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BANACH ALGEBRA TECHNIQUES AND 
EXTENSIONS OF OPERATOR-VALUED REPRESENTATIONS 

B. Chevreau and J. Gate * 

1. INTRODUCTION 

The existence of a functional calculus associated to a (bounded linear) operator T on 

a (complex) Banach space E can be very useful in the study of T, provided this functional 

calculus is defined on a sufficiently rich class of functions. In this note we consider sev-

eral situations where standard Banach algebra techniques (mainly the use of a bounded 

approximate identity via Cohen's factorization theorem for modules) lead to extensions of 

a given functional calculus to a larger algebra. The typical case we discuss (§3) is that 

of a representation q> of the standard disc algebra A(D) into the Banach algebra £(E) of 

operators on E. (Indeed, any contraction on a Hilbert space gives rise to such a represen-

tation via von Neumann's inequality.) In this situation we can extend 4? to subalgebras 

Hf? of H= (see below for definitions) where r is an open subset of the unit circle whose 

complement in T has (Lebesgue) measure 0. It turns out that such algebras have already 

been considered in the literature ( cf. [3]). We conclude this section with an investigation 

of the "maximal" extension that can be obtained in this fashion. 

In section 4 we discuss the same problem where the disc algebra is replaced by an 

arbitrary function algebra A. Particular cases of this situation had already been studied 

in [1]. Here the "leading thread" is the connection between peak sets of A and bounded 

approximate identities for certain ideals of A. 

* vVork of the second author was partially supported by the Spanish VGICYT, Project PS87-0059. 
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2. PRELIMINARIES 

For the reader's convenience, before stating the main extension tool, we recall the 

basic facts on multipliers and bounded approximate identities in a commutative Banach 

algebra A such that A.l.. = 0 (that is, for all f E A\{0}, there is g E A with fg f 0). This 

material is essentially taken from [1] and [4]. 

DEFINITION 2.1. A multiplier of A is an operator T: A- A such that 

T(g) = fTg (f,g E A). 

The set M(A) of all multipliers of A turns out to be a norm-closed commutative 

subalgebra of .C(A). The topology induced on M(A) by the strong operator topology of 

.C(A) is referred to as the strong topology. There is a natural contractive embedding of A 

into M(A), f - Tf (where TJ(g) = fg, g E A). In general this embedding need not be 

bounded below. However it will in the case when A has a so-called bounded approximate 

identity. 

DEFINITION 2.2. A bounded approximate identity for A (notation b.a.i.) is a bounded 

net (eo:)o:EA in A such that limo: llfeo:- fll = 0 for all fin A. 

The above assertion follows immediately from the definition: if the net (eo:) is bounded 

by M then we have llfll ~ MIITJII for all f in A. Thus, when A has a b.a.i. we may 

consider A as a subalgebra of M(A) (this identification is in fact isometric if the b.a.i. 

is bounded by 1 ). If the net (eo: )o:EA can be taken to be a sequence then we say that A 

has a sequential bounded approximate identity (s.b.a.i.). It is well-known (and an easy 

consequence of Cohen's factorization theorem for modules over Banach algebras with b.a.i., 

cf. [7, Theorem 32.23, p.268]) that a Banach algebra A with b.a.i. has a s.b.a.i. if and 

only if (aA)- = A for some a E A. In particular every separable Banach algebra with 

b.a.i. has a s.b.a.i. 

We can now state the basic tool for extending representations. For completeness we 

include the proof. Here, as usual, by a representation we mean a norm-continuous algebra 

homomorphism. 
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THEOREM 2.3. ( cf. [4, Prop. 5.2] and [1, Theorem 4.6]) Let A be a commutative Ba

nach algebra (satisfying AJ.. = 0) with s.b.a.L (bounded by l) a.11d let 1> be a representation 

of A into .C.( E) such that <li(A) E is dense in E. Then 

(1) 1> bas a unique homomorphic extension <I> from M(A) into .C.( E), and 

(2) <I> is norm continuous; in fact it is strong operator continuous and ll<i>ll = 111>11· 

Remark. The condition that the s.b.a.i. be bounded by 1 is no serious restriction since 

( cf. [8, Theorem 8]) any Banach algebra with s. b.a.i. can be (equivalently!) renormed so 

as to have a s.b.a.i. bounded by 1. 

Proof of Theorem 2.3. (1) The representation 1> induces an A-module structure onE 

via the operation (a, x) 1--+ 1>( a)x. Since A has a s.b.a.i., it follows by Cohen's factorization 

theorem for modules ( cf. [7, p.268]) that 1>( A) E is closed. Let x E E; then x = <I>( a) y for 

some a E A and y E E. If <!> is any homomorphic extension of <I> to M (A) then for any T 

in M(A) we have 

<i>(T) x = ~(T) <!>(a) y = ~(Ta) = <I>(Ta) y. 

This proves the uniqueness of <I>; moreover we have 

<f>(T)x=q_)(Ta)y= lim ifl(enTa)y= lim ifl(Ten)ifl(a)y 
n->oo n..........;.oo 

(where (en)nEN is a s.b.a.i. bounded by 1), that is, 

<l>(T) x = lim <I>( Ten) x. 
n->oo 

It is now straightforward to check that <I> defined by this last equality is indeed an algebra 

homomorphism. 

(2) From the definition of 4> we get immediately 

ll<l>(T) xJj:;; lim sup IJ<Ii(Ten)llllxll:;; ll.;p!IIITJJ!Ixll (x E E, T E M(A)) · 
n-;.oo 

Thus~ is norm continuous ancljJ~II = JI<I>JJ, (if (en) were bounded by M instead of 1 then 

we would get ll<i>ll:;; MJJ<PjJ). 



48 

Let now (Ta)aEA be a net in M(.A) converging strongly to 0. Then (with x =<I>( a) y) 

lim ci>(Ta) X = lim <I>(Ta a) y = 0. 
"' a 

This completes the proof of (2). 

3. THE DISC ALGEBRA CASE 

In this section <I> is a given unital representation of the disc algebra .A(D) into .C(E) 

such that <I>( a) = T where a is the position function z f-+ z. We will follow the standard 

practice of writing f(T) for <I>(!) or ci>(f) when ci> is an extension of <I> and f belongs 

to the domain of definition of ci>. Of course, since .A(D) is unital, M(.A(D)) = .A(D); 

thus we have to apply Theorem 2.3 to suitable nonunital subalgebras of .A(D) in order 

to obtain a nontrivial extension. A basic example is the ideal .A1 (D) of those functions 

in .A(D) vanishing at 1. It is immediate to check that the sequence of functions (en), 

en(z) = (1-z)lfn, zED, is a s.b.a.i. in .A1 (D). Moreover the algebra M(.A1 (D)) can be 

identified with the algebra .A]"'(D) consisting of the functions bounded and analytic in D 

(the open unit disc) and continuously extendable to D\{1}. 

Finally we observe that the condition "<I>(.A1(D)) E dense in E" is obviously satisfied 

whenever ((1-T) E)- =E. Thus, from Theorem 2.3 we deduce immediately the following 

result. 

THEOREM 3.1. Let <I> be a representation from .A(D) into .C(E) such tbat Ran(1 - T) is 

dense in E. Tben <I> bas a unique bomomorpbic extension to tbe algebra .A]"'(D). Moreover 

tbis extension is norm-continuous witb tbe same norm as <I>. 

Of course we have a similar result, that is, an extension of <I> to 

Ar(:D) ={!bounded, analytic on D and continuously extendable to D\{>.}}, 

for any point .A of T such that (T - .A) has dense range. 



49 

Before turning our attention to another extension we state a "spectral mapping theo-

rem" whose proof is another illustration of the usefulness of b.a.i. This result was initially 

proved, in the case where T is a completely nonunitary contraction on a Hilbert space, 

in [5], via entirely different techniques. Here as usual H 00 denotes the Banach algebra of 

bounded analytic functions in D and, for A E .C(E), o-(A) denotes the spectrum of A in 

C(E). 

THEOREM 3.2. ( cf. [1, Theorem 2.6]). Let A be a subalgebra of H 00 containing A(D), 

let <I> be a representation of A into .C(E). Tben, for any A E o-(T) n T and any h in A 

continuously extendable to D U {A}, h(A.) belongs to o-(h(T)). (As before T = <I>(a) and 

h(T) = <'P(h).) 

Proof. By a "rotation" we may assume ).. = 1. Then for h in H 00 continuously extendable 

to D U {1} we have 

lim (h- h(l)) en = h- h(l), 
n-->oo 

where, as before, en(z) = (1 - z )1/n. If in addition h belongs to A, we have therefore 

h(T)- h(l) = lim ((h- h(l)) en)(T). 
n->oo 

If h(l) (j. o-(h(T)) then, since the set of invertible elements is open, we have, for n large 

enough, (h(T)- h(l)) en(T) invertible and consequently en(T) invertible. This is absurd 

because, as is well-known and easily proved, for any fin .A(D) we have f(r7(t)) <; o-(f(T)) 

and hence 0 (= en(l)) belongs to <7(en(T)). Thus (h(T)- h(l)) is not invertible, as was 

to be proved. 

A more general example of extension is obtained by taking a closed subset F ofT of 

Lebesgue measure 0 and replacing A 1(D) by the ideal Ap(D) = {! E A(D) : !IF= 0}. 

By [6, II.12.6] there exists a function PF E A(D) "peaking" on F, that is: 

{ PFIF = 1 

IPF(z)l < 1, z E D\F. 
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Then en = (1- PF )1/n, n ~ 1, is a s.b.a.i. in Ap(D). There is no difficulty in identifying 

M(Ap(D)) with the subalgebra HT\F consisting of all the functions in H 00 continuously 

extendable to D\F. (We follow the notation of [3}.) Thus we deduce immediately from 

Theorem 3.2 the following result. 

THEOREM 3.3. Let Ill be a representation from A(D) into C(E) and let F be a closed 

subset ofT of measure 0 such that: 

IP(AF(D)) is dense in E. 

Then Ill has a unique homomorphic extension to the algebra HT\F· Moreover this extension 

is norm-continuous and of the same norm as Ill. 

Remark 3.4. With respect to the applicability of Theorem 3.3 we observe that the 

subspace Eo = ( IP(Ap(D)) E)- is always invariant forT (in fact it is even a hyperinvariant 

subspace forT, that is, a subspace invariant for any operator commuting with T). Hence we 

can consider the representation ~Po : A(D) ~ C(Eo) obtained by setting ~Po(!)= IP(f)IEo, 

f E A(D) and apply Theorem 2.3 to this representation. In other words either T has a 

nontrivial hyperinvariant subspace or Ill can be extended to HT\F· Of course (cf. [9]) in 

the case of a representation Ill generated by a contraction T on a Hilbert space a much 

stronger result is known: either T has a nontrivial hyperinvariant subspace or Ill can be 

extended to H 00 • 

In view of the above remark it is natural to inquire what is the maximal subalgebra 

of H 00 to which Ill can be extended via Theorem 2.3. Supposing that (*F) is valid for all 

closed subsets F ofT of Lebesgue measure 0 we can define (uniquely) f(T) for any fin 

the set Eo = UF HT\F where F runs over the collection of closed subsets ofT of Lebesgue 

measure 0. It is easily checked that Eo is a subalgebra of H 00 and that f ~ f(T) is a 

homomorphism. Moreover, since \\f(T)\\ ::; 1\IP\1\\f\1, f E Eo, Ill has a unique continuous 

homomorphic extension to E = E;;. Note that for any f E E there is a sequence (Fn) 

of closed Lebesgue negligible subsets of T and a sequence (in) of functions such that 
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fn E HT\Fn and II! - fnll --+ 0. The set r = nnCT\Fn) is a Go-subset of T whose 

complement (in T) is negligible and f is continuously extendable to D U r, that is, in the 

notation of [3], f E Hr. In other words 13 C A where 

A= u{Hr :raGs-subset ofT, m(T\r) = 0}. 

It is straightforward to check that .A itself is a closed subalgebra of H 00 • In fact, combining 

results and techniques of [2] and [3], the second author has proved that .A= B. (This result 

as well as a more detailed study of .A will be the subject of another note.) 

4. EXTENSION OF REPRESENTATIONS OF UNIFORM ALGEBRAS 

In this section A is a uniform algebra on a compact Hausdorff space X (that is, .A is a 

closed unital subalgebra of C(X) which separates points of X), ~is a unital representation 

of A into £(E), and :J is an ideal of .A. We wish to apply Theorem 2.3 to extend ~ to 

M(:J). First we show that .M(:J) itself is a uniform algebra and then state the corollary 

of Theorem 3.3 in this context. We conclude by developing the connection between the 

existence of b.a.i. and peak sets. 

To avoid overly complicated notations it will be convenient to consider X as embedded 

in Max A, the maximal ideal space of A, and treat elements of A as functions on Max .A. 

In this setting h(:J), the hull of the ideal :J in .A, is defined by 

h(:J)={xEMaxA: f(x)=O, fE:J}. 

Note that, by definition of h(:J), if x if_ h(:J) there exists f E :J such that f(x) -=/= 0. 

Observe also that if g is another element of :J such that g( x) -=/= 0 and T is a multiplier of 

:J then, from fT g = gT f we get 

Tf(x)/f(x) = Tg(x)/g(x), 

In other words for any x E Max.A\h(:J) and any T E M(:J) we can define T(x) (E C) 

such that 

Tf(x) = T(x) f(x), x E MaxA\h(:J), f E :J 
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(Of course this is the already defined value ofT( x) when T is a multiplier of J associated 

to an element of A.) 

Clearly T ~---+ T(x) is a nontrivial multiplicative linear functional on M(J). Hence it 

is continuous and, moreover, IT(x)l ~ IITII· On the other hand we have 

Therefore 

IITII = sup{IITfll : f E J, 11!11 ~ 1} 

= sup{ITJ(x)l : x E MaxA\h(J),f E J, IIJII ~ 1} 

= sup{IT(x)llf(x)l : x E MaxA\h(J), f E J, IIJII ~ 1} 

~ sup{IT(x)l : x E MaxA\h(J)}. 

IITII = sup{IT(x)l : x E MaxA\h(J)}, T E M(J). 

This dearly shows that IIT2 II = IITII 2 and, hence, that M(J) is a uniform algebra (cf. [6, 

1.5.3]). We summarize the above in the following statement. 

PROPOSITION 4.1. Let J be an ideal in a uniform algebra A on a compact Hausdorff 

space X. Then M(J) is a uniform algebra on some compact Hausdorff space containing 

MaxA\h(J). 

In this context Theorem 2.3 takes the following form. 

THEOREM 4.2. Let IJ> be a representation of the uniform algebra A into £(E) and let 

J be an ideal of A possessing a s.b.a.i. Suppose that 

Then I]? has a unique homomorphic extension to M(J). Moreover this extension is con

tinuous with the same norm as <I>. 

Remark 4.3. With respect to ( *:J) we observe that, just as in the case of the J = Ap(D), 

the subspace Eo = ( IJ>(.J) E)- is invariant for ([>,that is, invariant for any operator in the 

range of IJ>. 
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In [1] several particular cases of Theorem 4.2 are given, mostly arising from the "clas

sical" function algebras on a compact subset X of the complex plane: R(X), the closure in 

C(X) of rational functions with poles off X, and .A( X), the algebra of functions continuous 

on X and analytic on the interior of X. Besides a detailed consideration of the case where 

the ideal J consists of those functions vanishing at a point of the boundary of X (with 

some geometrical property "accessibility" or "nice accessibility" to ensure the existence of 

s.b.a.i. in J) examples are given involving the construction of s.b.a.i. via peak sets. 

Recall that a subset of P of X is called a peak set for A if there exists f E .A such 

that 

{ 
fjp = 1 

lf(x)! < 1, x E X\P. 

As suggested by the examples in (1], there is a close connection between peak sets and 

b.a.i. 

THEOREM 4.4. Let .A be a uniform algebra on a metrizable compact space X and let 

J be an ideal in .A. Then 3 bas a s.b.a.i. if and only if X n h(J) is a peak set for A. 

Proof. Suppose that X n h(.J) is a peak set for A. Let f be a function in .A peaking on 

X n h(J), that is 

{ f(x) = 1, 

if(x)l < 1, 

x Ex n h(J) 

X rf_ h(,J). 

Then it is easy to verify that the sequence of functions (en) 

en(x) = (1- f(x)) 1fn 

is a s.b.a.i. for ,J. 

Conversely suppose that (en) is a s.b.a.i. for :J and let f-l be a measure on X orthog

onal to .A, that is, J f df-l = 0, f E .A. By [6, II.l2, pp.56-57] it suffices to prove that 

J Xnh(:T) f df-l = 0, f E .A to finish the proof. 

For any f E .A, we have 
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Note that for any x E X\h(:J) we have 

lim en(x) = 1 (because of \\fen- f\\-t 0). 
n_,oo 

An application of Lebesgue's dominated convergence theorem yields 

f f dp, = 0 , f E .A, 
j X\h(:l) 

and consequently 

f f dp, = 0 
lxnh(.:J) 

as desired. 

Remark 4.5. If we drop the condition that X be metrizable in Theorem 4.4 it just requires 

some minor extra technical work to prove that :J has a b.a.i. if and only if X n h(J') is a 

generalized p-set for A in the sense of [6, II.12]. 
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