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TOEPLITZ OPERATORS ON FOCK SPACES

Jan Janas

i THTRODUCTION

This work gives a Dbrief exposition of recent progress nade in the
theory of Toeplitz operators in Bargmann-Segal (Fock) space. Such operators
have been studied in several papers of Berezin in the early seventies [3],([4]
and also in [8]. Substantial advances in understanding their properties have
been made in recent years due to the works of Berger and Coburn ([5], [6].
Other related results are contained in {9], [10]. Despite the fact that there
is a natural equivalence between Toeplitz operators in Fock space and pseudo-
different operators in LZ(Rn), their study requires some specific methods.
One of such methods, introduced in [3], is based on the idea of Berezin
symbol of operators acting in the Fock space. This method has been
successfully employed in [6] and [9]1. Topics such as the theory of Toeplitz
forms over Fock spaces developed in {12}, and attempts to generalize the

theory for Fock space over general Hilbe [11} are vrelat=d, but
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we shall not discusgg them here. This brief report almost certainly misses
other works on Toeplitz operators of which we are not aware (done
mainly by physicists).

The paper is divided into three parts. The first part introducss the
Segal-Bargmann-Fock space Hz{g) and its relation to LE(RH), Toeplitz
operators in Hz(p), and the Berezin symbol of operators acting in Hz{p}.

The second part deals with bounded Toeplitz operators. The third par:
is devoted to unbounded Toeplitz cperators in Hg(u).

The material of this work is based mainly on the following npanpars

(51, [el, {73, 183, [91, [z0]
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Throughout the paper we use the following notation. For z = (2 .....Z ),
n

. n . . .
W o= (Wﬂ,...,wp) in € - the space of n complex variables we write:

[N}
it

- - - . ~ : : Py i 2 i H i
(21"’"'Zn)' where z, is the usual conjugate in C, |z} = {z_| +...+izn; .

i

integers, we write ki= kliA..k b, Ikl =k +...+%k , z =2 ...z

n N . o iy! X
aeN and if f is a function on € we denote D'f =

2. THE PRELIMINARIES

< . n .
Let p be the Gaussian measure on € given by

Z
-n "EZ;‘/?

du = (2m) e av

. — PN n 271
where 4V is the Euciidean volume on € = R .

Denote by H () the closed subspace of L  {u) (the pu-square integrable
. . n . . . .. . N
functions in € ') of a1l entire functions. This space has been introduced by

I.E. Segal and employed by V. Bargmann in {1]. Hz(u) has the reproducing kernel

25
e (z) = ez,
&

so that for feeHg(g), fla) = (f,ea), where {.,.) is the usual scalar

2

product in L ().

L . 2 . .
An orthonormal basis in H (u) consists of the functions

. ikl - o
(1) £ (2) = 2% 177% 2% pen”.

i

It follows that the set P of polynemials in the zj ig a dense subspace in
.z, o n 2 . . L , L.
H (). Similarly as for L (), the multiplicativity of du{(z) implies a

natural isometry

B “ a8 () ® ... @E (@),

where . stands for the Gaussian measure on €.

i
Following Bargmann note that the map

A h o —> £,
1 K k



117

Iy

d 3
! ™

f 2
ldx

% x/z

where hk(x) = {H4k(k!)2} (—l)k e is the orthonormal hasis of

. 2 . X 2, -
Hermite functions in L (R), establishes a natural isometry of L (R} and H (u ).

4

1

Moreover Al can be written in integral form as:
—i f {—l 2 2% 7
(2) Af(z) =T 4 if(a) exp | 2 z7+a J+d2 z afda
Hence the mapping A= 4 ... & Ai induces isometry from LZ(Rn} onto

2 , ) . W . . N » R
H () and it is given as an explicit integral kernel operator. Morescver,

3x

the mapping A carries the creation operator {xj— - ]in L3 (F") into a
’ J

simple operator in H°(p), namely

-1 2 7
3 a4+ - & | A=T
3 I T B
J J J
where TZ is the operator of multiplication by the co-ordinate function z
J
. 2
in B (w).

The third part of this paper contains an extension {(due to Guilliemin)

of (3) for general pseudo-differential operators in LE(RH)

The appearance of Toeplitz operators T_ 1is therefore quite natural in

this context.

Now we define the Toeplitz operator T& with a general symbol . Let
2

P L () — Hz(u) be the orthogonal projection onto Hz(n). For a measurable
function ¥ on ¢ such that the set of all anHz(ﬁ) for which Wf‘sLEU;} 18
dense in Hz(n), we define the Toeplitz operator by

(4} TWi = P(y-£).

. . . . 2 -
This operator is in general unbounded in H (u). For essentially

bounded ¥, it is obviously bounded and |T || < [y In the third part of

¥ o0

this work we shall consider other possible definitions of unbounded Toenlitz
operators.

Now recall the definition of the Berezin Symbol of an operator 2 in

2.
- !z' . Suppose that kaeD(A) - the domain

B (w) [31. Let k (z) = exp
(¢4 L

mﬂg

[

of A, for evervy as(g 7
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The function

(5) A {la) = (Aka, ka}

is calied the Berezin symbol of RA.

Note that for the Toeplitz operator TW one can compute Tw explicitly
, L izl
Tw(a) = (2m 7 jy(zle 2 avizi.
F)
Hence the Berezin symbol of T, is also the solution of the heat

14

. 2n N . X . . - . .
eguation on R at the time t = % with inztial values ¥. General properties

of the Berezin symbol of arbitrary operators can be found in {3].

3. BOUNDED TOEPLITZ OPERATCORS

In this part of the paper some results are presented concerning bounded
Toeplitz operators in Hz(u). They are chosen here to illustrate the usefulness
of the Berezin symbol in the study of Toeplitz operators in Hz(u).

For brevity we denote ?w by v and this should not cause confusion later.
For a function ¥ on cn and g <k, we denote by y(g-) the function z — ¥{gz).
We start with a result which gives a sufficient condition for a function ¥
to define bounded T in Hz(u) [97.

PROPOSITIONM 3.1

If v(42.) is bounded then T* is bounded and

. . no,
S 2O FY

Conversely, if T% is bounded then y{.) is bounded on C .

The proof of this Proposition is based on the Schur test for the
integral operator PM¢P, where MV denotes the operator of multiplication
by v.

J

REI

AR

&

2]

For positive ¢ the above result can be stated shortly:
T¢ is bounded iff #{-) is bounded. ¥We do not formulate results concerning

compactness of T or when T¢€ Cp {the Schatten -v.Neumann class). They

€

w

re also expressed in terms of the behaviour if ?(q.) at infinity, see [9].
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Instead we turn to the gquestion for which symbols £, g, T T -7  is

compact . For the classical Toeplitz operators in the unit disc the above

difference is compact, provided that £ or g is continuous. In our context

the answer is much more difficult and has been found by Berger and

in [6]. It is also given in terms of the behaviour of ¥ at infinity.

First, however, recall their definition of ESV space

o
(

ESV = {f e L™(¢™), 1im sup | £(z)~f(w) | =0}

Ryoe jz-w] (1
iz YR

For example exp(idlz]| ) «ESY.
. . y 2 a2 . .
Now for f and g such that |f| and |g;d are bounded and continuous we

have [6]1.

THECREM 3.2

For f and ¢ as above Tch -ngis compact if feESV and
L ~ T 5
£~ £ {zg})———=20 or g<ESY and g - ¢g| (2)——0 .

|2 | —00 iz [—300

This result shows that one can obtain a symbol calculus of Tos
operators modulc the ideal of compact operators, provided their symbols behave

properly at infinity. The main ideas of the proof of the Theorem is to note

that
(m) )
. ~(m), z{m) > {m-1 ={o)
{a) lim (f - £y (2) = 0, for melN, where £ : = ¥ , FY=
[z [0
~{m) L . . . . . .
(b) f is Lipchitz continuous with modulus of continuity converging

to 0 as m —3 » ,

(c) If K{(-) is a uniformly bounded weakly measureabls, compact operat

’
i
valued function and p is a finite positive measure then |K(

is also compact.
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The proof also relies on the rvelationship betweer

cperators and an averaging operation over a representation of the



120

-

Heisenberg group. Bargmann defined in [21 the following mapping of ¢

2
into unitary operators in H (w)

-\ - o . - * o
oné can check that the mappings a — W_ and a — Ha are strongly continuous.
=S A

-

For a bounded opsrator A on H () one defines an averaging operation by

{
. i %
= ' )
A gwa AW ad}—((a/ .

1 A and A is given by

5

6

[

—

The relation betwee

ROPOSITTION 3.3

R
For any bounded operator A on H  (u) we have

o
it
3

5
f

By the definition of W we have
2

W k = expliRe
3

Hence
A =T and so A = T .

with the following recent result of Gautrin
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. . 2 . . .
Other results on bounded Toeplitz operators in H (x) (for example concsrning

e

their spectral properties) are also contained in [6], [9].
4. UNBCOCUNDED TOEPLITZ OPERATORS
In thisvsection we siightly change the measure u (for technical reasons)

—=Ii

du = w exp(—iziz) av .

K,
e {z) = ¢ and £ _{z) = z Akl .
a k
Not much is known about unbounded Toeplitz operators. We present here
only a few results taken from [107.
It turns out that even the definition of unbounded Toeplitz operators
in Hn(u) is not unique. Wamely we may associate, for a given measurable the

. N . 2
following three operators in H ()

<
h
M
I
T

(@ TE=R(yef) , DT = (feH (0
i' ,.,_
by T E(z) = |y(a)Ela) e Taula)

.. ) . . . . 2 .
rovided the integral exists and bhelongs to H (), as a function

of z.
. . 2 . . -
{c) Let D(SW) = {felH () : ¥f = h+r , hsihz(p) [rpdu =0, ¥p=#!
J
Put SWf = h.
Note that SW is well defined. Indeed, suppose that
r
+ = vh = 4+ o7 re } 2’; ndy = €
hz BT, vh hz- T, where nkezﬁ {p) and grkpdg 0 . Hence
r. -1, = h_ - h «H ﬁp) and is orthogonal te ®. Since P is dense in H ﬁy)
4 =4 ES
it follows r, ~r, = 0 = h2~ h L

The next result given below more or less explains the natural anoe

of the definitions of Sw and Hw’

n

Let E denote the linear span of éez‘ZEEC

[
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ROPOSITION 4.1

If Pc:D(Twi(respect. Ec:D(T%) and T = ijﬁ (respect.T1 = T¢JE)
* -
then T = S_ (respect, T * = J_}, where ¢ denotes the bar of y.
¥ 4 :

The proof follows by direct but careful checking of the definitions
1101,

The relationship between the above operators explains the next

PROPOSITION 4.2

For any measurable ¢ we have

(1) T, n <SS .
1 w g \‘,&, = ’#
(ii) If ¢ is entire and P c D(TW) then
T, =95, .
14 ¥
REMARK

3

Re z~ (m = 1) we have the strict inclusion

it

However for y(z)

TW < SW' In the case of the unit disc Toeplitz operators with a bounded

*
holomorphic symbol ¥ are bounded and T, = T_ . Since there are no nontrivial

5

4 *
pounded entire functions the problem of computing Tv is much nmore complicated.
2

Nevertheless we have [10].

Let ¥ be an entire function for which HW is densely defined.

Suppose that for any hasD(H¢) there exists £ >0 such that
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1{/
EXAMPI.E .
N
Let ¢(z) = E pk(z)ezxk,
k=1
where b, = P and Ake ¢". One can check that ¥y satisfies (+) with any

£ 0.

Naturally the next guestion is when is T, with a real svmbol ¥

¥

selfadjoint (or essentially selfadjoint)? This is not true even for simple

. . 3 . . ..
functions like vc= Rez ,in which case T is not selfadjoint. Note however,

V/
that TW with real valued ¥ comrutes with the natural conjugation
C : Lz(y) — Lz(ﬂ) given by Cf(z) = £{z). Hence such T must have ecual

14
deficiency indices. We don't consider here other examples of positive rasults

about selfadjointness. The interested reader is referred to [10].

There are also many questions concerning the spectral properties of
unbounded Toeplitz operators. For example for which symbol ¥ is the vrasolvent
R{(X,T,) compact.

v

Here is a class of symbols with this property.

PROPOSITION 4.4

**‘r
(E) Re(wa,f) > cllgrad £}, f « D(Tw),
=
where jgrad £12 = | ?g%%?ﬁdﬂ
| 3
i=1

then R(A,TW) is compact.
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REMARK
The last result holds for arbitrary closed operator A satisfying the
assumption (E) i.e. put A in the place of TW'

We conclude this brief report by recalling the equivalence of PSDO

(pseudodifferential operators) and Toeplitz operators, see [8].

Let

(A, (X,D)E] (x) = (2m " g JA[p.X+y le P9 ¢ (y) ayap

be the PSDO in LE(Rn) with the symbol (A{p,q) : mzn—e € . This is the Weyl
method of quantization.

Suppose that the operator AwlAw(X,D) A is a Toeplitz operator with a
symbol ¢¥. Then, by a result of Guillemin [8, p.187] we have the following

relation between y(.) and A{.,.)
~A/2

A(x,y) = e ¥{x+iy)
n -
} : 3 ;
where A = —_—t , Z = X t 1Y
3Z:i3%4
i=1

Therefore in order to represent a given PSDO with its Weyl symbol A(.,.)
as a Toeplitz operator we have to solve the equation
Af2

¥=e’ R,

which is, in general, not possible.
This explains why it is not efficient, in general, to transfer the
results found in the theory of PSDO to the theory of Toeplitz operators

. 2,
in B ()
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