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INTERTWINING WITH ISOMETRIES 

K.B. Laursen 

This lecture contains work done jointly with P. Vrbova [6] and will develop some 

variations on a theme which goes back to Johnson and Sinclair (2]. 

The general question under scrutiny is that of continuity of intertwiners: if S, T 

are given linear operators on the vector spaces X, Y, respectively, then we consider the 

space 

I(S,T) := {B: X-+ Y I f:J linear, C(S,TtB = 0, some nEW}, 

where C(S, T)n is the nth composition of the map 

C(S,T) : e-+ SfJ- BT, 

and. try to decide when I(S, T) consists of continuous maps (provided X, Y are Banach 

spaces and S, Tare continuous). 

The interest in the space I( S, T) stems from the fact that it contains many 

significant classes of maps: 

If A, B are Banach algebras and () : A -+ B is an algebra homomorphism then 

8 E I(8(a),a) for any a E A in the sense that 

f:J(a)B(x)- f:J(ax) = 0 

for all x EA. 

Another class of examples emerges if X is a Banach algebra and Y is a commutative 

Banach X -module; if D : X -+ Y is a module derivation then C( a, a )2 D = 0, as an easy 

calculation will show. 

To state the main results we will need a few facts about the algebraic spectral 

subspaces Es(A) of a linear operator S on a vector space Y: given a subset A <:;;; C, 
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Es(A) is the maximal subspace of Y among all subspaces Z for which 

(S-.\)Z=Z for all A tf. A. 

In particular Es(0) is the largest S-divisible subspace of Y. It is clear that 

Es(A) ~ n.x\lA, nEIN(S- -\tY 

and in some cases, e.g. when S is a generalized scalar operator, we have equality [5]. 

The only instance we need here is the case when A= C\{0} and Sis 1-1: 

If Sis 1-1 then Es(C\{0}) = n::,0= 1 sny. 

[Proof. If y E nsny a..11.d y = Snyn, n = 1, 2, ... then y1 = Syz = S 2 y3 = · · · so 

Y1 E nSnY.] 

Once we recall that .\ E C is a critical eigenvalue for ( S, T) provided ,\ is an 

eigenvalue for Sand (T- A.)X is of infinite codimension in X, we are able to understand 

the statement of 

THEOREM A. If there is a countable set G ~ C for which Es(C\G) = {0} then 

every 8 E I(S, T) is continuous if and only if (S, T) has no critical eigenvalues in G. 

Sketch of Proof. The eigenvalue condition is easily seen to be necessary. We indicate 

the line of attack in proving sufficiency. To simplify slightly, suppose S8 = fJT. First, 

by the stability lemma there is a polynomial p with roots in G for which 

for all ,\ E G, where 

6 = {y E Y I 3xn ---t 0 with Bxn -> y} . 

[Actually, this can be done so as to hold for all ,\ E C, so countability of G does not 

really play a role here.] Second, by Mittag-Leffler's theorem there is a dense subspace 

W ~ p(S)6 for which 

(S->.)W=W, 
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[This does depend on count ability of G.) By maximality of Es(C\G), 

w ~ Es(C\G) , 

hence W, and thereby p(S)6, IS Discard all non-eigenvalue roots of p. Thus 

p(T)X is of finite co dimension, our assumption of no critical eigenvalues. From this 

the continuity of e on an of X follows readily. 

COROLLARY 1. If S has countable and Es(0) = {OJ then every e E I(S, T) 

is continuous if and onl~1 if T) has no critical eigenvaltu;. 

Proof. G = a(T) and 

Es(C\G) = Es((C\a(T») n (a(T») 

= Es(0) = {OJ . 

This is a good part of the original Johnson-Sinclair result. 

An isometry S for which nsny = {OJ is called a semi-shift. An obvious example 

is the unilateral right shift. 

COROLLARY 2. 1fT E B(X) is arbitrary and S E B(Y) is a semishift then I(S, T) 

consists of continuous maps. 

Proof. Es(C\{O}) = {OJ and 0 is not an eigenvalue of an isometry. 

We shall now extend this last result to arbitrary isometries S and thus work our 

way away from the count ability condition necessitated by our use of Mittag-Leffler. The 

cost of this is a mild restriction on T, namely the assumption that T be decomposable. 

Thanks to Ernst Albrecht, [1], we may define T to be decomposable provided for 

any open cover U U V = C there are closed T-invariant subspaces Xu, Xv for which 

a(TIXu)~U, O"(TIXv)~V 

and 

X=Xu+Xv. 
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THEOREJ\1 B. If T is a decomposable map on the Banach space X and S is an 

isometry on the Banach space Y then I(S, T) consists entirely of continuous maps if 

and only if (S, T) has no critical eigenvalue. 

The main step in proving B is contained in 

PROPOSITION Co Suppose S E B(Y) is bounded below and satisfies nsny = {OJ, 

and suppotJe T E B(X) is decomposable. Then I(S, T) = {OJ. 

Proof. As in the proof of Corollary 2, I(S, T) consists of continuous maps. So suppose 

e E I(S, T). To omit some of the technical details, suppose also that se = BT. We know 

that ker e is closed and as T(ker fJ) ~ ker fJ we may consider T : X /ker B -> X /ker T 

defined by T(x -I- kerB) := Tx -I- kerB. If we let Bl : X/kerB ----7 Y be defined by 

B1 (x -I- ker B) := ex, then 81 E I(S, T). 

But T is quasi-nilpotent: let E E lR+ and cover C: C = {izi < E} U (C\{O}) = 

u U V. Then by decomposability we obtain a splitting 

X=Xu-l-Xv. 

Since J(T I X v) ~ V we see that 

Xv ~ ET(C\{O}) . 

Moreover, since 

8ET (C\{O}) ~ Es(C\{O}) = {OJ 

(the inclusion is a consequence of the maximality of Es( C\ {O}), and since 

SBET(C\{O}) = BTET(C\{O}) = BET(C\{O}) , 

we get that X V ~ ker e, and hence that X = Xu -I- ker B. From this it follows that 

J(T) ~ U and the arbitrariness of E shows that J(T) = {OJ. 

Suppose S-1 : ranS -+ Y has norm II S-lll = 80 . This means that 

IISyl1 :::: :ollyll for every y E Y 
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and hence 
1 

IJSnyjj ;::: 6n JJyJI for every n . 
0 

Choose n 0 E JN" so that 

and note that 
1\(hXII::::; 6~oiiS"oelxll = s~ollelfnoxll 

:$; 8~0 JIBtJIJJTno 1\JJxJj :$; ( :;0 ) no J\81\J JlxJJ 

= TnoJ\01\\JJxJJ 
from which we get the unlikely claim that 

which is only possible with 01 = 0, hence (} = 0. 

Now the proof of B is not difficult. 

Proof of B. With Z := Es(C\{0}) = nsny, Z is closed and S-invariant. If we let 

S induce So : Y/Z ----+ Y/Z then So is a semi-shift. Moreover, if Q : Y ----+ Y/Z is the 

quotient map then QB E I(S0 , T). Hence, by Proposition C, QB = 0 so that e maps X 

into Z. However, S I Z is an invertible isometry (S I Z is 1-1 and onto Z) so a(S J Z) 

is a subset of the unit circle T. This means that S I Z has a functional calculus (given 

by coo(C) 3f----t fIT ----t Fourier coefficients (cn(f)) off IT----t EnEzcn(f)Tn ), so 

that S I Z is generalized scalar. Since (S I Z, T) has no critical eigenvalues, if (S, T) has 

no critical eigenvalues, the sufficiency of the critical eigenvalue condition follows from 

known results [3,4,7]. 
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