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AN EXAMPLE IN THE THEORY OF SPECTRAL AND 
WELL-BOUNDED OPERATORS 

Ian Doust 

Abstract, An example is given of a linear transformation which defines a well
bounded operator on LP[O, 1 J for 1 :::; p:::; oo. It is shown that the properties of the 
decomposition of the identity associated with this operator (and consequently the 
type of functional calculus that the operator admits) vary markedly depending 
on the domain space. 

1. Introduction 

As has been noted by several authors (for example, [Dun, p. 237]), some operators which 
are self-adjoint on L 2 fail to possess an integral representation with respect to a (count ably 
additive) spectral measure on the other LP spaces. Our aim in this paper is to show that 
the spectral behaviour of such operators can be highly dependent on the structure of the 
Banach spaces on which the operator acts. We begin with a very brief survey of the 
relevant parts of the theory of scalar-type spectral and well-bounded operators. For a full 
account of this theory, the reader is directed to [Dow] or [DS3]. 

A bounded operator Ton a Banach space X is said to be scalar-type spectral if there 
exists a spectral measure 1-l taking values in B(X) such that T = J.,.(T) A !-l( d:\). Scalar

type spectral operators possess a weakly compact C(a(T)) functional calculus and give 
rise in general to unconditional spectral expansions. Such an operator will be called real 
scalar-type spectral if a(T) C R. 

An operator Tis well-bounded if it admits a functional calculus for the absolutely con
tinuous functions on some compact interval [a, b] of the real line. Well-bounded operators 
give rise to increasing families of projections { F( A)},_ € R acting on X* for which 

b 

< Tx,x* >= b < x,x* > -1 < x,F(A)x* > d); 

for all x EX and x * € X*. These families, which satisfy certain natural properties are known 
as decompositions of the identity for T. Conversely, every decomposition of the identity 
defines a well-bounded operator. In general the decomposition of the identity associated 
with a well-bounded operator need not be unique. However, if Tis decomposable in X (that 
is, each element F(:\) of a decomposition of the identity associated with Tis the adjoint 
of an operator E( A) acting on X), then the decomposition of the identity is uniquely 
determined. We shall call E(:\) the decomposition of the identity in X associated with 
T. A well-bounded operator decomposable in X is said to be of type (B) if the function 
>.. H E( .\) is strongly right continuous and has a strong left limit at every point in R. 
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This happens precisely when the absolutely continuous functional calculus for T is weakly 
compact. A decomposition of the identity in X, {E(.\)}, satisfying these extra continuity 
conditions is known as a spectral family for T and one can perform a Riemann-Stieltjes 
type integration with respect to { E( ,\)} to give T = Jr~,b] ,\dE(,\). A significant difference 
between well-bounded and scalar-type spectral operators is that the former give rise to 
conditional rather than unconditional spectral expansions. The following table shows the 
functional calculus that each of the above types of operator admits. 

Operator type Functional calculus 

self-adjoint isometric BM( u(T)) 
scalar-type spectral BM(u(T)) 

well-bounded type (B) BV[a,b] 
well-bounded NBVo [a, b] for T* 

Here BM(u(T)) stands for the bounded Borel measurable functions on u(T), BV[a,b] for 
the functions of bounded variation on [a, b] and NBV0 [a, b] for the subspace of all such 
functions f which can be written in the form f = fac+ fb where faceAC[a,b] and fb is the 
limit of a uniformly convergent sequence of step functions. For an arbitrary well-bounded 
operator T, it may not be possible to extend the functional calculus for T to even this 
class of functions. 

2. The example 

We shall now show that the properties which the decompositon of the identity for a well
bounded operator exhibits depend crucially on the structure of the space chosen as the 
domain of the operator. The scalar field in what follows may be taken to be either the 
real or complex numbers. In the remainder of the paper, the notation IIAIIP will be used 
to denote the norm of an operator A acting on LP. 

The following lemma is an easy consequence of [Dl, Theorem 4.1]. 

Lemma 1. Suppose that (!1, A, v) is a measure space and that 1 < p < oo. Suppose 
also that T is a well-bounded operator on LP(!J, A, v) and that the decomposition of the 
identity associated with T satisfies IIF(.\)11 $ 1 for all,\ eR. Then Tis real scalar-type 
spectral. 

Proof. It is well-known that for all polynomials g, 

llg(T)II $ sup IIF(.\)11 {lg(b)l + 1b lg'(t)l dt}. 
>. < [a,b] a 

Thus T has a contractive AC[a, b] functional calculus and hence [Dl, Theorem 4.1] IS 

scalar-type spectral. • 

Remark. This swift proof rather obscures the reason why the lemma is true. In fact the 
lemma can be proved by a simplified version of the proof of [Dl, Theorem 4.1]. The impor
tant point needed in constructing a countably additive measure is that if 0 = P0 , Pb P2 , ••• 
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is an increasing sequence of contractive projections on LP(D,, A, v) and {a j} is a sequence 
of scalars bounded in modulus by 1, then 

co III>.l'j(Pj- Pj-dll :::; max {p,pj(p- 1)} -1. 
j=l p 

This rests on a characterisation of contractive projections on LP spaces in terms of con
ditional expectation operators due to Ando and the fact that martingale transforms are 
bounded on these spaces (see [An,Bl,B2,DO]). 

Define the linear transformation Ton the Lebesgue integrable functions on [0, 1] by 

(Tf)(t) = tf(t) + 11 log(l- min{u,t})f(u)du. 

Theorem 2. The linear transformation T above defines a well-bounded operator on 
LP[O, 1] for 1 :::; p :::; oo. Furthermore 

(i) Tis self~adjoint on L2 [0, 1]; 

(ii) Tis real scalar-type spectral on LP[O, 1] for 1 < p < oo; 

(iii) Tis well-bounded of type (B) on Ll[O, 1] -but is not scalar-type spectral; 

(iv) T is a well-bounded operator decomposable in X when X = L00 [0, 1] - but is not of 
type (B) on this space. 

In fact, on C[O, 1], T defines a well-bounded operator which is not decomposable in X. 

Proof. For J..E [0, 1) define E(>..) .oB(LP[O, 1]) (1:::; p::::; oo) by 

f \ 1 _ { for t E [0, >. ); 
\E().Jf)(t,- 1/(1-A)J;J(u)du fortE[A,l). 

If we set E(>.) = 0 for A< 0 and E(.\) =I for.>.~ 1, then it is not hard to see that {E(>..)} 
forms a spectral family on LP[O, 1] for 1:::; p < oo. Thus {E(>..)} determines a well-bounded 
operatorS .oB(LP[O, 1]). For 1:::; p < oo, fix f ELP[O, 1] and q'IELq[O, 1] = LP[O, 1]*. Then 

<Sf,¢>=< f,</1 >-11 < E(>..)j,¢ > d>. 

11 11 { 11 1 11 . } = f(t)¢(t) dt- f(t)q'l(t) dt + -·-, f( u) du ¢;(t) dt d).. 
0 0 .\ 1-A .\ 

= 11 f(t)¢>(t) dt -11 1). f(t)q'l(t) dt d).. 

t {1 ·1 1 
+ Jo Jo fo 1 ~;;:-Xp,, 1j(u)Xp,, 1j(t)f(u)¢>(t)dudtd.A.. 
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Let h(u, t, .A)= (1- >.)-1X[.\,tj(u)Xp,,1J(t)f(u),P(t). Our next step will be to apply Fubini's 
theorem to the last two integrals. It is not immediately clear however that h is integrable, 
so we shall proceed by verifying this. By Tonelli's theorem then 

l \h\ = ( {11 {1 1 
\hi du lf dt} d)., 

J[o,1]3 Jo o o 

= l 1 
1 ~ {11

\f(u)IX[.\,lj(u)du} {11
1</>(t)IX[.\,lj(t)dt} d).. 

< t --1-11!11 (1- >.)lfq 114>11 (1- )..)lfp d).. 
- } 0 1-).. P q 

(by Holder's inequality) 

= llfllp 114>1\q < 00. 

It follows that h is integrable, so applying Fubini's theorem gives that 

<Sf, 4> > = f(t)q)(t)dt -1111 
f(t)q)(t)dA.di 

111min{u,t} 1 
--, f( u )ify(t) d:\dudt 

0 0 1-A 

dt- (1- t)f(t),P(t) dt 

( -log(l- min {u, t})f(u)ify(t)du.dt 

log(1- min { u, t} )f( u) du} dt. 

This implies that for 1 ~ p < oo, S = T, and so T is a bounded operator of type (B) on 
these spaces. 

Checking that Tis self-adjoint on L2 [0, 1] is routine. Statement (ii) of the theorem 
will follow immediately from Lemma 1 if we can show that II E( J.) 1\ P ~ 1 for >.. e If\! and 
1 < p < oo. But this is easily seen to be true (even for p = 1 and p = since for 
A e [0, E(>..) is a conditional expectation operator. 

The next step is to show that Tis not scalar-type spectral on [0, 1]. Since L1 [0, 1] 
does not contain any subspace isomorphic to co, [D2, Theorem 2] implies that Tis scalar
type spectral if and only if the function)\ >---+< E(A.)f, tjJ > is of bounded variation for all 
f E L1 [0, 1] and all tjJ E L 00 [0, 1 J. Thus it suffices to show that there exist functions f and ¢ 
and an increasing sequence 0 ~ )q < < ... < 1 such that 

n 

L I< (E(,\j)- EP·j-I))f, ¢>I-; oo as n--; oo. 
j=l 
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It is slightly easier to do this indirectly. Let 

n 

Sn = ~)-1)i(E(A.i)- E(A.j-1)). 
j=1 

If we can find 4> € L00 [0, 1] such that limn-.oo IIS~<PIIoo = oo, then by the Principle of Uniform 
Roundedness there exists f EL1[0, 1] such that supn I< Snf, 4> >I= oo. But 

n 

I< Snf, 4> >I= I< ~) -1)i(E(,\j)- E(,\j_l))J, 4> >I 
j=1 

n 

:::; L I< (E(A.j)- E(,\j-1))!, 4> >I. 
j=1 

Thus limn-+oo l:j=1 I< (E(A.j)- E(,\j-1))!, 4> >I= oo. 
It is easy to check that 

{ <f>(t) fort €[0, A.); 
(E(A.)*4>)(t)= 1/(;-A.)J;<t>(u)du fort€[,\,1). 

For j = 0, 1, 2, ... , let Aj = (3i -1)/3i. Define 4> € L00[0, 1] by <f>(t) = ( -1 )k for if [Ak-b ,\k)· 
Then 

Thus 

1 00 ( )k _1_ r =3j~(-1)j+12- -1 
1-,\. J~. L.t 3J+l 3 

J AJ k=O 

= (-1)i+13.~ 
34 

= ( -1)j+l /2. 

Therefore, for j ~ 1, 

((E(A.i)*- E(,\i_1))4>)(t) = ( -1)i /2 fort € [,\i-ll A.i); { 
0 fort €[0, Aj-1); 

( -1)i+l fort € [A.j, 1]. 

From this it follows that IIS~IIoo = n. Thus we have shown that there exist functions f 
and 4> such that the function ,\ f-+< E(A.)J, 4> > is not of bounded variation, and so T is 
not scalar-type spectral. 

We next turn to the behaviour ofT acting on L00[0, 1]. It is readily verified that if 
f EL1[0, 1] and 4> EL00[0, 1], then< TJ, 4> >=< J, T<P >. Thus if g is a polynomial 

I< J,g(T)4> >I= I< g(T)f,<P >I 

:::; IIJII1II</>IIoo { lg(b)l + 11
lg'(t)1 dt} 
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where the inequality follows because T has a contractive absolutely continuous functional 
calculus as an operator on L1 [0, 1]. As L1 [0, 1] is a total subspace of L00 [0, 1]*, we thus 
have that 

llg(T)IIoo:::; lg(b)l + 11 lg'(t)! dt 

and soT is a well-bounded operator on L 00[0, 1]. Note that the operators {E(>.)} above do 
not form a spectral family acting on L00 [0, 1]. The dual of L 00[0, 1] may be identified with 
the space ba[O, 1] of all bounded finitely additive functions on the Lebesgue measurable 
subsets of [0, 1] which are zero on sets of Lebesgue measure zero. The norm of such a 
function I-' is its total variation. Further details of the space ba[O, 1] may be found in 
[DSl,IV]. 

Let LM[O, 1] denote the set of Lebesgue measurable subsets of [0, 1] and let A de
note Lebesgue measure on these sets. For >. f [0, 1 ), it is easily checked that the adjoint 
F(>.)EB(ba[0,1]) of the operator E(>.)EB(L00 [0,1]) is given by 

(F(>.)I-')(A) =I-'( An [0, 1]) + ~(~~]A( An(>., 1]) 

for AELM[O, 1]. Showing that {F(>.)} is a decomposition of the identity is a non-trivial 
task. That it is concentrated on [0, 1], is naturally ordered and is uniformly bounded 
follows from the properties of { E( >.)}. The final three properties (see [Dow, p. 288]) are 
less obvious however. One has to show that 
(i) for all ¢> f L 00 [0, 1] and all I-' f ba[O, 1] the function 

>. ~---+< ¢>, F( >.),_, >= 1>. ¢>( t) I-'( dt) + ~[~ ~] 11 ¢>( t) dt 

is Lebesgue measurable; 
(ii) if </>EL00 [0, 1], {tfba[O, 1] and 0:::; s < 1 and if the function 

t ~---+ 1t < ¢>, F(>.)l-' > d>. 

is right differentiable at s, then the right derivative at sis< ¢>,F(s){t >; 
(iii) if </>of L 00[0, 1] and f f L1[0, 1] are fixed and I-" a ( <H A), I-' f ba[O, 1] are such that 

for all ¢> f L00 [0, 1], then 

All three of these follow from the fact that the function >. ~---+< ¢>, F( >.)I-' > is continuous. 
We omit the details. 
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Finally we shall prove the assertion concerning T acting on the space C[O, 1]. It is 
not hard to see that T f is continuous whenever f is, so the fact that T defines a well
bounded operator on L00[0, 1] implies that T also defines a well-bounded operator on 
C[O, 1]. Moreover, as above, the decomposition of the identity forT (this time acting on 
C[O, I]*= rca[O, 1], the regular countably additive scalar-valued set functions on [0, 1] (see 
[DSl, IV.6])) is given by 

(F(.\)tJ)(A) = tJ(A n [0, >.]) + p[>., ~]A( An(.\, 1]). 
1-A 

However, here F(>..) is not the adjoint of any operator acting on C[O, 1]. Ill 

It should be noted that despite the fact that T is not of type (B) on L00 [0, 1], it 
does possess a BV[O, 1] functional calculus this space. This is obtained by duality from 
the BV[O, 1] functional calculus which T possesses as an operator on £ 1 [0, 1]. However, 
T cannot possess a BM[O, 1] (or even a C[O, 1]) functional calculus on either of these 
spaces. Indeed the methods of [D2] show that when X does not contain a subspace 
isomorphic to c0 , then an operatorS on X is scalar-type spectral if and only if it possesses 
a C(o-(S)) functional calculus. This immediatley shows that T cannot have a C[O, 1] 
functional calculus on L1 [0, 1]. If T possessed such a functional calculus on L00 [0, 1] then 
we would have that 

llg(T) II oo ~ K sup lg( >-)I 
A E [0,1] 

for all polynomials g. Since g(T) on L00 [0, 1] is the adjoint of g(T) on £ 1 [0, 1], this would 
imply that 

llg(T)IIl ~ K sup lg(>.)i 
.A< [0,1] 

for all polynomials, and hence all continous functions on [0, 1], contradicting the fact that 
T has no C[O, 1] functional calculus on J}[O, 1]. 
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