10 Complete Minimal Surfaces, Osserman's Theorem

Let $X: M \hookrightarrow \mathbb{R}^3$ be a surface, $\Lambda^2 = |X_1|^2 = |X_2|^2$, and $\gamma: I \to M$ be a differentiable curve. The arc length of γ is $\Gamma := \int_I |(X \circ r)'(t)| dt$. A divergent path on M is a piecewise differentiable curve $\gamma: [0, \infty) \to M$ such that for every compact set $V \subset M$ there is a T > 0 such that $\gamma(t) \notin V$ for every t > T. If γ is piecewise differentiable, we define its arc length as

 $\Gamma := \int_0^\infty |(X \circ r)'(t)| \, dt = \int_0^\infty \Lambda(\gamma(t)) |r'(t)| \, dt.$

Note that Γ could be ∞ .

Definition 10.1 We say that X is *complete* if for any divergent curve γ , $\Gamma = \infty$.

Remark 10.2 The use of a divergent curve instead of boundary to describe completeness is because that if $M = \mathbf{D}^*$, $\{0\}$ is not a boundary point of M, but is the limit point of a divergent curve.

Note that in case that (M, g) is a non-compact Riemannian manifold and $\partial M = \emptyset$, according to the Hopf-Reno theorem, this definition of completeness is equivalent to each of the following:

- 1. Any geodesic $\gamma: I \subset \mathbf{R} \hookrightarrow M$ can be extended to a geodesic $\gamma: \mathbf{R} \hookrightarrow M$,
- 2. (M, d) is a complete metric space, where d is the induced distance from the Riemannian metric g (roughly speaking, d(p,q) = the arc length of the shortest geodesic segment connecting p and q),
- 3. in (M, d), any bounded closed set is compact.

In general, there are many examples of closed minimal submanifolds $M \hookrightarrow (N,g)$ where (N,g) is a Riemannian manifold. For example, $S^2 \subset S^3$ is minimal. But we have seen that there are no closed minimal surfaces in \mathbb{R}^3 . Hence in some sense a complete minimal surface without boundary is the closest analogue to a "closed minimal surface in \mathbb{R}^3 ".

Definition 10.3 Let $X: M \hookrightarrow \mathbf{R}^3$ be a complete minimal surface. Remember that the Gauss curvature K is a non-positive function on M, hence the integral of K has a meaning. We define

$$K(M) := \int_{M} K dA \tag{10.39}$$

to be the total Gauss curvature of M.

Let $X: M \hookrightarrow \mathbb{R}^3$ be a surface and K be the Gauss curvature. Let $K^- = \max\{-K,0\}$, $K^+ = \max\{K,0\}$, then $K = K^+ - K^-$, $|K| = K^+ + K^-$. We first prove a theorem of A. Huber, the proof shown here belongs to B. White [82].

Theorem 10.4 (Huber [35]) Let $X: M \hookrightarrow \mathbb{R}^3$ be a non-compact, complete surface. If $\int_M |K^-| dA < \infty$, then $\int_M |K^+| dA < \infty$, and M is homeomorphic to $\overline{M} - \{p_1, \dots, p_k\}$, where \overline{M} is a compact 2-manifold.

Proof. Fix $x_0 \in M$, and let

$$\Omega_r = \Omega(r) = \{ x \in M \mid d(x, x_0) < r \},\$$

where d(x, y) is the geodesic distance from x to y. P. Hartman [23] has shown that $\partial \Omega_r$ is, for almost all r, a piecewise smooth, embedded closed curve. Let θ_i , $i = 1, \dots, n$ be the exterior angles of $\partial \Omega_r$. By Gauss-Bonnet theorem,

$$\int_{\partial\Omega_r} \kappa_g \, ds + \sum_i \theta_i = 2\pi \chi(r) - \int_{\Omega_r} K \, dA$$
$$= 2\pi (2 - 2h(r) - c(r)) - \int_{\Omega_r} K \, dA, \tag{10.40}$$

where $\chi(r)$, h(r), and c(r) are the Euler characteristic, number of handles, and the number of boundary components, respectively, of Ω_r .

Let L(r) denote the length of $\partial\Omega_r$. P. Hartman [23] has proved that L(r) is absolutely continuous. As proved in [83],

$$L'(r) = 2\pi(2 - 2h(r) - c(r)) - \int_{\Omega_r} K \, dA + \sum_{\theta_i < 0} (2\tan(\theta_i/2) - \theta_i),$$

when $-\pi/2 < \theta_i < 0, 2 \tan(\theta_i/2) - \theta_i < 0$, so

$$L'(r) \le 2\pi(2 - 2h(r) - c(r)) - \int_{\Omega_n} K \, dA.$$

Since M is complete and noncompact, L(r) > 0 for all r > 0; so

$$0 \leq \limsup L'(r) \\ \leq 2\pi (2 - 2 \liminf h(r) - \liminf c(r)) - \int_{M} |K^{+}| dA + \int_{M} |K^{-}| dA. \quad (10.41)$$

Thus the negative quantities on the right-hand side are all finite. Since h(r) is a non-decreasing, integer valued function of r,

$$h(r) = \text{some constant } h \text{ for } r > R.$$

Also, c(r) is integer valued, so we can find a sequence $r_i \to \infty$ with

$$c(r_i) = c = \liminf c(r) < \infty.$$

Let A_i be the union of Ω_{r_i} with those connected components of $M - \Omega_{r_i}$ which happen to be compact. (There may not be any, in which case $A_i = \Omega_{r_i}$.) Let $h(A_i)$ and $c(A_i)$ denote the number of handles and boundary components, respectively, of A_i . Then

$$h = h(\Omega_{r_i}) \le h(A_i) \le h(\Omega_{r_{i+1}}) = h$$

provided j is large enough that $A_i \subset \Omega_{r_{i+j}}$: so

$$h(A_i) \equiv h \tag{10.42}$$

and clearly $c(A_i) \leq c(\Omega_{r_i})$. By passing to a subsequence we may assume

$$c(A_i) \equiv c' \ (\le c). \tag{10.43}$$

By (10.42) and (10.43), the A_i are homeomorphic, with A_{i+1} obtained from A_i by attaching annuli. The result follows immediately.

Since for minimal surfaces $K \leq 0$ on M, we know that a complete minimal surface of finite total curvature has finite topology. We are interested in the conformal structure of M. Now since M has finite topology, $M = S_k - (\{p_1, \dots, p_n\} \cup \bigcup_{i=1}^l U_i)$ as a Riemann surface, where $U_i \subset S_k$ is conformally a closed disk. Furthermore, there are disjoint conformal open disks $D_i \subset S_k$, $i = 1, \dots, n + l$, such that $p_i \in D_i$, $i = 1, \dots, n$, and $U_i \subset D_{i+n}$, $i = 1, \dots, l$, and the boundaries ∂D_i are mutually disjoint analytic Jordan curves. See, for example, [1], I 44D and II 3B. Hence each $\overline{D}_{i+n} - U_i$ is conformally a doubly connected plane domain, which must be conformally equivalent to some

$$\tilde{A}_R := \{ z \in \mathbb{C} \mid 1/R \le |z| < R \}$$

with $1 < R < \infty$.

Let $\phi: \overline{D}_{i+n} - U_i \to \widetilde{A}_R$ be a conformal diffeomorphism. Since X is complete with finite total curvature, $X \circ \phi^{-1}$ is a complete minimal annulus with finite total curvature, where completeness of $X \circ \phi^{-1}$ means for any curve $\gamma: I \to A_R$ diverging to |z| = R, the arc length Γ of γ is infinity. We will prove that such a complete minimal annulus does not exist and hence $M = S_k - \{p_1, \dots, p_n\}$.

Actually, we will prove $M = S_k - \{p_1, \dots, p_n\}$ by showing that for any \tilde{A}_R there is no complete Riemannian metric which is conformal to the Euclidean metric and has non-positive Gauss curvature and finite total curvature. If there were a closed disk U_i removed from S_k , the induced metric on some \tilde{A}_R by $X \circ \phi^{-1}$ would be a complete Riemannian metric which is conformal to the Euclidean metric and has non-positive Gauss curvature and finite total curvature. Thus we know that it must be the case that $M = S_k - \{p_1, \dots, p_n\}$.

By the way, since there do exist complete minimal annuli $Y: D^* \hookrightarrow \mathbb{R}^3$, we see that D^* is not conformally equivalent of any A_R or \tilde{A}_R as mentioned in the last section.

First we give an easy lemma which uses the special structure of \tilde{A}_R . The proof is left as an exercise.

Lemma 10.5 If $g_{ij} = \lambda^2 \delta_{ij}$ is a complete Riemannian metric on \tilde{A}_R , then $\tilde{g}_{ij}(z) := \lambda^2(z)\lambda(1/z)\delta_{ij}$ is a complete Riemannian metric on $\hat{A}_R := \{1/R < |z| < R\}$.

Next we prove that if $\lambda = e^h$ and h is harmonic, then $\lambda^2 \delta_{ij}$ on \tilde{A}_R cannot be complete.

Proposition 10.6 Suppose $D \subset \mathbf{C}$ and $g_{ij} = e^{2h} \delta_{ij}$ is a complete Riemannian metric on D. If $\triangle h = 0$, then conformally D is either $\mathbf{C} - \{0\}$ or \mathbf{C} .

Proof. Consider the conformal universal covering $\pi: \tilde{D} \subset \mathbf{C} \to D$. Since π is holomorphic, $\tilde{h}(z) = h(\pi(z))$ is harmonic. Furthermore, $\tilde{g}_{ij} = e^{2\tilde{h}}\delta_{ij}$ is a complete Riemannian metric on \tilde{D} . Since \tilde{D} is simply connected, there is a harmonic function \tilde{k} conjugate to \tilde{h} . Define a holomorphic function $w: \tilde{D} \to \mathbf{C}$ by

$$w(z) = \int_0^z e^{\tilde{h}(\zeta) + i\tilde{k}(\zeta)} d\zeta.$$

Since \tilde{D} is simply connected, w is well defined.

First we claim that w sends a geodesic into a straight line. In fact, the induced metric by w from the Euclidean metric on \mathbf{C} is $|w'|^2 \delta_{ij} = e^{2\tilde{h}} \delta_{ij} = \tilde{g}_{ij}$. Hence the metric \tilde{g} is the first fundamental form of the surface $w: \tilde{D} \to \mathbf{C} \subset \mathbf{R}^3$ and $w: (\tilde{D}, \tilde{g}) \to (\mathbf{C}, \bullet)$ is an isometry. Let γ be a geodesic on \tilde{D} , then $w \circ \gamma$ is a plane geodesic of $w(\tilde{D}) \subset \mathbf{C}$, and thus $w \circ \gamma$ must be a straight line segment in \mathbf{C} .

Next we prove that w is one to one and onto. Let $\gamma:[0,\infty)\hookrightarrow \tilde{D}$ be a geodesic ray of unit speed on \tilde{D} . Then $(w\circ\gamma)'(t)=w'(\gamma(t))\,\gamma'(t)=\rho(t)e^{i\theta(t)}\neq 0$, since w' and γ' are both non-zero. Since γ is unit speed, $1=|\gamma'(t))|_{\tilde{g}}=|(w\circ\gamma)'(t)|=\rho(t)$. Since $w\circ\gamma$ is a straight line segment, $\theta(t)$ must be a constant, say θ_0 . Thus we can write

$$w(\gamma(t)) = w(\gamma(0)) + te^{i\theta_0}.$$

This proves that w sends any geodesic ray one to one and onto a ray in \mathbb{C} .

Now by completeness, \tilde{D} is the union of all geodesic rays starting from 0. Since w is locally a conformal diffeomorphism, different geodesic rays starting from 0 are mapped by w one to one and onto different rays starting from $w(\gamma(0)) \in \mathbb{C}$, thus w must be one to one and onto \mathbb{C} .

Now $w: \tilde{D} \to \mathbf{C}$ is a conformal diffeomorphism, so $\tilde{D} = \mathbf{C}$. Since the conformal universal covering of D is \mathbf{C} , conformally D must be either \mathbf{C} or $\mathbf{C} - \{0\}$.

Now we have to use the facts that $X: M \hookrightarrow \mathbb{R}^3$ has finite total curvature and \tilde{A}_R is hyperbolic in order to construct a complete metric $e^{2h}\delta_{ij}$ on A_R such that h is harmonic.

Proposition 10.7 Let $D \subset \mathbf{C}$ be a hyperbolic domain and $g_{ij} = \lambda^2 \delta_{ij}$ a Riemannian metric on D, such that $\triangle \log \lambda \ge 0$ and

$$\int_{D} \triangle \log \lambda \, dx \, dy < \infty. \tag{10.44}$$

Then there is a harmonic function h such that $\log \lambda \leq h$.

Proof. Since D is a hyperbolic domain, there is a Green's function $G(\zeta, z)$ on D for any $\zeta \in D$ which is positive except at ζ and such that $G(\zeta, z) + \log |z - \zeta|$ is a harmonic function on D. Since $\Delta \log \lambda \in L^1(D)$,

$$u(\zeta) := \frac{1}{2\pi} \int_D G(\zeta, z) \triangle \log \lambda \, dx \, dy$$

solves the Poisson equation $\Delta u = -\Delta \log \lambda$. Note that $u \geq 0$, $h = u + \log \lambda \geq \log \lambda$ is the desired harmonic function.

Now by Lemma 10.5 the induced metric by $X \circ \phi^{-1}$ on \tilde{A}_R is $\Lambda^2 g_{ij}$. Then the Gauss curvature is

 $K = -\frac{\triangle \log \Lambda}{\Lambda^2}.$

Since $K \leq 0$, we know that $\Delta \log \Lambda \geq 0$ is non-negative. Moreover, since

$$K(\tilde{A}_R) = \int_{\tilde{A}_R} K dA = -\int_{\tilde{A}_R} \frac{\Delta \log \Lambda}{\Lambda^2} \Lambda^2 dx dy = -\int_{\tilde{A}_R} \Delta \log \Lambda dx dy,$$

condition (10.44) is equivalent to $X \circ \phi^{-1}$ having finite total curvature. So we have a harmonic function $h \ge \log \Lambda$. Thus

$$\log \Lambda(z) + \log \Lambda(1/z) \le H(z) := h(z) + h(1/z).$$

Obviously $e^{2H}\delta_{ij}$ is a complete Riemannian metric on \hat{A}_R . Since H(z) = h(z) + h(1/z) is harmonic, by Proposition 10.6 we have $R = \infty$, a contradiction. This contradiction proves the first part of the following theorem due to Osserman:

Theorem 10.8 (Osserman, [66]) Let M be a Riemann surface without boundary and $X: M \hookrightarrow \mathbf{R}^3$ a complete minimal surface such that the total curvature K(M) is finite. Then

- 1. There exists a closed Riemann surface S_k and a finite number of points p_1, \ldots, p_r on S_k such that M is conformally $S_k \{p_1, \ldots, p_r\}$;
- 2. The Gauss map $g: M \to \Sigma$ can be extended to S_k such that the extension $\tilde{g}: S_k \to \Sigma$ is a holomorphic function. Moreover,

$$K(M) = -4\pi \deg g. \tag{10.45}$$

Recall that if $g: S_k \to \mathbb{C}$ is a meromorphic function, where S_k is a closed Riemann surface, then there is a positive integer n such that for all but finitely many $p \in \mathbb{C}$, $g^{-1}(p) \subset S_k$ consists of n points. We say that g has degree n, and denote this by $\deg g = n$.

Proof. Since we have proved the first part, we only need prove the second part. Recall that

$$K = -\frac{16|g'|^2}{|f|^2(1+|g|^2)^4}$$
 and $\Lambda^2 = \frac{1}{4}|f|^2(1+|g|^2)^2$.

Recall that $\tau^{-1}: \mathbb{C} \to S^2$ is a complex chart of S^2 . In this chart the volume form of S^2 is

$$dS(w) = \frac{4}{(1+|w|^2)^2} du \wedge dv$$

where $w = u + iv \in \mathbb{C}$. Obviously

$$\int_{S^2} dS = \int_{\mathbf{C}} dS(w) = 4\pi.$$

Let U be a coordinate neighbourhood in M on which g has no pole. Since g is holomorphic, $|g'|^2 = \det Dg$, where we interpret g as $g: U \to \mathbb{R}^2$. The induced metric by $g: U \to (\mathbb{C}, dS)$ has the volume form

$$g^*(dS) = \frac{4 \det Dg}{(1 + |g|^2)^2} dx \, dy.$$

Since $g^*(dS)$ is well defined on $M - g^{-1}(\infty)$ (in fact on M), by

$$\int_{U} K dA = \int_{U} K \Lambda^{2} dx \wedge dy = -\int_{U} \frac{4|g'|^{2}}{(1+|g|^{2})^{2}} dx \wedge dy$$
$$= -\int_{U} \frac{4 \det Dg}{(1+|g|^{2})^{2}} dx \wedge dy = -\int_{U} g^{*}(dS)$$

we have

$$\int_{M} K dA = -\int_{M} g^{*}(dS).$$

Thus by the area formula we finally get

$$\int_{M} g^{*}(dS) = \int_{\mathbf{C}} \sharp \{g^{-1}(w)\} dS(w) = 4\pi \deg g,$$

where $\sharp\{g^{-1}(w)\}$ is the number of points in $g^{-1}(w)$. Since g is meromorphic, for almost every $w \in \mathbb{C}$, $\sharp\{g^{-1}(w)\} = \deg g$. The proof is complete.

Corollary 10.9 If $X: M \hookrightarrow \mathbf{R}^3$ is a non-planar complete minimal surface of finite total curvature, then the Gauss map $g: M \to \mathbf{C}$ can miss at most a finite number of points of \mathbf{C} .

Proof. Since g can be extended to a closed Riemann surface S_k and g is not a constant, (otherwise X will be contained in a plane) we know that $g(S_k) = \mathbb{C} \cup \{\infty\}$. Now $M = S_k - \{p_1, \dots, p_r\}$, so $\mathbb{C} - g(M)$ has at most a finite number of points. \square

Corollary 10.10 (Bernstein's Theorem) Let $u : \mathbf{R}^2 \to \mathbf{R}$ be a solution to the minimal surface equation. Then u is an affine function, i.e., u(x,y) = ax + by + c where a, b, and c are constants.

Proof. If u is not affine, then the graph of u is a non-planar complete minimal surface S of conformal type $\mathbf{C} = S^2 - \{(0,0,1)\}$. In fact, the special isothermal coordinate in Section 5, $(\xi,\eta): \mathbf{R}^2 \to \mathbf{R}^2$, is one to one and onto \mathbf{R}^2 . If S has infinite total curvature, then the Gauss map g of S has an essential singularity at ∞ , and hence g misses at most one point in \mathbf{C} . If S has finite total curvature and is non-planar, then Corollary 10.9 tells us that g misses at most a finite number of points of \mathbf{C} . But since S is a graph,

 $N = \frac{1}{(1 + u_x^2 + u_y^2)^{1/2}} \left(-u_x, -u_y, 1 \right)$

misses the lower hemisphere of S^2 . This contradiction shows that S must be planar and forces $g \equiv \text{constant}$, and hence u_x and u_y must be constant and u must be affine. \square