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AN INVITATION TO THE ANTI-PERIODIC PROBLEM

Hiroko Okochi

1. INTRODUCTION

Let # be a vector-valued function defined on R. We say ¥ is

Tt-anti-periodic for a fixed ©>0 if

uCt+T)= ~udly, teR.

This property seems to have been first studied in [13]1. On the other
hand, we call ¥ <T=-periodic if uU(i+t)=u(f) holds for each t€R. By
definition, T-anti-periodic functions are 2t-periodic.

In this note, we shall explain results on the anti-periodic
problem of nonlinear evolution equations with odd subdifferential
operator terms which are defined in real Hilbert spaces. For this,
we also relate the definition and properties of subdifferential
operator, and some results on the periodic problem.

The author hopes that this note will interest the reader in the

anti-periodic problem.

2. SUBDIFFERENTIAL OPERATOR (PRELIMINARY)

Let # be a real Hilbert space with innerproduct (.,.) and norm
I . The subdifferential is a (possibly multivalued) operator
defined as below: Let ¢: H = (-»,+2] be a proper lower

semi-continuous (l.s.c.) convex functional. The effective domain of
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¢ is the set {(x€H: @(x)<+»} and denoted by D(¢). The subdifferential

9¢ of ¢ is defined by

Bp(x)={E€l; (£,y-x)<0(y)-¢(x) holds for all yed(e) },

D(@p)={(zeD(p); the sel 8¢(x) is nomemply }.

By definition, the relation £€3¢(x) for z€D(9¢) is illustrated by the

following figure;
graph of ¢

graph of (&,.)+const.

@y -0(T)

=~
[P0 NEP

The following properties are known ([21, [31,[111):
(I> 1f ¢ is differentiable at z€D(8¢p), then 8¢(x) is a singleton set
and 9¢(x)= grad ¢(z). On the other hand, if x€D(8¢) and ¢ is sharp

at £ then 8¢(z) is multivalued.

an D(Bp) = D).
(III> 8¢ is monotone, i.e., for all x, Y€ED(O¢¥) the estimate

(2.1) (m*-y*, z-¥) =2 0 , z*€8¢(m) R y*eaw(y)
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holds. This property is obtained by convexity of ¢. Moreover, since
¢ is proper and l.s.c., it is known thatlaw is maximal monotone.
Hence, by applying the nonlinear semigroup theorem started by Komura
[11], 3¢ generates a (nonlinear) semigroup (S5(t);t=0} defined on

DBe) (=D(w) ¢ # ). 1In other words, for each uOED(Sw), the function

1,1

loc(O,m;H) to the

S(t)uo , t€[0,+>), is the unique solution in W
initial-value problem

_d
dtu(t) + oty > 0, tr0 ,

(2.2)
u(0)=u0

Here the unigueness of solutions of (2.2) is obtained by monotonicity

(2.1), which is equivalent to nonexpansion of {S(t);{=0}.

(IV) The semigroup {(S(%);{20) generated by 9¢ has a smooihing effect

property in the sense that for each uOGD(Gw) one has S(t)uoeD(Sw) for
£>0. No other operator is known to have this property in the

nonlinear- case.

(V) The scoliution of (2.2) is the projection to X of the steepest

descent on the graph G(@)cHxR. Moreover

(2.3) a-%cp(u(t)) = —lld—céu(t)llz, a.e.1>0.

This property is easily understocd in the case where ¢ is smooth.
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We give examples in the real Hilbert space LZ(Q) with Q a

domain of R™ with a smooth boundary 9%

Example 2.1. Put

% fQIvulzdx . ueHl(Q) ( ED(¢1) ),
@1(U)=

+o otherwise .

Then ¢, is proper l.s.c. convex functional on LZ(Q) and the

subdifferential 8¢1 is as below;

= - = 2 . Su -
a¢1<u> = =AU , D(8¢1) = {(ueld“ anl o™ o) .
Example 2.2. Put
3 fglvul®az ,  weHl@ ( =Dle,) ),
¢2(u)=
to otherwise .
Then
90, (u) = -Au ,  D(39,) = Hé(Q) n HEZ @

Example 2.3. Let p=22 . Put

1 % ojau |P
» fQ > |5§ | de U € D(9y) (defined suitably)
@, (U= i=1"'%%¢
3

+o otherwise .

Then .

p—z—a_u‘)

n
- _9 (|au
aws(u) - izlaxi(lami axi

D(8¢3) is defined depending on D(ms)
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n
Example 2.4. ¢ w)= 3

ai(:z:,vu) + buw) ,
i=1 i

&l
8 o

where (ai) and b satisfy some conditions (see [141).

Example 2.5. Let £ be a closed convex subset of a Hilbert

space H. Put

o= { ° uec ,
+co . otherwise .
Then
{0} , u€ Int C ,
Slc(u) = —
{8€l; (&,v-u)=0 for each vel}, u€ € N\ Int C ,
D(SIC) = C

Example 2.5 is useful if we consider parabolic differential
equations on f-dependent domains, obstacle problems or free boundary

problems (e.g. [91, [161, [191).

3. AN EVOLUTION EQUATION WITH FORCING TERM

In this section we explain results on the periodic and
anti-periodic problem of the following parabolic evolution equation
defined in a real Hilbert space H;

(3.1) g%u(t) + B u(t)) 3 F()

with ¢ a proper 1.s.c. convex functional on H, 99 the subdifferential

of ©® and
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2

loc(IR;H) and f is t-periodic.

(3.2) felL

Here the regularity of f in (3.2) is assumed only in order to get the

existence of a solution to the initial-valued problem (3.1) with any

initial-value uOGD(S@).

3.1. ON THE PERIODIC PROBLEM The following results are known;
(A) (sufficient condition) Suppose that 8¢ is coercive, i.e.,

(3.3) 1im inf iggﬁﬁﬁﬁil
Roe lzlizR

= <o

or egivalently
RBe) = H .
Then there is a t-periodic solution to (3.1).
(B> (sufficient condition, Haraux [6]) Suppose
10T
.y L f FCt)dt € Int R(B@) .
0
Then there is a t-periodic solution to (3.1).
() (I61) In the case where 8¢ is linear, hence, by definition, 98¢ is
a nonnegative self-adjoint operator, the relation
1t
- I Fit)dt € R3e)
T o

holds if and only if (3.1) has a t-periodic solution.

(D) (necessary condition, [6]) Suppose that there is a t-periodic

solution to (3.1). Then

T
(3.5 1 f Ft)dt € Rde) .
T 0 .
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In fact, if there is a t-periodic solution # to (3.1), then

integrating (3.1) over [0,t] and next dividing by t one has

T T
L ["rcrat e L [Toecuctrdt ¢ conv R@e) = Feded
T Yo T o

Here we noted that R(8¢) is convex in H.

(E) (uniqueness) 1If 8¢ is strictly monotone, or equivalently, ¢ is
strictly convex, then the number of periodic solutions to (3.1) is
one or less. In fact, for any two solutions ¥ and v, one has
“Luctr-v)1%= 2-90 W) +89W(£)), UEI=V(E) < 0
a.e.l
(F) (Baillon and Haraux [2]) Let ¥ and v be periodic soclutions to
(3.1). Then

u(t)y-v(t) = const. € H , teR .

3.2. REMARKS Before relating results on the anti-periodic problem
(3.1), we give somé remarks about Examples 2.1-2.4: Suppose that @
is unbounded in R™. Then, for any 8¢ of Examples 2.1-2.3 and

Example- 2.4 with b=0 , one has
(3.6) Int R(9¢) is empty,
(3.7) The level set C(u)={u€l; o(u)<r} is mot compact for any
X > min ¢ , or equivalently, the semigroup {S5({)} generated by

8¢ is mot completely continuous.

On the other hand, if @ is bounded, then the properties which fail in
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(3.6) and (3.7) are satisfied for many 8¢ in Examples 2.1-2.4.
By (3.6), if Q is unbounded, we can not use condition (3.4) to
get the existence of periodic solution (3.1). -

Property (3.7) concerns the asymptotic strong convergence of

S(t)x for x€D(O¢¥) in the following fact; If C(x) is compact for

A > min ¢ , then
(3.8) S(i)z converges strongly to a minimum point of ¢ as {-+=»,

The following condition (3.9) is also known to be sufficient for

the convergence (3.8) ([5]1, [181);
(3.9) 3&>0; o¢(-gx) < ©(x) holds for z€D(Y) .

In particular, the case of =1 in (3.9) is the evenness of ¢, or
equivalently, the oddness of 8¢. Clearly, all 9¢ of Examples 2.1-2.4
are able to satisfy (3.9) independently of whether or not Q is

bounded or unbounded.

3.3. THE ANTI-PERIODIC PROBLEM Our results are the following ([131);

THEOREM 3.1. Suppose

(3.10) 8¢ is odd, or equivalently, ¢ is even,

(3.11) £ is %-anti—periodic; Ft+ §)= -f(t), teR.
Then equation (3.1) has a unique T ~anti-periodic solution.

2

COROLLARY 3.2. Under (3.10) and (3.11), equation (3.1) has a
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t=-periodic solution.

Assumptions (3.10) and (3.11) together yield the anti-periodicity

condition
(g + f(t+ gn(—m = -{8¢ + f()Y (), €D (dp) .

Hence it seems to be reasonable to assume (3.10) and (3.11) in the
anti-periodic problem.

Now we shall view the conditions (3.10) and (3.11) {from
Corollary 3.2.

First we verify the necessary condition (3.5) in (D) under (3.10)

and (3.11). In fact, by (3.10)
(3.12) 0 € 39(0) c Re) .

On the other hand, (3.11) yields
1 T

(3.13) L f Fitydt = 0 .
Ty

Hence (3.5) holds.
Relation (3.12) holds under the generalized evenness condition
(3.9), since 0 is a minimum point of ®. Therefore one might expect

to generalize (3.10) into (3.9) in Corollary 3.2. But we have;

PROPOSITION 3.3, Let dim H = +=» , Then there is a proper l.s.c.
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2

loc(IR;H) such that (3.9) and (3.11)

convexr functional ¢ on H and feL

hold and there is mo periodic solution fto (3.1).

We also see that condition (3.11) can not be generalized into

(3.13) in Corollary 3.2. 1In fact we have;

PROPOSITION 3.4, Let dim H = +» . Then there is a proper L.s.c.
convex functional ¢ and a t-periodic funetion feL%oc(R;H) such that

(3.10) and (3.13) hold and there is mo periodic solution to (3.1).

By these propositions, the anti-periodic problem seems to be

reasonable in our situation.

4. FURTHER RESULTS ON THE ANTI-PERIODIC PROBLEM

In this section we see the existence of anti-periodic solutions
to differential equations in a non-monotone framework ([81) or
t-dependent unbounded monotone framework ([151, [161, [171), though
the uniqueness of anti-periodic solutions and relation to periodic

problem are also stated in [8].

4,1, NON-MONOTONE PARABOLIC EQUATIONS (Haraux [81) We consider the

differential system in R™ of the form
(4.1)  u'(t) + 8Gu(t)) = ft) ,

with GeW%;Z(R“); 8G:R™R" the gradient of G and feLfoc(R;R“). Here

%' denotes (d/dt)u and we put H=R". We assume
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(4.2) (anti-periodicity) f(t+ §)= -f(t), teR ,

(4.3) (oddness) 8G(-z)= -8G(z), =zeR".
We also consider the evolution eguation
(4.4) U () + BoudEd)) - auty 3 f(

defined in a real Hilbert space H, where x>0, 8¢ is the

subdifferential of a proper l.s.c. convex functional ¢@:H - RU{+«} and

2

fELloc

(R;H). We assume (4.2) and
(4.5) (oddness) 8¢(-z)= =9d¢(z), z€H.
The following results are obtained;

THEOREM 4.1. (i) If uew%;i(R;H) is a % ~anti-periodic solution to
(4.1) Cor (4.4)), then

(4.6) lul < IFl

L2c0,t/2:0 L2¢0,t/2:H)

(4.7) flul < Je/2 A,
L (o,t/2:i) Lo0,c/2:8)

(ii) There is a % -anti-periodic solution uewiai(R;H) to (4.1)

(or (4.4)). Here, in the case of (4.4), we agsume that

(4.8) For each ¢>0 the set Ec={z€D(¢); Izl<e, o(z)<e} is compact.

Proof of (i) Let u be a % -anti-pericdic solution to (4.1). Then
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multiplying (4.1) by ¥' and integrating over (0, % ) we have

t/2 5 /2
f le 12dt + Guce/2)) - Guco)) = f (£Ct),u (£))dt .
0 0 :

Since u(t/2)= -u(0) and G is even, we deduce

/2 5 ’ t/2 t/2 2 1/2 ,t/2 2 1/2
f luw 12dt = j Foundt < [ 17124t <f N 1 2dt)
0 0 0 0

or (4.6).

In case of considering (4.4), put
= A 2
G(z) = 9(2) - 5 fzi=, zZ€D ().

Then, by (2.3), we get (4.6) in the same way.

To verify (4.7), let t€(0,t/2). Then by (4.6)

trt/2 t+t/2

et = lucty -+ f u(srds I < L f luCt)-u(s) lds
t-t/2 t-t/2
1 t+t/2__ .
<1 I /<72 151 ds < Jo/z 161,
t-t/2 L0, c/2:H) L0, x/2: /).

Hence (4.7) holds.

Qutline of Proof of (ii> For any constant ¢>0, we can find an

auxiliary potential Glewl’m(Rn) to (4.1) satisfying

(4.9) Gl(z)=G(z) if lzl<e,
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(4.10) For any ZOGH there is a solution v(.,zO)EWi;i(O,w;H) to
[TARS Gcl(v) = f(ty, tz=0, v(0)=z0 ,
(4.11) There is a constant P>0 such that Hv(t/z;zO)HsP holds

whenever HZOHSP .

By Brouwer's fixed point theorem, the map T:{llzll<P} = (llzll<P} defined

by Tz = -v(t/2;z) has a fixed point z, in the closed ball

1
{Izl<P}, or equivalently, v(.,zl) is a t/2-anti-periodic solution to

AN acl(v) = f(1).

Since vi.,2zy) satisfies (4.7), putting ¢ = Jt/2 Ifl 5
L(0,t/2H)

and noting (4.9), we get the existence of r/z-anti-periodic solution
to (4.1)
In case of considering (4.4), using Schauder's fixed point

theorem, we get the existence in a similar way.

COROLLARY 4.2. Let Q be a bounded domain in R®, g an odd
nondecreasing (continuous) function on R and x20. For each

rel? R;L*@)) satisfying f(tst/2, )= -f(t,.) a.e.teR, there is a

1,2

.72
loc(IR,L )y to

golution ueL'”(IR;Hé(Q)) nw
(4.12) up - AU + gQu) - Au = f(t,z), (t,z)ERXN,

(4.13) u(t+t/2, ) = ~ult, ., teR.

Remarks 4.3. (i) Corollary 4.2 is of interest when g is sublinear at
infinity. Because, if g is superlinear, then the existence of a

T-periodic solution is obtained under T-periodicity of f. Moreover
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the existence of t/2-anti-periodic solﬁtion is obtained by applying
Schauder's fixed point theorem directly under the t/2-anti-periodicity
of f.

(ii) In some cases of "bad" nonlinearities producing blow-up
phenomona, we can also show the existence of anti-periodic

solutions. (See [8; Theorem 2.4 and Corollary 2.61.)

4.2. NON-MONOTONE HYPERBOLIC EQUATIONS ([8]) We consider the

differential system
(4.14) u"(t) + Bu't)) + d3Gwu(t)) = ft)

in R", where 8G:R"™R" is the gradient of a function Gewz’

L
loc(]R Y,

BGW}&Z(R“;R“) is a monotone operator on R" and feL%oc(R;Rn). We

assume

(4.15) B and G are odd,

(4.16) (Bz,z) = alzl®- ¢ , zeR"

for some constants a>0, ¢=20; We also consider the nonlinear wave

equation
(4.17) Uy~ Au + g(u) + B(ut) 3 f(t,x)
defined in LZ(Q) with Q@ a bounded domain of Rn, B:R»R a maximal

monotone operator and fGL%OC(R;Lz(Q)). We assume (4.15) and (4.16)

in respect of B and g and some conditon on g (see [81).
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The following result is obtained:

THEOREM 4.4. For any t/2-anti-periodic feL?OC(R;H), there exists a
t/2=-anti-periodic solution u to (4.14) (or t/2-anti-periodic weak

solution ueC(R;Hé(Q)) n CHR;L2@)) to (4.17)).

Remark 4.5. Put g=0 and B=clvl® lv , p>1, ¢, in (4.17).
Then, in case m23 and p>(n+2)/(n-2), the existence of tT-periodic
solutions in the natural class C(R;Hé(Q)) n CI(R;LZ(Q)) seems to be
unknown for general t-periodic forcing terms fGLZ(R;Lz(Q)). (See

[8;section 4] and its references.)

4.3. PARABOLIC EQUATIONS WITH T-DEPENDENT UNBOUNDED MONOTONE TERMS
Iin [15] and [16] (see also [17]), we obtain the existence of

anti-periodic solutions to the parabolic evolution equation

c—i%u(t) + BQ(L)) + F(HHu(t) 3 0

defined in a real Hilbert space, where 3¢ is an odd subdifferential
operator and {F({):t€R} is a family of monotone operators satisfying

the anti-periodicity condition

DF(Lt+t/2))= =-D(F(t)y, teR ,
Fet+x/2)(~2) = -F(l)z, zeD(F(t)y), teR

and some conditions (see [15]1, [161). We do not assume any

compactness of ¢ or F(f) in the sense of the strong topology of H.
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Remark 4.6. The essential reason for ﬁssuming the monotonicity of
F(t), teR, is to apply Browder's fixed point theorem, in which
compactness in the strong topology is not assumed, but nonexpahsion
of the solutions is needed. On the other hand, in Theorem 4.1, the

compactness (4.8) is assumed only for applying Schauder's fixed point

theorem.
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