition improves the following result due 

to Lambrou. 

COROLLARY. (M.S. Lambrou [5]) Let£ be a subspace lattice on X. If Alg£ is 

semi-simple, then£ bas no comparable elements except (0) and X. 

EXAMPLE 1. Let H be a non-zero complex Hilbert space and on H {f)H GJH consider 

the subspace lattice £ 0 given by 

£o = {(0), (0) EB H EB (0), H EB (0) EB (0), H EB H EB (0), (0) EB H fB H, H EB H ffi H}. 

The Hasse diagram of £ 0 is given in Figure l. 

HffiHEBH 

( 0 )EBHffiH 

H liD( 0 )liD( 0) 

( 0) 

Figure 1 

Clearly, Co has no comparable elements except (0) and HGJH EBH, but the condition 

".:J = 0 or, for every L E .J, L n L_ = (0) and LV£_ = H EB H fB H" is false because 

L = (0) ffi H EB H belongs to .:J and L_ = H ffi H ffi (0) so L n L_ -:/:- (0). Of course, by 

Proposition 1, Alg £ 0 is not semi-prime (so not semi-simple). 
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We show later (Example 3) that the converse of Proposition 1 is false by providing 

an example where :J = 0 and Alg£ is not semi-prime. However, our first two theorems 

show that the converse is true for any subspace lattice belonging to either of the two 

classes described in the opening paragraph. 

THEOREM 1. Let£ be a subspace lattice on X satisfying V{L: L E :J} =X. The 

following are equivalent. 

(1) Alg £ is semi-simple, 

(2) Alg C is semi-prime, 

(3) For every L E :J, L n L_ = (0) and LV L_ =X, 

(4) For every L E :J, L n L_ = (0). 

Proof. By the definitions, (1) =? (2). Since :J cannot be empty, (2) =? (3) by Propos

ition 1. Obviously (3) =? (4). 

Assume that (4) holds. We show that every non-zero right ideal of Alg£ contains a 

non-zero idempotent (so non-quasinilpotent) operator. Let J( be a non-zero right ideal 

of Alg£. Let J E K be non-zero. Since V{L E £: L E :J} =X, JL # (0) for some 

element L E .:J. Now JL ~ L so JL ~ L_ (since L n L_ = (0)). Thus there exists a 

vector e E L such that Je (/. L_. By the Hahn-Banach theorem, there exists a vector 

f* E (L-)j_ such that f*(Je) = 1. By Lemma 1, f* ® e E Alg£. Thus the non-zero 

operator J(f* ®e) belongs to K. We have 

(J(f* ®e)?= (f* ® Je? = f*(Je)(J(f* ®e))= J(f* ®e). 

This completes the proof. 

THEOREM 2. Let C be a subspace lattice on X satisfying n{L- : L E :J} = (0). 

The following are equivalent. 

(1) AlgC is semi-simple, 

(2) Alg£ is semi-prime, 

(3) For every L E :J, L n L_ = (0) and LV L_ =X, 
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(4) For every L E :1, LV£_= X. 

Proof. By the definitions (1) =? (2). Since :J cannot be empty, (2) =? (3) by Proposition 

1. Obviously (3) =? (4). 

Assume that ( 4) holds. We show that every non-zero left ideal of Alg .C contains a 

non-zero idempotent (so non-quasinilpotent) operator. Let JC be a non-zero left ideal of 

Alg£. 

For any family { L"'} of sub spaces of X, the weak* closure of the linear span of 

{L~} equals (nL"' )j_. In particular, if nL"' = (0), then the linear span of {L*} is weak* 

dense in X*. 

Let J E K be non-zero. Then J* i= 0. Since J* is weak* continuous, and n{ £_ : 

L E :J} = (0) implies that the linear span of {(L_)j_ : L E :J} is weak* dense in 

X*, J*(L-)j_ ::f. 0 for some element L E :f. Let f* E (L-)j_ satisfy J*f* ::f. 0. Now 

J* f* E (L_)j_ so, since LV L_ =X, rf_ Lj_. Hence J* f* (e) = 1 for some vector 

eEL. By Lemma 1, f* ® e E Alg£. Thus the non- zero operator(!*® e) J belongs to 

JC. We have 

((!* 0 e) J)2 = (J* f* 0 e)2 = J* f*(e)((f* 0 e) J) =(!*®e) J. 

This completes the proof. 

The following example shows that the class of subspace lattices C satisfying V { L E 

.C : L E :J} =X is not included in the class satisfying n{L_ : L E :J} = (0) and vice-

versa. 

EXAMPLE 2. Let H be an infinite-dimensional, complex, separable Hilbert space 

and let A E !3(H) be a positive injective operator which is not invertible. By a result of 

von Neumann (see [1, Theorem 3.6]) there exists a positive injective operator B E !3(H) 

such that the ranges of A and B have only the zero vector in common. Let I< and L 

be the subspaces of H EB H EB H given by 

K = {(x,y,Ax): x,y E H}, 

L={(x,y,By): x,yEH}. 
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Let C be the subspace lattice on HffiHffiH with elements (0), (O)ffiHffi(O), Hffi(O)ffi(O), 

H ffi H ffi (0), I<, Land H ffi H ffi H. Figure 2: below is a Hasse diagram of£; Figure 3 

is a Hasse diagram of C ..L = { M ..L : J.\1 E .C}. 

K 

(O)@HE!l(O) 

H!J3H@H 

( 0) 

Figure 2 

L H E!l(O)E!lH 

HE!l(O)E!l(O) K.l 

H@H@H 

(O)E!lHE!lH 

L..L 

( 0) 

Figure 3 

(Note that (x, y, Ax) = (u, v, Bv) gives Ax= Bv, so Ax= Bv = 0, since the ranges 

of A and B have only the zero vector in common. This shows that J( n L = (0).) For 

C, :J = {(0) ffi H ffi (0), H ffi (0) ffi (0)} soC does not belong to the first class. But C 

does belong to the second class since ((0) ffi H ffi (0))- = L, (H ffi (0) ffi (0))- = J( and 

I< n L = (O). 

On the other hand, £..L belongs to the first class but not to the second. 

Note that, by Theorems 1 and 2, both£ and £..L have semi-simple Alg's. 

The two classes of subspace lattices described in the opening paragraph of this 

section are far from being disjoint. Indeed, by the two characterizations of complete 

distributivity mentioned in the introduction, every completely distributive subspace 

lattice belongs to both classes; so does every pentagon. 

In abstract lattice theory, the pentagon and the double triangle play special roles 

(this terminology is due to Halmos). These lattices have Hasse diagrams, respectively, 
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as follows. 

M 

K K M 

L 

Figure4 FigureS 

We will comment soon on the Alg of a double triangle subspace lattice (notice that 

here J = 0), but notice that, indeed, every pentagon subspace lattice on X does belong 

to both of the aforementioned classes (for a pentagon, J = {K, L} and ]{_ = !vi, 

L_ =I< if, as in Figure 4, K, L and M are the elements which are neither (0) nor X 

with L ~ M). Moreover, by Theorem 1 (or 2), the Alg of any pentagon is semi-simple. 

The following characterizes those V-distributive subspace lattices which belong to 

both of the aforementioned classes and have semi-simple Alg's. 

THEOREM 3. Let£ be a V- distributive subspace lattice on X satisfying V{L E 

C : L E J} =X and n{L_: L E J} = (0). The following are equivalent. 

(1) For every K E J, K n JC = (0), 

(2) £ is an ABSL, 

(3) For every I< E J, J( V J(_ =X, 

(4) Alg£ is semi-simple, 

(5) Alg£ is semi-prime. 

P:roof. The implication (1) :::} (2) will be proved last. 

(2) :::} (3): Assume that (2) holds. Then, as remarked in the introduction, J is the 

set of atoms of£ and J{_ = K' for every J( E J. Thus (3) holds. 

(3):::} (4): This follows from Theorem 2. 
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(4) =? (5): This is obvious, by the definitions. 

(5) =? (1): This follows from Theorem 1. 

(1) =? (2): Assume that (1) holds. We need only show that .C is atomic and 

complemented. 

First we show that every element of :J is an atom of .C. Let K E :J and let L E £ 

satisfy (0) <;;;; L C K. Then K $?; L so, by the definition of JC, L C JC. Hence 

L <;;;; K n J(_ = (0), soL= (0). Thus J( is an atom of .C. 

Next we show that .Cis complemented. Of course, (0) has a complement in .C. Let 

M E .C be non-zero. We show that M has complement M 1 = n{K_ : K E :J and 

K<;;;;M}. 

Let K E .:J. If K <;;;; M, then M n M 1 <;;;; M 1 <;;;; JC, so M n M' <;;;; JC. If 

K 5£ M, then M ~ !{_ by the definition off{_, and again M n Jv[l ~ JC. Thus 

M n M' ~ n{JC :I< E .:J} = (0), so M n M' = (0). 

Since V{K E .C: J( E .:J} =X, to show that MV M 1 =X it is enough to show that 

K ~ M V M 1 , for every I< E :f. Let J{ E :J. If J{ ~ M, then certainly J{ ~ M V M'. 

Suppose that }( 5£ M. We show that J{ ~ M'. Let W E :J satisfy W ~ M. Since 

I<$?; M and W ~ M, W -:j:. K. Hence, since Wand J( are atoms of£, W Sf; I<. By the 

definition of W_, it follows that I<~ W_. This shows that K ~ M'. Thus](~ MV M' 

and MV M' =X. 

Finally we show that .C is atomic. Let L E .C be non- zero. If K E :J and ]( Sf; L, 

then L ~!{_.Thus Lmust contain an element of :J (if not, L ~ n{K_: K E .:J} = (0), 

giving L = (0)). Since :J consists of atoms, L contains an atom of.£. Now X= V{I( E 

£: f{ E :J} so, by V-distributivity, L = LnX = V{KnL: J{ E .:J}. For every K E .:J, 

(0) ~ J( n L ~ I< and since K is an atom this implies that J( n L = (0) or K. Thus 

L = V{K: K E :J and}(~ L} and it follows that Lis the closed linear span of the 

atoms it contains. Hence .C is atomic and the proof is complete. 

COROLLARY. (M.S. Lambrou [5,6,8]) Let .C be a completely distributive subspace 

lattice on X. The following are equivalent. 



(1) Alg.C is semi-simple, 

(2) Alg.C is semi-prime, 

(3) C is an ABSL, 
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(4) For every K E .J, K n K_ = (0). 

In this corollary, we may add 

(5) For every K E .J, K V K_ =X 

to the list of equivalent conditions. For example, by this corollary, the Alg of any 

totally ordered subspace lattice with more than two elements is not semi-simple (such 

a subspace lattice is an example of a commutative subspace lattice whose Alg is not 

semi-simple, given that the underlying space is a Hilbert space; so is £ 0 of Example 1). 

As promised earlier, the following example proves that the converse of Proposition 

1 is false, inasmuch as it shows that there exists a subspace lattice with :1 = 0 whose Alg 

is not semi-prime. More significantly, it also shows that, in general the semi-primeness 

(respectively, semi-simplicity) of Alg C is not just a purely lattice-theoretic property of 

.C: that is, it is possible to have two lattice-isomorphic subspace lattices £ 1 and £ 2 (even 

on the same space) with Alg£1 semi-prime (respectively, semi- simple) and Alg£2 not. 

A subspace lattice Con X is called medial [2] if K n L = (0) and K V L =X for 

every pair of distinct elements K, L (j. {(0), X}. It is clear that :1 = 0 for every medial 

subspace lattice with at least five elements. 

EXAMPLE 3. In the following, for any operator S, G(S) denotes its graph. 

Let H be a complex Hilbert space with 2 :::=; dim H :::=; oo, and let T E B(H) be a 

non-zero operator with square zero. On H EB H let £ 2 be the medial subspace lattice 

given by 

£ 2 = {(0), G(O), G(I), G(T + ai), G(T + (3!), (0) EB H, H EB H}, 

where a and f3 are any distinct elements of C\{0, 1}. Then 

Alg £ 2 = { [ ~ ~] : A E B( H) and AT = T A} . 



283 

Since TAT = AT2 = 0 whenever AT = T A, the left ideal of Alg £ 2 generated by 

[ ~ ~] has square zero. Thus Alg £ 2 is not semi- prime. 

On the other hand, there exists a subspace lattice £ 1 on H E8 H which is lattice

isomorphic to £ 2 and which satisfies Alg £ 1 = CI [2]. Of course, Alg £ 1 is semi-simple. 

In the above example, £ 1 and £ 2 are medial subspace lattices on the given space 

H E8 H, each with seven elements, with Alg£1 semi-simple and Alg£2 not semi-prime. 

Can subspace lattices with these properties, but with six, not seven, elements be found? 

The answer is affirmative. Indeed, if we omit G(T + (3!) from £ 2 , the resulting medial 

subspace lattice, M2 say, satisfies AlgM 2 = Alg£z, so AlgMz is not semi-prime. If 

we define the medial subspace lattice M 1 by 

M 1 = {(0), G(O), G(I), G( -I), (0) E!1 H, H EB H}, 

then 

AlgM1 = { [ ~ ~] :A E B(H)}, 

and AlgM 1 is semi-simple, since B(H) is. (Incidentally, if the given space H E8 H is 

finite-dimensional, there is no subspace lattice M on it, isomorphic to J\11 2 and sat-

isfying Alg J\1. = CI [2]; if H is infinite-dimensional and separable such an M does 

exist [3].) Concerning semi-simplicity and semi-primeness, what can be said about the 

Alg's of medial subspace lattices with five elements, that is, double triangles? It is not 

known whether or not there exists a double triangle whose Alg is not semi-prime. Our 

final theorem shows how to obtain examples with semi-simple Alg's. First we prove a 

proposition. As remarked earlier, for any double triangle we have :J = 0, so by Lemma 

1 no rank one operator belongs to its Alg. In what follows (Qe, (I- Q) e) denotes the 

linear span of Qe and (I- Q) e. 

PROPOSITION 2. LetT = { (0), I<, L, M, X} be a double triangle subspace lattice 

on X with Hasse diagram given by Figure 5. Let the vector sum I< + L be closed and 

let Q E B(X) denote the projection onto J{ along L. For every pair of non- zero vectors 

e E M, f* E M j_ the operator 

R = Q(f* 0 e) Q- (I- Q)(f* 0 e)(I- Q) 
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is a rank two operator of Alg T with range (Qe, (I - Q) e). 

Proof. Let e E M and f* E M..L be non-zero vectors and let R be the operator defined 

as in the above statement. Since Q and I - Q are both idempotent, RQ = Q(f* ® e)Q 

and R(I - Q) = -(I - Q)(f* ® e) (I - Q). The former gives RK ~ K since the range 

of Q is K; the latter gives RL ~ L since the range of I - Q is L. 

If x EM, then since f*(x) = 0, we have 

Rx = Q(J* ® e)Qx - (I - Q)(f* ® e)(I - Q)x 

= Q(j* ® e)Qx - (I - Q)(f* ® e)x + (I - Q)(f* ® e)Qx 

= (J* ® e)Qx - f*(x)(I - Q)e 

= (J* ® e)Qx 

= j*(Qx)e, 

so Rx E M. Thus R E AlgT. Clearly (Qe, (I - Q) e) contains the range of R. But Qe 

and (I - Q) e both belong to the range of R. For, since j* rf. K..L there exists a vector 

y E K such that f*(y) = 1. Also, since f* rf. L..L there exists a vector z E L such that 

f*(z) = -1. Then 

Ry = Q(J* ® e)Qy = Q(J* ® e)y = f*(y)Qe = Qe 

and 

Rz = -(I - Q)(f* ® e)(I - Q)z = -(I - Q)(J* ® e)z = - f*(z)(I - Q)e = (I - Q)e. 

Hence the range of R is (Qe, (I - Q) e). It only remains to show that Qe and (I - Q) e 

are linearly independent, and this is fairly clear. 

COROLLARY. With R and Q as in the statement of Proposition 2, for every operator 

J E AlgT we have 

JQ = QJ and (JR)2 = f*(QJe)[JR). 

Proof. Let J E AlgT. Since J leaves K invariant, JQ = QJQ. Since J leaves L 

invariant, J(I - Q) = (I - Q) J(I - Q). These two equalities give JQ = QJ. 
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With E = f* ® e we have 

JR = JQEQ - J(I - Q)E(I - Q) 

= QJEQ - (I - Q) JE(I - Q) 

(JR? = [QJEQ]2 + [(I - Q)JE(I _ Q)]2 

= [Q* f* ® QJe]2 + [(I - Q)* f* ® (I - Q) Jej2 

= Q* f*(QJe)[QJEQ] + (I - Q)* f*((I - Q) Je)[(I - Q) JE(I - Q)] 

= f*(QJe)[QJEQ] + f*((I - Q) Je)[(I - Q) JE(I - Q)]. 

But f*(QJe) + f*((I - Q) Je) = f*(Je) = 0, since Je E M and f* E M1.. Thus 

(JR)2 = f*(QJe)[JR], as required. 

THEOREM 4. Let T = {(O), K, L, M, X} be a double triangle subspace lattice on X 

with Hasse diagram given by Figure 5. If the vector sum K + L is closed, then Alg T is 

semi-simple. 

Proof. Let the vector sum K + L be closed and let Q E SeX) be the projection onto K 

along L. Now QM is a linear manifold and QM ~ K. In fact QM is dense in K. For 

this, it is enough to show that if g* E X* and QM ~ ker g*, then g* E K1.. Suppose 

that QM ~ ker g*. Then g*(Qx) = 0 for every x E M, so Q*g* E M1.. However, Q* 

has range L1., so Q*g* E M1. n L1. = (0). Thus g* E ker Q* = K1.. 

Similarly (I - Q) M is dense in L. 

To show that Alg T is semi-simple it is enough to show that for every non-zero 

operator J E Alg T, there exists a rank two operator R of Alg T such that J R is a 

non-zero idempotent. 

Let J E AlgT be non-zero. By the preceding corollary, JQ = QJ. We cannot 

have JM = (0). For if JM were (0), then for every vector z E M we would have 

JQz = QJz = 0 and J(I-Q) z = (I-Q) Jz = 0, so QM ~ ker J and (I-Q) M ~ ker J. 
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But QM is dense in]{ and I -Q) M is dense in L, so we would have I<V L =X~ ker J, 

which is a contradiction. Thus JM -:f. (0), so Je -:f. 0 for some vector e E M. Now 

Je EM and Je -:f. 0, so Je tf_ L (since L n M = (0)) and QJe -:f. 0. Since QJe E K, 

QJe tf_ M. Hence, by the Hahn-Banach theorem, there exists a vector f* E Mj_ such 

that f*(QJe) = 1. 

Put R = Q(f* ® e) Q - (I - Q)(f* ® e )(I - Q). By Proposition 2, R is a rank 

two operator of AlgT. Finally, JR is non-zero and idempotent. For, by Proposition 2, 

R has range (Qe, (I- Q) e) and JQe = QJ e -:f. 0, so J R -:f. 0. Also, by the preceding 

corollary, (JR) 2 = f*(QJe)[JR] =JR. This completes the proof. 

Note that the preceding theorem does not extend to medial subspace lattices with 

more than five elements. Indeed, C2 in Example 3 has the property that I< + L is a 

closed vector sum for every pair of elements I< and L, but Alg 1:,2 is not semi-simple. 

(The medial subspace lattice M 2 obtained by omitting G(T + f3I) from £ 2 also has this 

property, and AlgM2 = Alg£2.) 
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