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THE UNIQUENESS OF DIFFUSION SEMIGROUPS

Brian.Jefferies-

Abstract. It is shown that if the highest order co-efficients of a uniformly elliptic second order
differential operator L on R¢ are bounded and Hélder continuous, and the other coefficients
are bounded and measurable, then there is at most one semigroup S acting on bounded
Borel measurable functions, such that S is given by a transition function, and for all smooth

functons f with compact support in R?, S f(z) = f(z)+ fot S(s)Lf(x)ds for all ¢ > 0 and
T € Rd.

1. Introduction. One approach to the construction of a diffusion process on R?
generated by an elliptic second order differential operator L is to find a semigroup S of
operators acting on the space of all bounded Borel measurable functions on R¢, such that
S is dgiven by a transition function, and for all smooth functons f with compact support
m RY,

(1) S()f(z) = f(z) + / S(s)LF(x)ds

for all t > 0 and ¢ € R? . If all of the coefficients of L are Holder continuous, then the
existence and uniqueness of solutions of (1) follow from the classical theory of parabolic
partial differential equations [1]. A more recent approach [5] is to construct directly, for
each z € R?, a probability measure P? on the space of continuous R%-valued paths, so
that for every smooth function f with compact support,

t
foXs —/ LfeXsds, forallt >0
0

is a P®-martingale with respect to the filtration o{X, : 0 <r < s}, s > 0, and P*(g-Xo) =
g(z) for every bounded Borel measurable function g on R?. For each t > 0, the random
variable X; is taken to be evaluation at time ¢.

A unigque solution to the martingale problem gives a Markov process whose transition
functions are associated with a semigroup satisfying (1). The existence and uniqueness of
solutions to the martingale problem for strictly elliptic operators with continuous second
order coefficients has been proved by Stroock and Varadhan [5], thereby establishing the
existence of solutions of equation (1) for this class of operators. The uniqueness of solutions
of equation (1) does not apparently follow from their method, which appeals directly to
the sample path properties of the associated process.

To be more precise about the class of semigroups we are to deal with, the space of all
bounded Borel measurable functions L’oo(Rd) is considered to be in duality with the space
M(Rd) of signed Borel measures on R? via the pairing < f,v >= Jge fdv, for every
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f € L2(R?) and every v € M(R%). The collection of all Borel subsets of R* is denoted by
B(R%).

A positive M(R?)-semigroup S is a collection S(¢), t > 0 of o(L>°(R?), M(R?)) -
continuous operators acting on £L°(R?) such that
(i) S(#)f > 0 whenever t > 0, f € L2(R?) and f >0,
(1) S(t+ s) = S(t)S(s) for all 5,2 >0, and
(iii) there exists Ag > 0 such that for all A > Ag and f € £°°(Rd), the map t —
e ™ < S(t),v >, t > 0 is integrable on (0, 00) for every v € M(R?) , and there exists
R(\)f € L=(R?) such that < RO\)f,v >= [~ e * < S(t)f,v > dt for all v € M(R?).

The family of operators R(\) : L2(R?) = L®(R?), A > wg is called the resolvent of
S. By monotone convergence, for each A > ws, R()) is o(LP(R?), M(R?))-continuous [2,
Proposition 1]. The positivity condition is a lower bound, and the existence of a resolvent
is a condition on the growth of the semigroup at 0 and co.

If 5 is a positive M(Rd)—semigroup, for each ¢ > 0 define the function p; : R? x B(Rd) —
[0,00) by pi(z,A) = S(t)xa(z) , = € RY, A € B(R?). It follows that A — p(z, A),
A€ B(Rd) is o-additive for each z € R?, z pe(z,A), z € R? is Borel measurable
for each A € B(Rd) and pirs(z,A) = fgepi(y, A)ps(z,dy) for all 5,¢ > 0, z € R? and
A € B(R%). Furthermore, for each A > wg the function z = [;~ e~ *py(z, A)dt , z € R?
exists, and is Borel measurable.

Conversely, given a collection of functions p; : R? x B(Rd) — [0,00), t > 0 such that
(z,t) — pi(z, A) is jointly measurable for each A € B(Rd), and if py, ¢ > 0 has the appro-
priate properties, a positive M(Rd)—semigroup can be constructed in a similar fashion.

Now we ignore equation (1) and work exclusively with the resolvent operators R(}) ,
A > wg, because equation (1) is equivalent to the requirement that for some A > wg,
R(M)(A — L) f = f for all smooth functions f with compact support [2, Theorem 1].

In section 2, it is shown that in the case that R()) exists, when it is viewed as an £°°(Rd)-
valued vector measure it is absolutely continuous with respect to Lebesgue measure on
R¢, provided that the differential operator L has measurable coefficients and is strictly
elliptic—the highest order coefficients of L are stricly positive definite at each point of R
No continuity assumptions on the coefficients of L are necessary.

Further restrictions are imposed on the second order elliptic differential operator L in
section 3 to ensure that (1) has at most one solution. If the coefficients of L are bounded
and measurable, if it is uniformly elliptic, and if the second order coefficients are Holder
continuous, then the conditions are satisfied. Of course, these conditions also ensure the
existence of a solution of (1) (see [5], or [2],[4] for a direct proof).

Uniqueness can be obtained with only the uniform continuity of the second order coeffi-
cients if the domain of L is taken to be larger than the natural domain C°(R?) of smooth
functions of compact support [2].
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2. Absolute continuity. Suppose that R()) , A > wg is the resolvent of a positive
M(Rd)-semigroup, and for some A > wg, R(A)(A—L)f = fforall f € C’fjo([Rd). This
section is devoted to showing that if K is any compact subset of R? of Lebesgue measure
zero, then there exists an arbitrarily small function f € CZ°(R?) such that the sup-norms
of the partial derivatives of f are bounded by one, and (A — L)f is arbitrarily large on K.
An appeal to monotone convergence then shows that the vector measure A — R(A\)x4,
A€ B(Rd) is absolutely continuous with respect to Lebesgue measure. This is the only
point at which the positivity of R()) is used. Some notation used in the present section
follows.

Let n = 1,2,.... For a vector z € R", z = (z1,...,2,), the Euclidean norm of z is
denoted by |z| = (3 iy z;2))/2. The distance between two sets A, B C R", is defined by
d(A,B) = inf{|z —y| : z € A,y € B}. Given two measurable functions f , g on R", the
function f * g, when it exists, is defined by f * g(z) = [gn f(z — y)g(y) dy, z € R™. The
Lebesgue measure of a Borel set A € R™ is denoted by |A|.

LEMMA 1. Let K be a compact subset of R?. For every open set U containing K| there
exists a non-negative smooth function f with compact support such that f(z) > 0 and

f'(z) #0 for all z € K, and suppf C U.

PROOF: Because K is compact, there exist bounded open sets V;, W;, ¢ = 1,...,n con-
tained in U such that for each i = 1,...,n, V; CW;, and V;, i = 1,...,n covers K. Let
€ < min{d(V;,W;¢):i =1,...,n}. Let ¢ be a non-negative, smooth function with support
contained in the unit ball of R? such that Jre #(z)dz = 1, and define ¢(z) = 6—%(]5(%)
For each 1 = 1,...,n, suppose that f; : R? — R is defined by fi(z) = z;lzl a; je; + b for
every ¢ € V; , and fi(z) = 0 for every z ¢ V;. The numbers a;; > 0, b;, 1,7 = 1,...,d
are chosen so that b; > —inf{z;i:l a;jz; : ¢ € W;}. The function 22;1 ¢e * f; has the
required properties.

LeMMA 2. Let K be a compact subset of (0,00) of zero Lebesgue measure . For every
€ > 0, there exists a smooth function f on R such that suppf C [0,00), 0 < f(z) < € for
allz € (0,00), and f'(z) > L forallz € K.

PROOF: Let § = % The set K is compact and of zero Lebesgue measure, so there exist
bounded open subsets U; , V;,7 = 1,...,nof (§,00) such that K C |, U;, i, [Vi] < €%,
and U; C Vi for all i = 1,...,n. Let v < min{6,d(T;,Vi¢) : i = 1,...,n}. Let ¢ be a
non-negative, smooth function with support contained in the interval (0, 1) of R such that
Jr #(z)dz = 1, and define ¢,(z) = -}745(%) Suppose that ¢ is a smooth function positive
and less than 1 on (0,6), and supported by [0, §]. Let

Fr= 5.3 [ erexn@at+ 5o(o
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for all z > 0, and let f(z) =0for all z < 0. Then forallz € R,

1 n
()] < §;/va.~(t)dt+§ <e

Because v < 6, and for each 7 = 1,...,n the set V;, is contained in (6,00), ¢ * xv;
vanishes on (—o0,0], so f is smooth. Moreover

F@) = 230 bae xule) + 59'(2).

If z € U;, then ¢, *xv;(z) = 1, so surely f'(z) > % . Therefore, for every z € K, f'(z) > %

For a smooth function f with compact support in R?, let I fll2,00 be the sum of the
sup-norms of f and its partial derivatives of order less than or equal to two.

LEMMA 3. Let K be a compact subset of R? of zero Lebesgue measure. For every open
set U containing K, and every € > 0, there exists a smooth non-negative function f with
compact support, such that suppf C U, |f(z)| < ¢, |f'(z)] < 1 for all z € R?, and for
everyx € K, A\ >0, A >0,

d

2 f 1
> o )2 P

i,j=1

for every matrix [aiJ‘]?’j:l such that A|¢)? < EZ;‘:] a; j€i€; < AJE? for all € € RY.
PRrOOF: There exists a number C' > 1 depending only on the dimension d such that for
every matrix [ai,j]ﬁjzl and every number A > 0 with |E?’j=1 a; ;€] < AJE? for all
¢ e RY, Z?,j=1 las ;| < CA. Choose g from Lemma 1. Then g(K) is a compact subset of
(0,00) of Lebesgue measure zero, and ¢’ # 0 on K. Let a = inf{|¢'(z)|? : ¢ € K}. Set

. 1
Y= mm{ea, W’ 1}
,00

By Lemma 2, there exists a smooth function h with compact support such that supp & C
[0,00), 0 < h(z) < v for all z > 0, and A'(z) > %{ for all z € g(K). Let p be a smooth
function with compact support contained in (0, c0) such that 0 < p <1, p is equal to 1 in
a neighbourhood of g(K), and [supp p| < e. Set

ue)= [ plepte)
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for every > 0, and u(z) = 0 elsewhere. Define f = ueg. Firstly, |f(z)| < fooo p(t)dt < e,
for all z € R%. Now f' = u'ogg' = (ph)egg' , so |f'(z)] < vlg'(z)] < 1 for all z € R%. For
each z € R?,

2

5 (0) = (IR pHNa(2) 5 5 (0) + Ph(9(0)) ().

For z € K, p'(g(z)) = 0 because p is constant in a nelghbourhood of K. Furthermore, by
(m)| < & Therefore for all z € K,

virtue of the choice of the number ~, |ph(g(av))6

d
> i <x)>h<g(x>>}ja,,,§g ;g()“—ZIaz,]I

i,7=1 ,j=1 i,j=1
d
1 dg Og
- E —A> )\ A
’Y i ;Ja ax]( )
Let a;4, ¢,7 = 1,...,d, b;, ¢ = 1,...,d and ¢ be Borel measurable functions on R

For each z € R?, the matrix [ai’j(x)]f’j:l is symmetric and ZZ,';-pai,j(m)fifj > 0 for all
¢ € R The operator L acting on all smooth functions with compact support in R?, and
with values in the Borel measurable functions is defined by

8 N
L= Z N az, ) big-te
t,j=1 =1

Let 7 denote the collection of all functions p : R? x B(Rd) — [0, 00) such that for each
z € RY, A p(z,A), A € B(R?) is o-additive, and for each A € B(R%), the function
z — p(z,A), z € R? is Borel measurable. For each p € 74, we can define an operator
Ty : ,C°°(Rd) - £°°(Rd) by setting for each f € £°°(IRd), T,f(z) = [ga f(y) p(z,dy), for
every ¢ € RZ.

The operator T, may be extended to a larger space of Tj,-integrable functions in the
sense of vector measures, as follows. A function f : R? — R is called T,-integrable if for
every z € R%, f is p(z, - )-integrable, and the function z Jre f(W)p(z,dy), z € R? is
bounded and Borel measurable.

Given a Borel measure v on R?, T, is said to be absolutely continuous with respect to
v (written T}, < v) if for every Borel set A such that v(4) =0, T,x4 = 0. Let p be the
Lebesgue measure on RY. If R(A\), A > wg is the resolvent of a positive ./\/i(IRd)—semigroup7
then as indicated above, for each A > wg, there exists p € T such that R(A) = T,
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PROPOSITION 1. Let A > 0. Suppose that p € 7, and for every smooth function f
with compact support in R?, the Borel measurable function (A=L)f is Tp-integrable, and

T,(A=L)f=f. Then T, < p.

PROOF: It is sufficient to prove that for any compact subset K of R¢ with zero p-measure,
T,xx = 0, because any Borel measure on R? is compact inner-regular. Let U be a bounded
open set containing K. According to Lemma 3, for each n = 1,2,... there exists a smooth
non-negative function f, with compact support contained in U, such that |fr(z)| < % ,

[fr(z)] < 1lforall ze R?, and for every z € K, A > 0 and A > 0,

d
 fa
PR AL > —
Z A’yJ &Eia.’tj (:I:) = nA—A
3,5=1

for every matrix [A; j];{ j=1 such that

d
NEP < ) Asjbits < AP

i,5=1

for all £ € R,

Let ¢ be a smooth function of compact support such that ¢ > f, foreachn =1,2,....
Then T,(A—L)(¢—fn) = (¢—fn)foreachn =1,2,..., and limp_.oo T, (A—L)(¢—fr)(2) =
¢(z), uniformly for all z € R

By monotone convergence, for each = € R? the function lim inf, oo(A=L)(¢— fr) is
p(z, - )-integrable, so it is finite p(z, - )-a.e.. For every y € R? the matrix [ai,j(y)];{]tl
is positive-definite, so Iminf,_,oo(A — L)(¢ — fn)(y) = oo for all y € K. Consequently,
p(z,K) = 0 for each z € R?, so that Tpxx =0.

3. Uniqueness of the resolvent operators. We now suppose that a; j,¢,7 =1,...,d,

bi,i =1,...,d, c are bounded Borel measurable functions on R?, where for each z € R?, the
mabrix [a,-,j(x)];{j___l is symmetric, there exists A > 0 such that Z?,j=1 a; j(2)€:&5 > A|E)?
forall z,£ € le, and for each 7,7 = 1,...,d, the function a; ; is uniformly continuous. For

each r > 0, set
w(r) = sup{|aij(z) — ai;(y)| : 5,5 =1,...,d, 2,y €R%, ]z —y| < 7).

The space of all equivalence classes of bounded Borel measurable functions on R? is denoted
by L=(R?).

THEOREM 1. If there exists 1 < g < oo such that

(f3 w(r)ird=t dr)'/?
3 <

(2) sup oo
0<s<1 s
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then there exists A > 0 such that (A — L)C°(R*) is weak*-dense in L>°(R?) for all A > A.

PRrROOF: Let 1 5 r < oo. Denote by WZ”(Rd) the space of (equivalence classes of)
functions f on R?, such that f and 1ts distributional derivatives of order less than or equal
to two are r- 1ntegrable functions on R?. The sum of the r-norms of f and these derivatives
defines the norm of W2 '(Rd) Let L’"(Rd) be the space of r- mtegrable functions on R%.
The sup-norm on bounded functions defined on R? is denoted by Il lloo-

Under the assumption that the highest order co-efficients of the uniformly elliptic op-
erator L are uniformly continuous, it follows that for all 1 < r < oo, there exists A,
such that for each A > A, A — L is the restriction to C'°°(IR ) of a bxjectlve operator
A =TI, : Ws"(R*) — L7(R%) [2)].

Because L*((0,s)) embeds in L¥((0,s)) forall 1 < v < u < oo and s > 0, we can choose
g > 1 so small that condition (2) is satisfied, and if 1 < r < oo is defined by % + -;— =1,
then r > max(d,1). Now fix A > A,. Let g be a continuous function with compact support
in R? and set f = (A —L,)"'g.

2
The partial derivatives 656{10 -, 1,J = 1,...,d of f belong to Lr(Rd). By the Sobolev
i0Z;

a . . . .
, 8_f ,t=1,...,d and f have representatives which are continuous
T
functions vanishing at infinity [3 p. 124].

embedding theorem

Let p be a non-negative smooth function with support in the unit ball of R? such that
Jre p(z)dz) = 1. Define pn(z) = nip(nz) for all n = 1,2,... and z € R?. Tt follows

that there exists a number M > 0 such that ||p, * (b,-—g%)”oo <M, ||bipn * %”w <M,

lpn*(cf)lloo £ M, |lcon* flleo < M, foreveryi=1,...,d,n=1,2,.... Moreover, for any

bounded measurable function ¢ on R, p, * ¢ converges to ¢ almost everywhere as n — oo
[3,p. 63]. Now (A—=L)pn*f=pn*g+A—L)pn*f —pn*x(A—Ly)f,and (A—L)pp * f
belongs to the weak*-closure of (A — L)C’,‘?"(Rd) in L®(R?) for each n =1,2,....

Because p, * ¢ converges to g uniformly on R? as n — oo, by dominated convergence it is
sufficient to show that there exists K > 0 such that ||pp*(A=L,) f—(A=L;)pr* f|leo < K for
alln=1,2,... ,and pn*(A—f:)f—()\—E)pn*f — 0 almost everywhere as n — 0o. The
weak*-closure of (A — L)C,‘j"(Rd) in L”(Rd) then contains the collection of all continuous

functions of compact support on R?, which we know to be weak*-dense in L°°([Rd).

For each z € R?,
A= TS = (=T () = [ pnle = 0)loss(2) = 4,0 o (5)
— On(z)
On(a) = Zp (i3 )() = bipn * 5-(2)
b pus e)E) — ot £(2)
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where O,, — 0 almost everywhere as n — 00, and sup, ¢y ||Orljcc < o0. Estimating the
first term by Holder’ s inequality,

| oot = )laes(0) = s (@7 ) a1 < [ pute = v)te = )57 dy
< ol 5l

There exists C' > 0 such that
1
sup il < Clpllensup ([ eyt aryii,
neN neN 0

which is finite by condition (2). Moreover, for every ¢ € LT(Rd), pn* ¢ — ¢ in L7(RY),
and almost everywhere on R? as n — oo [3, p. 63]. It follows that

sup llpn % (A= Lr)f = (A= Lr)pn * flloo < 0,
ne
and py * (A — L) f — (A —L,)pn * f — 0 almost everywhere as n — oo.

COROLLARY 1. If there exists 1 < ¢ < oo such that
(g wlryirt= dns

Sd ’

sup
0<s<1

then there exists A > 0 such that for all A > A, there is at most one p € 7, such that for
every smooth function f with compact support in R?, L(A-L)f=F.

PrOOF: By Proposition 1 and the Radon-Nikodym theorem, for each z € R?, »(z, +) has
a density g, with respect to the Lebesgue measure u on R%. Suppose that p € T, and for
every smooth function f with compact support in R?, T;()\ —L)f = f. Denote the density
of p(z, - ) with respect to u by h for each z € R

Then fpa(A—L)f(y)(92:(y)—hz(y)) dy = 0 for all smooth functions f of compact support.
Because (A — L)C,‘;O(Rd) is weak*-dense in L°°(|Rd), gz = hg almost everywhere, so that
p=p.

COROLLARY 2. Suppose that there exists C > 0, a > 0 such that for each ¢, = 1,...,d,
la; j(z) — a; ()| < Clz — y|* for all z,y € R%. Then there exists A > 0 such that for all
A > A, there is at most one p € 7., such that for every smooth function f with compact
support in R?, L(A=-L)f=7f.

ProOF: If o > d, then condition (2) is satisfied for any ¢ > 1, otherwise take ¢ = Hd_a .

fw(r)=—r forall 0 <7 < 1, then (2) is not true.

Inr

Problem. For (1) to have a unique solution, is it sufficient that L be strictly elliptic with
bounded measurable coefficients, and continuous second order coefficients?
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