22 Standard Barriers and The Annular End Theorem

The study of ends of complete minimal surfaces leads to the Annular End Theorem of Hoffman and Meeks [29], and its corollaries.

Theorem 22.1 (The Annular End Theorem) If M is a properly embedded minimal surface in \mathbf{R}^{3}, then at most two distinct annular ends of M can have infinite total curvature.

To prove the Annular End Theorem, we need some preparation. First we introduce the notion of a standard barrier.

Definition 22.2 A standard barrier in \mathbb{R}^{3} is one of the following two minimal surfaces with boundary: the complement of a disk in a plane in \boldsymbol{R}^{3}; a component of the complement of a simple, closed, homotopically nontrivial curve on a catenoid.

We will say that a surface $M \subset \mathbb{R}^{3}$ admits a standard barrier if it is disjoint from some standard barrier. We will use the word "eventually" to mean "outside of some sufficiently large compact set of $\mathbb{R}^{3 \prime \prime}$. Thus, two surfaces $M \subset \mathbb{R}^{3}$ and $N \subset \mathbb{R}^{3}$ are "eventually disjoint" if they have compact intersection. It is straightforward to see that M admits a standard barrier if and only if it is eventually disjoint from some standard barrier.

Given a standard barrier S and a ball B large enough to contain ∂S, it is clear that $S-B$ divides $\mathbb{R}^{3}-B$ into two components. Two surfaces $M, N \subset \mathbb{R}^{3}$ will be said to be separated by a standard barrier if such an S and B can be found so that M and N eventually lie in different components of $\mathbf{R}^{3}-(B \cup S)$.

Two disjoint standard barriers divide the complement of a sufficiently large ball $B \subset \mathbb{R}^{3}$ into three components, only one of which contains portions of both barriers on its boundary. A surface $M \subset \mathbb{R}^{3}$ that eventually lies in such a component will be said to lie between two standard barriers. After a rotation of \boldsymbol{R}^{3}, if necessary, the region of \mathbb{R}^{3} between two standard barriers eventually lies in the complement of any $X_{c}=\left\{x_{1}^{2}+x_{2}^{2}=\left(x_{3} / c\right)^{2}\right\}$ (in the component that contains $P^{0}-\{0\}$) for any $c>0$, no matter how small. It follows from Theorem 21.1 and Remark 21.4 that:

Proposition 22.3 If $X: M \hookrightarrow \mathbb{R}^{3}$ is a properly immersed complete minimal surface of finite topology, with compact boundary ∂M, and eventually lies between two standard barriers, then M must have finite total curvature.

Our strategy in proving the Annular End Theorem is to trap ends between standard barriers. The next lemma contains the critical technical construction.

Before proving the lemma, we introduce the notion of linking number.

Definition 22.4 Let γ be an embedded curve in \mathbf{R}^{3} such that $\mathbf{R}^{3}-\gamma$ is homotopic to $\mathbf{R}^{2}-\{0\}$. The first homology group of $\mathbf{R}^{3}-\gamma$ is $H_{1}\left(\mathbf{R}^{3}-\gamma\right) \cong \mathbb{Z}$. Let $\beta \subset \mathbf{R}^{3}-\gamma$ be a closed curve. Then the linking number of β with γ is the homology class of $[\beta]$ in $H_{1}\left(\mathbf{R}^{3}-\gamma\right)$. This is an integer, denoted by $l(\beta, \gamma)$.

If we use the homology group $H_{1}\left(\mathbf{R}^{3}-\gamma ; \mathbb{Z}_{\mathbf{2}}\right)$, then $l_{2}(\beta, \gamma)=0$ or 1 .
Intuitively, if β is a Jordan curve, then $l(\beta, \gamma) \neq 0$ means that any disk $D \subset \mathbf{R}^{3}$, such that $\partial D=\beta$, intersects γ. In the homology group $H_{1}\left(\mathbb{R}^{3}-\gamma ; \mathbb{Z}_{2}\right)$, if γ is a proper curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$, then $l_{2}(\beta, \gamma) \neq 0$ if and only if there is a disk $D \subset \mathbb{R}^{3}$ such that $\partial D=\beta$ and D intersects γ an odd number of times.

Lemma 22.5 Suppose M is a properly embedded, piecewise-smooth surface that is a smooth minimal surface outside of some ball and that has at least two ends. Let γ : $\mathbf{R} \rightarrow M$ be a proper curve that diverges into two distinct ends of M, depending on whether $t \rightarrow+\infty$ or $t \rightarrow-\infty$. Then M admits a standard barrier whose boundary has linking number 1 with γ.

Proof. Let $B \subset \mathbb{R}^{3}$ be a ball large enough to contain the nonsmooth, nonminimal portion of M, and expand it, if necessary, so that the ends of M in question correspond to distinct components of $M-B$. If one has such a ball, any larger one will have the same property. We may also choose B so that ∂B intersects M transversally. Suppose that M_{1} and M_{2} are the two components of $M-B$ that contain the unbounded components of $\gamma-B$. Since the proper arc γ intersects ∂M_{1} and ∂M_{2} an odd number of times, we can choose exactly one component of $\mathbf{R}^{3}-M$ whose closure, \mathcal{N}, has the following property: the arc γ has odd linking number with any 1-cycle in $\operatorname{Int}(\mathcal{N})$ homologous to ∂M_{1} in \mathcal{N}. Note that ∂M_{1} is not homologous to zero in \mathcal{N}.

Let $\Sigma_{1} \subset \cdots \subset \Sigma_{n} \subset \cdots$ be an exhaustion of M_{1} by smooth compact subdomains, with $\partial M_{1} \subset \partial \Sigma_{1}$. Let $\tilde{\Sigma}_{i}$ denote a least-area integral current (roughly speaking, piecewise C^{1} minimal surface) in \mathcal{N} with boundary $\partial \Sigma_{i}$, which is \mathbb{Z}_{2}-homologous to Σ_{i} (i.e., $\left[\Sigma_{i}\right]=\left[\tilde{\Sigma}_{i}\right]$ in $\left.H_{1}\left(\mathcal{N} ; \mathbb{Z}_{2}\right)\right)$. Since $\Sigma_{i} \cup \tilde{\Sigma}_{i}$ is a boundary in $\mathcal{N}, \tilde{\Sigma}_{i}$ is orientable. Interior regularity of least-area currents (see, for example, [75]) shows that $\tilde{\Sigma}_{i} \cap \operatorname{Int}(\mathcal{N})$ is a regular embedded minimal surface. Since $\partial \mathcal{N}-\partial B$ has zero mean curvature, the maximum principle and the extension theorem for minimal surfaces imply that either $\tilde{\Sigma}_{i} \cap(\mathcal{N}-\partial B)$ is regular and $\tilde{\Sigma}_{i} \cap M_{1}=\partial \Sigma_{i}$ or $\tilde{\Sigma}_{i} \subset M_{1}$. Standard compactness theorems imply that a subsequence of the surfaces $\left\{\tilde{\Sigma}_{i}\right\}$ converges to a least-area orientable surface $\Sigma \subset \mathcal{N}$ with $\partial \Sigma=\partial M_{1}$. Suppose, for the moment, $\Sigma \cap M=\partial \Sigma$.

The surface $\Sigma-\partial B$ is a stable, properly embedded, orientable minimal surface in \mathbf{R}^{3} with compact boundary and hence has finite total curvature (see, [57], Theorem 1 as well as [19]). Hence, Σ has a finite number, say n, of ends, and each end is asymptotic to a plane or to a catenoid. Let S_{R} be the sphere of radius R centred at the origin. For R sufficiently large, by Theorem $12.1, \Sigma \cap S_{R}$ consists of n parallel almost-great-circles, each of which is the boundary of one of the annular ends of Σ.

By our choice of \mathcal{N}, γ has odd linking number with one of the curves in $\Sigma \cap S_{R}$, and hence has linking number 1 with one of the annular ends of $\Sigma-B_{R}$. Call this annular end F.

By the weak maximum principle at infinity (Remark 15.3), since $F \cap M=\emptyset$, $\operatorname{dis}(F, M)>0$. On the other hand, F is asymptotic to an end, C^{\prime}, of a plane or a catenoid. Hence, C^{\prime} contains a subend, C, whose boundary is a circle that has linking number 1 with γ. Moreover, C is contained in the interior of \mathcal{N}. This proves the lemma in the case $\Sigma \cap M=\partial \Sigma$.

In case $\Sigma \subset M$, the extension theorem implies that $\Sigma=M_{1}$, which means that $\gamma \cap M_{1}$ is eventually contained in a catenoid-type end or a flat end, say $C^{\prime \prime} \subset \Sigma$. This is, in fact, the easier case and can be treated directly, but we prefer to reduce it to the previous case. We may choose $C^{\prime \prime}$ so that it is as close as desired to a standard barrier. Moving $C^{\prime \prime}$ a small amount in the direction of its limiting normal produces a minimal surface that is disjoint from M_{1} and its boundary has linking number with γ equal to either 0 or 1 . Move in the direction that makes the linking number equal to 1 . The maximum principle at infinity shows that if $C^{\prime \prime}$ is moved a small amount, then it is also disjoint from M. We can now apply the argument in the previous case to complete the proof.

Corollary 22.6 Suppose M_{1}, M_{2}, and M_{3} are three pairwise-disjoint, properly embedded minimal surfaces in \mathbb{R}^{3}, each of which has compact boundary and one end. Then at least one of the surfaces lies between two standard barriers.

Proof. Choose a ball $B \subset \mathbb{R}^{3}$ that is big enough to contain $\cup_{i} \partial M_{i}$. The ball can be chosen to intersect $\cup M_{i}$ transversally. After removal of $B \cap M_{i}$ from each M_{i}, we may assume that $\partial M_{i} \subset \partial B$. The curves $\bigcup_{i=1}^{3} \partial M_{i}$ bound a region S on ∂B with the property that the boundary of at least one component of S touches the boundary of more than one of M_{i}. We will refer to this component as \mathcal{S} and relabel the M_{i}, if necessary, so that both $\partial \mathcal{S} \cap \partial M_{1}$ and $\partial \mathcal{S} \cap \partial M_{2}$ are nonempty.

Let $M=S \bigcup_{i} M_{i}$. We intend to apply Lemma 22.5 to M. Toward that end, choose a proper curve $\gamma: \mathbb{R} \rightarrow M$, with $\gamma(\mathbb{R}) \cap S$ consisting of a single connected arc in \mathcal{S} from ∂M_{1} to ∂M_{2}. We may assume that γ diverges in M_{1} (resp. M_{2}) as $t \rightarrow+\infty$ (resp. $t \rightarrow-\infty)$. By Lemma 22.5, there exists a standard barrier disjoint from M whose boundary has linking number 1 with γ.

We now expand the ball B to be large enough to contain the boundary of this barrier and discard from each M_{i} the subset $M_{i} \cap B$. Similarly, let C_{1} be the component of the barrier exterior to $B . C_{1}$ is still a barrier for M, and γ has linking number 1 with ∂C_{1}. Moreover, C_{1} divides $\mathbf{R}^{3}-B$ into two components. Clearly, M_{1} and M_{2} are in different components. Without loss of generality, we may assume that M_{3} is in the same component as M_{1}.

The curve ∂C_{1} divides ∂B into two disks. Let D be the disk containing $\partial M_{1} \cup \partial M_{3}$. We now repeat the construction in the previous paragraph. This time, let S^{\prime} be a region
of D bounded by $\partial C_{1} \cup \partial M_{1} \cup \partial M_{3}$. Since ∂C_{1} is almost a great circle on ∂B and M_{1} and M_{3} are in the same component of $\mathbf{R}^{3}-C_{1}, \partial M_{1}$ and ∂M_{3} are in the same half-sphere bounded by ∂C_{1}, therefore, S^{\prime} has a component, say \mathcal{S}^{\prime}, with boundary points on both ∂M_{1} and ∂M_{3}. Let $M^{\prime}=M_{1} \cup M_{2} \cup M_{3} \cup C_{1} \cup S^{\prime}$. Choose a proper arc $\gamma^{\prime} \subset M^{\prime}$ whose intersection with S^{\prime} lies in \mathcal{S}^{\prime} and consists of connected arc from ∂M_{1} to ∂M_{3}. (Note that, since $(\partial B-D) \cap \gamma^{\prime}=\emptyset, \partial D=\partial C_{1}, \gamma^{\prime}$ has linking number 0 with ∂C_{1}.) Lemma 22.5 implies that there exists another standard barrier, C_{2}, that is disjoint from $M_{1} \cup M_{2} \cup M_{3} \cup C_{1} \cup S^{\prime}$ and whose boundary has linking number 1 with γ^{\prime}.

Expand B again so that $\partial C_{2} \subset B$. It is possible to do this so that ∂B meets M transversally. Note that $C_{2} \cap \partial B$ is a single closed curve. Again, we discard from M_{1}, M_{2}, M_{3}, C_{1} and C_{2} the intersection of those surfaces with B. Therefore, all of these surfaces have their boundaries on ∂B.

The barrier C_{2} divides $\mathbb{R}^{3}-B$ into two regions, as does the barrier C_{1}. Since they are disjoint, $C_{1} \cup C_{2}$ divides $\mathbf{R}^{3}-B$ into three components. Let T_{1} (resp. T_{2}) be the component of $\mathbf{R}^{3}-\left(C_{1} \cup C_{2}\right)$ whose boundary contains C_{1} but is disjoint from C_{2} (resp. contains C_{2} but is disjoint from C_{1}). Let F be the third component, whose boundary contains $C_{1} \cup C_{2}$. Since γ^{\prime} has linking number 1 with $\partial C_{2}, C_{2}$ must separate M_{1} from M_{3}. But clearly, $M_{1} \cup M_{3} \subset T_{1} \cup F$. Hence, either M_{1} or M_{3} lies in F. That is, either M_{1} or M_{3} lies between two standard barriers.

Remark 22.7 Lemma 22.5 and Corollary 22.6 hold even when the minimal surfaces in question are properly immersed rather than properly embedded. The proofs are essentially the same as the proof of the embedded case. See [50] for these types of arguments.

Proof of Theorem 22.1. If M has two or fewer annular ends, there is nothing to prove. If M has three or more annular ends, we apply Corollary 22.6 to any choice of three annular ends of M. It implies that one of them lies between two standard barriers. But by Proposition 22.3, this end must have finite total curvature. Thus, M can have at most two annular ends of infinite total curvature.

Corollary 22.8 Suppose M is a properly embedded complete minimal surface in \mathbf{R}^{3}. Then M can have at most two annular ends that are not conformally diffeomorphic to a punctured disk. In particular, if M has finite topology, then M is conformally equivalent to a closed Riemann surface from which a finite number of points, and zero, one, or two pairwise-disjoint closed disks, have been removed.

Proof. Since any complete annular end of finite total curvature must be conformally a punctured disk, the conclusion is obvious.

