
22 Standard Barriers and The Annular End Theo-
rem 

The study of ends of complete minimal surfaces leads to the Annular End Theorem of 
Hoffman and Meeks [29], and its corollaries. 

Theorem 22.1 (The Annular End Theorem) If Af is a properly embedded mini
mal surface in R 3 , then at most two distinct annulm' ends J\1 can have total 
curvatv.re. 

To prove the Annular End Theorem, we need some preparation. First we introduce the 
notion of a standard barrier. 

Definition 22.2 A standard barrier in R 3 is one of the two minimal sur-
faces with boundary: the complement of a disk in a plane in R 3 ; a the 
complement of a simple, closed, homotopically nontrivial curve on a catenoid. 

We will say that a surface J\4 C R 3 adm.its a standard barrier if it is from 
some standard barrier. We will use the word to mean "outside of some 
sufficiently . Thus, two M C R 3 and N C R 3 ar-e 

disjoint" if have compact intersection. It is straightforward to see that 
M admits a standard barrier if and if it is disjoint some standaro. 
barrier. 

Given a standard barrierS and a ball B to contain as, is clear that 
S- B divides H 3 - B into two Two surfaces JV C Ro; vvill be said to 
be a standard barrier if such an S and B can be foEnd so that Jlf _::md N 

lie in different of 
Two standard barriers divide the ball 

B c R 3 into three components, only one of which contains "''"''O''"'n 

on its boundary. A surface JvJ C R 3 that eventually lies in such a component will 
be said to lie between two standard barriers. After a rotation of R 3 , if necessary, the 
region of R 3 between two standard barriers eventually lies in the complement of any 
Xc ={xi+ x~ = (xdc?} (in the component that contains P 0 ·- {0}) for any c > 0, no 
matter how small. It follows from Theorem 21.1 and Remark 2L4 that: 

Proposition 22.3 If X : M '-! R 3 is a properly immersed complete minimal surface 
of finite topology, with compact boundary 8M, and eventually lies between two standard 
barriers, then M must have finite total curvature. 

Our strategy in proving the Annular End Theorem is to ends between standard 
barriers. The next lemma contains the critical technical construction. 

Before proving the lemma, we introduce the notion of linking n·umber. 
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Definition 22.4 Let "! be an embedded curve in R 3 such that R 3 - "!is homotopic to 
· R 2 - {0}. The first homology group of R 3 - "!is H1 (R3 - "!) ~ Z. Let (3 c R 3 - "! 

be a closed curve. Then the linking number of (3 with "( is the homology class of [/3] in 
H1 (R3 - "f). This is an integer, denoted by l(f3,"f). 

If we use the homology group H1 (R3 - "(; Z2 ), then 12 ((3, "!) = 0 or 1. 

Intuitively, if ,6 is a Jordan curve, then l((3, "!) # 0 means that any disk D c R 3 , 

such that 8D = (3, intersects"(. In the homology group H1 (R3 - "(; Z2 ), if"! is a proper 
curve 1 : R ---t R 3 , then l2 ((3, 1) # 0 if and only if there is a disk D c R 3 such that 
8D = (3 and D intersects 1 an odd number of times. 

Lemma 22.5 Suppose M is a properly embedded, piecewise-smooth surface that is a 
smooth minimal surface outside of some ball and that has at least two ends. Let "! : 
R ---t JI!I be a proper curve that diverges into two distinct ends of depending on 
whether t ---+ +oo or t ---+ -oo. Then M admits a standard ban-ier whose boundary has 
linking number 1 with "!. 

Proof. Let B C R 3 be a ball to contain the nonsmooth, nonminimal 
portion of and expand it, if necessary, so that the ends of M in question correspond 
to distinct components of M-B. If one has such a ball, any larger one will have the same 

We may also choose B so that 8B intersects M transversally. Suppose that 
are the two components of JV!- B that contain the unbounded components 

1 - B. Since the proper arc ry intersects 
we can choose exactly one of R 3 - M whose 
property: the arc r has odd linking number with any 

in Note that is not homologous to zero in 

an odd number of times, 
N, has the following 

in Int(N) homologous to 

Let 2:: 1 C · · · C L:n C · · · be an exhaustion of by smooth compact subdomains, 
with 8M1 C 82::1 . Let t; denote a least-area integral current (roughly speaking, piece·· 
wise C 1 minimal surface) inN with boundary 8L:i, which is Z2-homologous to (i.e., 
[L:i] = [ti] in H 1(N; Z2 )). Since L:i Uti is a boundary in ti is orientable. Inte
rior regularity of least-area currents (see, for example, [75]) shows that :ti n Int(N) is 
a regular embedded minimal surface. Since aN - aB has zero mean curvature, the 
maximum principle and the extension theorem for minimal surfaces imply that either 
tin (N- 8B) is regular and tin M 1 = aL:i or tiC M 1 . Standard compactness theo
rems imply that a subsequence of the surfaces {ti} converges to a least-area orientable 
surface L: c N with 82:: = 8M1 . Suppose, for the moment, L: n M = 82::. 

The surface L:- 8B is a stable, properly embedded, orientable minimal surface in 
R 3 with compact boundary and hence has finite total curvature (see, [57], Theorem 1 as 
well as [19]). Hence, L: has a finite number, say n, of ends, and each end is asymptotic 
to a plane or to a catenoid. Let SR be the sphere of radius R centred at the origin. For 
R sufficiently large, by Theorem 12.1, L: n SR consists of n parallel almost-great-circles, 
each of which is the boundary of one of the annular ends of 2::. 
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By our choice of N, ry has odd linking number with one of the curves in :En SR, and 
hence has linking number 1 with one of the annular ends of :E- BR. Call this annular 
end F. 

By the weak maximum principle at infinity (Remark 15.3), since F n M = 0, 
dis(F, M) > 0. On the other hand, F is asymptotic to an end, C', of a plane or a 
catenoid. Hence, C' contains a subend, C, whose boundary is a circle that has linking 
number 1 with ry. Moreover, Cis contained in the interior of N. This proves the lemma 
in the case :En M = 8:E. 

case :8 C M, the extension theorem implies that :E = 1\.11 , which means that 
is eventually contained in a catenoid-type end or a fiat end, say C" C :E. This 

the easier case and can be treated directly, but we to reduce it to the 
case. We may choose so that it is as close as desired to a standard barrier. 

Iv'Ioving C 11 a small amount in the direction of its limiting normal a minimal 
surface that is disjoint from )l;f1 and its has linking number with ~y to 
either 0 or 1. Move in the direction that makes the linking number equal to 1. The 
maximum principle at infinity shows that if C" is moved a small amount, then it is also 

from M. Vlfe can now the argument in the case to complete the 
~~ 0 

Corollary 22,6 
ded minimal surfaces in , each of which has 
at least one of the surfaces lies between two standard barriers. 

properly embed
and one end. Then 

Proof. Choose a ball B c R 3 that is big enough to contain The ball can 
be chosen to intersect U transversally. After removal of B n lvf; from each 'lt.Je 
may assume that aMi c oB. The curves Ut=l oM; bound a region s on oB with the 
property that the boundary of at least one component of S touches the boundary of 
more than one of M;. We will refer to this component as S and relabel the M;, if 
necessary, so that both aS n 8M1 and aS n 8M2 are nonempty. 

Let M = S U; M;. We intend to apply Lemma 22.5 toM. Toward that end, choose 
a proper curve ry : R ---+ M, with ry(R) n S consisting of a single connected arc in S 
from 8M1 to 8M2 . We may assume that ry diverges in M1 (resp. M2 ) as t ---7 +oo (resp. 
t ---+ -oo). By Lemma 22.5, there exists a standard barrier disjoint from }vf whose 
boundary has linking number 1 with ry. 

We now expand the ball B to be large enough to contain the boundary of this barrier 
and discard from each J\11; the subset M; n B. Similarly, let C1 be the component of 
the barrier exterior to B. C1 is still a barrier for M, and ry has linking number 1 with 
8C1 . Moreover, C1 divides R 3 - B into two components. Clearly, M1 and M2 are in 
different components. Without loss of generality, we may assume that M3 is in the saine 
component as M 1 . 

The curve 8C1 divides oB into two disks. Let D be the disk containing 8M1 u8M3 . 

Vile now repeat the construction in the previous paragraph. This time, let S' be a region 
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of D bounded by 8C1 u8M1 UaM3 • Since 8C1 is almost a great circle on aB and M1 and 
M 3 are in the same component of R3 - C1 , aM1 and 8M3 are in the same half-sphere 
bounded by 8C1, therefore, S' has a component, say S', with boundary points on both 
8M1 and 8M3 • Let M' = M1 u M2 u M 3 u C1 uS'. Choose a proper arc 'Y' c M' 
whose intersection with S' lies in S' and consists of connected arc from 8M1 to 8M3 . 

(Note that , since (aB- D) n 'Y' = 0, aD= 8C1, 'Y' has linking number 0 with aCt-) 
Lemma 22.5 implies that there exists another standard barrier, C2, that is disjoint from 
M1 u M2 u M 3 u C1 uS' and whose boundary has linking number 1 with 'Y'· 

Expand B again so that 8C2 c B. It is possible to do this so that aB meets M 
transversally. Note that C2 naB is a single closed curve. Again, we discard from M1 , 

M2 , M 3 , C1 and C2 the intersection of those surfaces with B. Therefore, all of these 
surfaces have their boundaries on aB. 

The barrier C2 divides R3 - B into two regions, as does the barrier C1 . Since they 
are disjoint, C1 u C2 divides R3 - B into three components. Let T1 (resp. T2 ) be the 
component of R 3 - ( C1 u C2) whose boundary contains C1 but is disjoint from C2 (resp. 
contains C2 but is disjoint from C1). Let F be the third component, whose boundary 
contains C1 u C2 . Since 'Y' has linking number 1 with 8C2 , C2 must separate M1 from 
M 3 . But clearly, M1 U M 3 c T1 U F. Hence, either M1 or M 3 lies in F. That is, either 
M1 or M 3 lies between two standard barriers. D 

Remark 22.7 Lemma 22.5 and Corollary 22.6 hold even when the minimal surfaces 
in question are properly immersed rather than properly embedded. The proofs are 
essentially the same as the proof of the embedded case. See [50] for these types of 
arguments. 

Proof of Theorem 22.1. If M has two or fewer annular ends, there is nothing to 
prove. If M has three or more annular ends, we apply Corollary 22.6 to any choice of 
three annular ends of M. It implies that one of them lies between two standard barriers. 
But by Proposition 22.3, this end must have finite total curvature. Thus, M can have 
at most two annular ends of infinite total curvature. D 

Corollary 22.8 Suppose M is a properly embedded complete minimal surface in R 3 . 

Then M can have at most two annular ends that are not conformally diffeomorphic to a 
punctured disk. In particular, if M has finite topology, then M is conformally equivalent 
to a closed Riemann surface from which a finite number of points, and zero, one, or two 
pairwise-disjoint closed disks, have been removed. 

Proof. Since any complete annular end of finite total curvature must be conformally a 
punctured disk, the conclusion is obvious. D 
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