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AUTOMORPHISMS OF WEIGHTED 
MEASURE ALGEBRAS 

F. GhahramanP 

In (5], (6] and (8] we studied the automorphisms of the Volterra algebra on 

(0, 1] and of radical weighted convolution algebras on the half line. The multiplier 

algebra of each of these algebras can be identified with a measure algebra [4, Thm. 

1.4], [11}, and played an important role in those studies. In this paper we study the 

automorphisms of weighted measure algebras. We show that the extensions of the 

automorphisms of a weighted convolution algebra to its multiplier algebra are the 

only automorphisms of the multiplier algebra. From this fact we obtain information 

about the structure of the automorphisms of the measure algebras and for certain 

classes of weights a complete description of the automorphisms becomes available. 

The significance of the measure algebras in the study of homomorphisms and 

derivations is also apparent in [3], [4], [5], [6], [8], [9] and [10]. 

Let R+ denote the non-negative real numbers. By a radical algebra weight on 

R+, we mean a positive, continuous, submultiplicative function won R+, satisfying 

w(O) = 1 and w( x )1 fx -+ 0 as x -+ oo. If w is such a weight, and if the Banach space 

L1 (R +, w ), consisting of (equivalence classes of) Lebesgue measurable functions f 

on R + satisfying 

IIJII = 100 
lf(x)lw(x)dx < oo 

is given the convolution product 

(f * g)(x) = 1x f(x- y)g(y)dy, 
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then L 1 (R +, w) is a commutative radical Banach algebra. Let M (R +, w) be the 

space of Radon measures fl on R+ satisfying 

ll~tll = [ w(t)dl~tl(t) < oo la+ 
and let C0 (I/w) be the space of all continuous functions f on R+ such that 

f /w E Co(R+) with the norm llfll = iif /wlloo· Then M(R+, w) can be iden­

tified with the dual of C0 (I/w) by the pairing 

(ft, f) = J f d~t. 
For any ft, 1/ in M(R+, w ), the convolution product of p, and v can be defined by 

(~t * v)(cp) = J j cp(x + y)d~t(x)dv(y) (cp E Co(I/w)). 

With this product M(R+, becomes a Banach algebra. The mapping f f-+ fdx 

defines an isometric embedding of Ll( w) into M( w) and identifies L 1 ( w) with a 

closed ideal of M( w ). 

Recall that if the Banach space L1 [0, a] is given the convolution product 

(f*g)(x)= 1x J(x-y)g(y)dy, 

then L 1 [0, a] becomes a radical Banach algebra, the Volterra algebra of [0, a]. Let 

.iiJ[O, a) be the space of all complex regular Borel measures on [0, a) and let C0 [0, a) 

be the Banach space of all continuous functions f on [0, a) such that lim,-+a- f( x) = 

0, with !lfll = suplf(x)l. Then we have (Co(O,a))* = M[O,a), and convolution 

product * in the latter can be defined 

{ 1/J(x)d(t_uv)(x) = { { 1/J(x+y)dp,(x)dv(y) (1/J E C0 [0,a)). 
J[o,a) lro,a) J[o,a- 11 ) 

The Banach algebra M[O, a) can be identified with the multiplier algebra of L 1 [0, a] 

as in [II], where for every fl E M[O, a), p11 : f f-+ f * fl is a multiplier on L1 [0, a] 

and every multiplier arises in this way. 

We first give a characterization of compact multipliers on L1 [0, a]. An abstract 

version of the following theorem is in [7]. 
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THEOREM L A multiplier p~' f ~-t f ,, p, 

ifp,EL1 a]. 

E L 1 [0, a]) is compact if and only 

Proof. Let pp, be compact, and let (en) be a bounded approximate identity of 

L 1 [0, Then there exists a subsequence ( e,k) of ( e,..) such that ( enk * converges 

in norm to an element v E L 1 [0, On the other hand ( enk) converges weak-* to lio. 

Thus p, = v E L1 a]. Now we show conversely, that for every element f E L1 [0, a], 

PJ is compact. It suffices to prove this for f = 1, as this is a topological generator 

of L 1 [0, Since 

9* g(t)dt 

and it is well known that the operator 

Tg(x) = g(t)dt 

on L1 [0,a], the theorem is 

THEOREM 2. If() is an automorpl1ism of M[O, then [0, a]) = [O,a]. 

there exists a quasinilpotent derivation q and a complex number)\ such that 

B = e;,.xeq, where X is the derivation d(Xp,)(t) = 

Proof. Let f E I} a]. Then Theorem 1, Pt is compact. Now we show that 

is compact. Let be the unit ball of M[O,a). Then 

* 

Thus is compact the compactness of P!· It follows from Theorem 1 that 

E [0, a]. To prove the last statement of the theorem we note that if BILl a] 

denotes the restriction of e to L 1 then it is an automorphism of L1 [0, 

Thus there exists a number ,\ such. that 

BIL1 a]= see . Now if w·e denote the extension of q to by 

the same then eq de:fines an auconaor·p of which coincides 

with the restriction of e to a]. Since automorph:isms of leave a] 
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invariant, they are continuous in the strong operator topology (so) of M[O, a). Thus 

to complete the proof it suffices to show that L1 [0, a] is so-dense in M[O, a). To this 

end, let f-L E M[O,a). Then for every f E L1 [0,a], we have f-L * f = limf-L *en* f, 

where (en) is a bounded approximate identity of L 1[0,a]. Since f-l *en E V[O,a], 

the proof is complete. 

The following theorem is an extension of [2, Theorem 3.6]. Recall that o:(f) is 

the infimum of supp(f). 

THEOREM 3. Let w be a radical weight function. If J.L E M( w ), and if~ > 0 is 

such that 

then o:(J.L) ~ {j. 

lim sup(JIJ.L*nll)l/n < oo, 
w(tin) 

Proof. Let f be a nonzero element of L 1(w) with o:(f) = 0. Then we have 

J.L * f E £1 ( w ), and by Titchmarsh's convolution theorem o:(t-t) = a(t-t) + a (f) = 

o:(t-t * f). Since 

lim sup ( II(J.L *!)nil) I/n :::; lim llrlll/nlim sup(~) 1/n = 0, 
w(8n) w(6n) 

we have a(J.L *f) ~ {j by [2, Theorem 3.6]. Hence a(,u) ~ 8, and the theorem is 

proved. 

Notation. For every a ~ 0 let la = {J.L E M(w) a(J.L) ~ a}. These are the 

so-called "standard ideals" in the measure algebra. 

LEMMA 1. Suppose () is an automorphism of M( w ). Then for evezy a ~ 0, 

Proof. Let f3(x) = oc(B(6x)), (x E R+). Then 

f3(x + y) = o:(0(8x+y)) = a(6(8x) * 8(8y)) 

= oc(O(h"x)) + a(8(8y)) = (3(x) + f3(y), 
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by Titchmarsh's convolution theorem. Next we show that f3 is right continuous at 

every x E R+. Since f3 is additive, it suffices to show this for x = 0. Let Xn --+ 0 

and let f E L 1(w). Then, 

(1) 

Since the sequence (B(8xn)) is bounded it has a subnet (B(8x;)) weak-* convergent 

to a measure p, say. So 

(2) 8( 5x,) * B(f) 
w-* 
--+ 

From (1) and (2) and Titchmarsh's convolution theorem it follows that p, = 80 . 

The above argument in particular shows that every weak-"' convergent subnet of 

(8(8xJ) converges to 60 . Thus 

w-• 
--+ 

Whence f3(xn) = a(B(8x,)) --+ 0. For otherwise there exists E > 0 such that 

a( 8( Dxn)) > E for infinitely many values of n. Now iff is a continuous function with 

f(O) = 1 and suppf C [0, Ej, then {5o,!} = 1, while {fJ(5xn), f) = 0 for infinitely 

many values of n, which contradicts 

8(8xJ 
w-• 
-l> 

Hence f3(xn) -J> 0, and the function f3 is continuous. Thus there exists a constant 

Ae such that f3(x) = Aex. 

Next we show that Ae > 0. If not, then for every x E R+, a(B(5x)) = 0. We 

first show that this implies that o:( B(f)) = 0, for every function f E L 1 ( w) whose 

support is compact and a(f) = 0. By [1, Theorem 2] we have (L1(w)*f)- = L1(w) 

for any such f. Thus, if a(B(f)) = k > 0, then for every g E L1(w), we have 

a(B(g)) 2': k. Now an application of the Banach-Alaoglu theorem together with 

Titchmarsh's convolution theorem shows that O(p,) = weak-* lim B(p, * en), where 

(en) is a bounded approximate identity of P(w). This implies a(B(p,)) 2': k, which 
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contradicts the assumption that () is onto. Thus a( B(f)) = 0. Next assume that 

a(f) = m > 0 and suppf ~ [m,M]. Then f = 8m * g, where a(g) = 0 and g has a 

compact support. Then by Titchmarsh's convolution theorem 

a(B(f)) = a(B(8m)) + a(O(g)) = 0. 

Hence from Ae = 0 it follows that a(O(f)) = 0, for every f with compact support. 

We draw a contradiction by showing that there exists an f with compact support 

and with a(B(f)) > 0. By [2, Theorem 3.2 II] there exists f E V(w) with suppf ~ 

[1, 2], a(f) = 1, and 

For this f, we then have 

IIJ*nJI < w(n), n = 1, 2, .... 

lim sup(IIB(f)*"ll)l/n:::; 1. 
w(n) 

Hence by Theorem 3, a(fJ(f)) ;:::: 1. From this contradiction it follows that Ae > 0. 

Next we show that for every 11 E M(w), a(B(!-l)) = Aea(f-l). For 11 a finite 

linear combination of point masses this is immediate. For a general 11 E M( w ), we 

first prove that a( B(p)) ;:::: Aea(f-l ). Let (!-li) be a bounded net in M( w) such that 

fli -+ f1 in the strong operator topology with a(f-l;) ;:::: a(f-l) and such that each 1-li 

is a finite linear combination of point masses [3, Lemma 1.3]. The Banach-Alaoglu 

theorem together with Titchmarsh's convolution theorem implies that 

. 
B(f-L;) w-=t B(f-l ). 

Now if a( 8(1-l)) < Aea(p), then we choose b such that odJ(p) < b < Aea(p) and we 

let g be a continuous function with supp g C [a( Bp )), b] and 

J g(x)d8(fl)(x) =J 0. 

Since Aea(p) :::; aB(p; ), we have 

J g(x)dB(p;)(x) = 0. 
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Then 

o -::j: J g(X)dO(p,i)(X) = lim J g(X)dO(J-Li)(X) = O. 

From this contradiction we conclude 

Now, let f E £lew) have compact support. Then h = f*La:(f) E Ll(w), a(h) = 0, 

and an earlier argument shows that a(O(h» = O. Hence 

a(O(J» = a(O(h» + a(O(8a:(f») = Aea(J). 

Now suppose f E (£l(w»\{O} and a(J) = c. Let h = fX[c,c+l), 12 = fX(C+l,oo). 

Then f = h + 12, and so OU) = O(h) + 0(12). By the conclusion of the previous 

paragraph we have a(O(h» = Aec and aO(12) :2: Ae(c + 1) > Aec. Therefore, 

Finally, if J-L E M(w)\{O}, then for f E (Ll(w)\{O}), the above gives 

Since we have already shown that a(O(J» = Aea(J), it follows that a(O(J-L» = 

Aea(J-L». 

Now by an argument similar to that of [4, Lemma 3] it can be shown that O(8x ) 

has a non-zero mass at a(O(8x» = Aex. Thus 

where k( x) -::j: 0, a(J-Lx) :2: Aex and J-Lx ( {Aex }) = o. From the equations 

O(8x+y) = O(8x) * O(8y) = (k(x)8ABX + J-Lx) * (k(y)8ABy + J-Ly) 

= k(x)k(y)8AB (x+y) + k(x)8ABX * J-Ly + k(Y)J-Lx * 8ABy + J-Lx * J-Ly, 
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and the fact that the measure k(X)bAox * fty + k(y)8AoY * ftx + ft", * fty has zero 

mass at Ae(x + y), it follows that k(x + y) = k(x)k(y). Since k is bounded near 

0, it follows that there exists a complex number z, such that k( x) = eZX for every 

x E R+, Thus 

(3) 

with Ot(ftx) ;:::: Aex, and ftx ( {Aex } ) = O. Similarly, there exists a complex number ( 

such that 

(4) 

with Ot(vx ) ;:::: A;lx and vx ( {A;lX}) = O. Now an argument similar to that of the 

proof of [8, Lemma 2] shows that ( = -z. From (3) and (4) it then follows that 

where b = Re(z). Now if Ae > 1, then we have 

(5) 

whence 

(6) 

Letting x -+ 00 in (6), radicality of w yields a contradiction. The other half of 

the inequality shows that Ae < 1 cannot occur. Thus Ae = L This shows that 

and the lemma is proved. 

THEOREM 4. Suppose e is an automorphism of M( w). Tben e(Ll( w)) = Ll( w). 

Proof. By Lemma 1 we have e(Ja) = Ja (a ;:::: 0). If, for every ft E M(w), we 

identify ft + Ja with the restriction of ft to [O,a) we get an isomorphism of M[O,a) 

and M( w)/ Ja . Now for every a > 0, let fJ a : M[O, a) -+ M[O, a) be defined by 
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Then Ba is an automorphism of M[O, a). Hence by Theorem 2, Ba(f +Ja) E L 1 (0, a), 

for every a. Hence O(f) + Ja E L 1 (0, a) for every a. Since this holds for every a > 0, 

it follows that B(f) is absolutely continuous with respect to the Lebesgue measure. 

Hence O(f) E L 1(w), and the proof is complete. 

COROLLARY 1. Suppose(} is an automorphism of M(w). Tben there is a real 

number a, a non-negative integer N, and a derivation Don M(w), such that for 

every p, E M(w) 

B(p) =weak-* lim ei01 X[(eNXtPe-(NH)X)nenX](p,). 
n-+oo 

Proof. By Theorem 4 and [8, Theorem 1], there is a real number a, a non-negative 

integer N, and a derivation Don M(w), such that for every f E L1 (w) 

(7) B(f) = lim ei01X[(eNXeDe-(N+l)XtenX](f). 
n->oo 

Now let fJ E M(W) and f E P(w)\{0}. Then by (7) 

(8) B(p * = lim 
n-+oo 

= lim eio:X {[(eN XeD e-(N+l)X)"enX](~t) 
n-+oo 

By the uniform boundedness principle the sequence ([ei<>X (eN XeD e-(N+I)XtenX]) 

is bounded. Hence the sequence (ei<>X[(eNXeDe-(NH)X)nenX](~t)) has a weak-* 

convergent subnet converging to a measure v. From (8) it then follows that 

B(p) * 8(f) = 8(p *f) = v * B(f), 

and hence B(p,) = v by Titchmarsh's convolution theorem. This shows that the 

weak-* limit of (e'"'X[(eNXeDe-(NH)X)nenX](~t)) exists and 

B(p) =weak-* lim eiaX[(eNXeDe-(N+l)XtenX](p,) 
n---+oo 

for every p E M( w ), and the corollary is proved. 
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Recall that a weight w belongs to the class w+, [8] if 

(i) for some positive a, 

P(a) =sup { x w~(~)a) : x E R+} < oo. 

(ii) inf{a: P(a) < oo} > 0. 

For example a weight w satisfying w(x) = e-xlogx for large values of x belongs 

tow+. Theorem 3 and [8, Theorem 2.b] yield the following: 

COROLLARY 2. Suppose wE w+. Then for every automorphism() of M(w), 

there exists a real number a, a non-negative number>., and a derivation D, such 

that()= eiaXe>.XeDe->.x. 

REMARK 1. The weak-* limit in the statement of Theorem 4 is in fact a norm 

limit when f.L E L 1 ( w) or when f.L is a linear combination of point masses. However 

we do not know if this is true in general. 

REMARK 2. With some minor changes in the proof of Lemma 1 and Theorem 4 

it can be shown that if() is an isomorphism from M(wl) onto M(w2 ) then() maps 

P(wl) onto L1 (w2 ). 
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