10 Complete Minimal Surfaces, Osserman's Theorem

Let $X: M \hookrightarrow \mathbb{R}^{3}$ be a surface, $\Lambda^{2}=\left|X_{1}\right|^{2}=\left|X_{2}\right|^{2}$, and $\gamma: I \rightarrow M$ be a differentiable curve. The arc length of γ is $\Gamma:=\int_{I}\left|(X \circ r)^{\prime}(t)\right| d t$. A divergent path on M is a piecewise differentiable curve $\gamma:[0, \infty) \rightarrow M$ such that for every compact set $V \subset M$ there is a $T>0$ such that $\gamma(t) \notin V$ for every $t>T$. If γ is piecewise differentiable, we define its arc length as

$$
\Gamma:=\int_{0}^{\infty}\left|(X \circ r)^{\prime}(t)\right| d t=\int_{0}^{\infty} \Lambda(\gamma(t))\left|r^{\prime}(t)\right| d t
$$

Note that Γ could be ∞.
Definition 10.1 We say that X is complete if for any divergent curve $\gamma, \Gamma=\infty$.
Remark 10.2 The use of a divergent curve instead of boundary to describe completeness is because that if $M=\mathbb{D}^{*},\{0\}$ is not a boundary point of M, but is the limit point of a divergent curve.

Note that in case that (M, g) is a non-compact Riemannian manifold and $\partial M=\emptyset$, according to the Hopf-Reno theorem, this definition of completeness is equivalent to each of the following:

1. Any geodesic $\gamma: I \subset \mathbb{R} \hookrightarrow M$ can be extended to a geodesic $\gamma: \mathbb{R} \hookrightarrow M$,
2. (M, d) is a complete metric space, where d is the induced distance from the Riemannian metric g (roughly speaking, $d(p, q)=$ the arc length of the shortest geodesic segment connecting p and q),
3. in (M, d), any bounded closed set is compact.

In general, there are many examples of closed minimal submanifolds $M \hookrightarrow(N, g)$ where (N, g) is a Riemannian manifold. For example, $S^{2} \subset S^{3}$ is minimal. But we have seen that there are no closed minimal surfaces in \mathbb{R}^{3}. Hence in some sense a complete minimal surface without boundary is the closest analogue to a "closed minimal surface in $\mathbf{R}^{3 \prime \prime}$.

Definition 10.3 Let $X: M \hookrightarrow \mathbb{R}^{3}$ be a complete minimal surface. Remember that the Gauss curvature K is a non-positive function on M, hence the integral of K has a meaning. We define

$$
\begin{equation*}
K(M):=\int_{M} K d A \tag{10.39}
\end{equation*}
$$

to be the total Gauss curvature of M.
Let $X: M \hookrightarrow \mathbb{R}^{3}$ be a surface and K be the Gauss curvature. Let $K^{-}=$ $\max \{-K, 0\}, K^{+}=\max \{K, 0\}$, then $K=K^{+}-K^{-},|K|=K^{+}+K^{-}$. We first prove a theorem of A . Huber, the proof shown here belongs to B . White [82].

Theorem 10.4 (Huber [35]) Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a non-compact, complete surface. If $\int_{M}\left|K^{-}\right| d A<\infty$, then $\int_{M}\left|K^{+}\right| d A<\infty$, and M is homeomorphic to $\bar{M}-\left\{p_{1}, \cdots, p_{k}\right\}$, where \bar{M} is a compact 2-manifold.

Proof. Fix $x_{0} \in M$, and let

$$
\Omega_{r}=\Omega(r)=\left\{x \in M \mid d\left(x, x_{0}\right)<r\right\}
$$

where $d(x, y)$ is the geodesic distance from x to y. P. Hartman [23] has shown that $\partial \Omega_{r}$ is, for almost all r, a piecewise smooth, embedded closed curve. Let $\theta_{i}, i=1, \cdots, n$ be the exterior angles of $\partial \Omega_{r}$. By Gauss-Bonnet theorem,

$$
\begin{array}{r}
\int_{\partial \Omega_{r}} \kappa_{g} d s+\sum_{i} \theta_{i}=2 \pi \chi(r)-\int_{\Omega_{r}} K d A \\
\quad=2 \pi(2-2 h(r)-c(r))-\int_{\Omega_{r}} K d A \tag{10.40}
\end{array}
$$

where $\chi(r), h(r)$, and $c(r)$ are the Euler characteristic, number of handles, and the number of boundary components, respectively, of Ω_{r}.

Let $L(r)$ denote the length of $\partial \Omega_{r}$. P. Hartman [23] has proved that $L(r)$ is absolutely continuous. As proved in [83],

$$
L^{\prime}(r)=2 \pi(2-2 h(r)-c(r))-\int_{\Omega_{r}} K d A+\sum_{\theta_{i}<0}\left(2 \tan \left(\theta_{i} / 2\right)-\theta_{i}\right)
$$

when $-\pi / 2<\theta_{i}<0,2 \tan \left(\theta_{i} / 2\right)-\theta_{i}<0$, so

$$
L^{\prime}(r) \leq 2 \pi(2-2 h(r)-c(r))-\int_{\Omega_{r}} K d A
$$

Since M is complete and noncompact, $L(r)>0$ for all $r>0$; so

$$
\begin{align*}
0 & \leq \limsup L^{\prime}(r) \\
& \leq 2 \pi(2-2 \liminf h(r)-\liminf c(r))-\int_{M}\left|K^{+}\right| d A+\int_{M}\left|K^{-}\right| d A \tag{10.41}
\end{align*}
$$

Thus the negative quantities on the right-hand side are all finite. Since $h(r)$ is a nondecreasing, integer valued function of r,

$$
h(r)=\text { some constant } h \text { for } r>R .
$$

Also, $c(r)$ is integer valued, so we can find a sequence $r_{i} \rightarrow \infty$ with

$$
c\left(r_{i}\right)=c=\liminf c(r)<\infty
$$

Let A_{i} be the union of $\Omega_{r_{i}}$ with those connected components of $M-\Omega_{r_{i}}$ which happen to be compact. (There may not be any, in which case $A_{i}=\Omega_{r_{i}}$.) Let $h\left(A_{i}\right)$ and $c\left(A_{i}\right)$ denote the number of handles and boundary components, respectively, of A_{i}. Then

$$
h=h\left(\Omega_{r_{i}}\right) \leq h\left(A_{i}\right) \leq h\left(\Omega_{r_{i+j}}\right)=h
$$

provided j is large enough that $A_{i} \subset \Omega_{r_{i+j}}$: so

$$
\begin{equation*}
h\left(A_{i}\right) \equiv h \tag{10.42}
\end{equation*}
$$

and clearly $c\left(A_{i}\right) \leq c\left(\Omega_{r_{i}}\right)$. By passing to a subsequence we may assume

$$
\begin{equation*}
c\left(A_{i}\right) \equiv c^{\prime}(\leq c) . \tag{10.43}
\end{equation*}
$$

By (10.42) and (10.43), the A_{i} are homeomorphic, with A_{i+1} obtained from A_{i} by attaching annuli. The result follows immediately.

Since for minimal surfaces $K \leq 0$ on M, we know that a complete minimal surface of finite total curvature has finite topology. We are interested in the conformal structure of M. Now since M has finite topology, $M=S_{k}-\left(\left\{p_{1}, \cdots, p_{n}\right\} \cup \bigcup_{i=1}^{l} U_{i}\right)$ as a Riemann surface, where $U_{i} \subset S_{k}$ is conformally a closed disk. Furthermore, there are disjoint conformal open disks $D_{i} \subset S_{k}, i=1, \cdots, n+l$, such that $p_{i} \in D_{i}, i=1, \cdots, n$, and $U_{i} \subset D_{i+n}, i=1, \cdots, l$, and the boundaries ∂D_{i} are mutually disjoint analytic Jordan curves. See, for example, [1], I 44D and II 3B. Hence each $\bar{D}_{i+n}-U_{i}$ is conformally a doubly connected plane domain, which must be conformally equivalent to some

$$
\tilde{A}_{R}:=\{z \in \mathbb{C}|1 / R \leq|z|<R\}
$$

with $1<R<\infty$.
Let $\phi: \bar{D}_{i+n}-U_{i} \rightarrow \tilde{A}_{R}$ be a conformal diffeomorphism. Since X is complete with finite total curvature, $X \circ \phi^{-1}$ is a complete minimal annulus with finite total curvature, where completeness of $X \circ \phi^{-1}$ means for any curve $\gamma: I \rightarrow A_{R}$ diverging to $|z|=R$, the arc length Γ of γ is infinity. We will prove that such a complete minimal annulus does not exist and hence $M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\}$.

Actually, we will prove $M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\}$ by showing that for any \tilde{A}_{R} there is no complete Riemannian metric which is conformal to the Euclidean metric and has non-positive Gauss curvature and finite total curvature. If there were a closed disk U_{i} removed from S_{k}, the induced metric on some \tilde{A}_{R} by $X \circ \phi^{-1}$ would be a complete Riemannian metric which is conformal to the Euclidean metric and has non-positive Gauss curvature and finite total curvature. Thus we know that it must be the case that $M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\}$.

By the way, since there do exist complete minimal annuli $Y: D^{*} \hookrightarrow \mathbf{R}^{3}$, we see that D^{*} is not conformally equivalent ot any A_{R} or \tilde{A}_{R} as mentioned in the last section.

First we give an easy lemma which uses the special structure of \tilde{A}_{R}. The proof is left as an exercise.

Lemma 10.5 If $g_{i j}=\lambda^{2} \delta_{i j}$ is a complete Riemannian metric on \tilde{A}_{R}, then $\tilde{g}_{i j}(z):=$ $\lambda^{2}(z) \lambda(1 / z) \delta_{i j}$ is a complete Riemannian metric on $\hat{A}_{R}:=\{1 / R<|z|<R\}$.

Next we prove that if $\lambda=e^{h}$ and h is harmonic, then $\lambda^{2} \delta_{i j}$ on \tilde{A}_{R} cannot be complete.

Proposition 10.6 Suppose $D \subset \mathbf{C}$ and $g_{i j}=e^{2 h} \delta_{i j}$ is a complete Riemannian metric on D. If $\triangle h=0$, then conformally D is either $\mathbf{C}-\{0\}$ or \mathbf{C}.

Proof. Consider the conformal universal covering $\pi: \tilde{D} \subset \mathbf{C} \rightarrow D$. Since π is holomorphic, $\tilde{h}(z)=h(\pi(z))$ is harmonic. Furthermore, $\tilde{g}_{i j}=e^{2 \tilde{h}} \delta_{i j}$ is a complete Riemannian metric on \tilde{D}. Since \tilde{D} is simply connected, there is a harmonic function \tilde{k} conjugate to \tilde{h}. Define a holomorphic function $w: \tilde{D} \rightarrow \mathbf{C}$ by

$$
w(z)=\int_{0}^{z} e^{\tilde{h}(\zeta)+i \tilde{k}(\zeta)} d \zeta
$$

Since \tilde{D} is simply connected, w is well defined.
First we claim that w sends a geodesic into a straight line. In fact, the induced metric by w from the Euclidean metric on \mathbf{C} is $\left|w^{\prime}\right|^{2} \delta_{i j}=e^{2 \tilde{h}} \delta_{i j}=\tilde{g}_{i j}$. Hence the metric \tilde{g} is the first fundamental form of the surface $w: \tilde{D} \rightarrow \mathbf{C} \subset \mathbf{R}^{3}$ and $w:(\tilde{D}, \tilde{g}) \rightarrow(\mathbf{C}, \bullet)$ is an isometry. Let γ be a geodesic on \tilde{D}, then $w \circ \gamma$ is a plane geodesic of $w(\tilde{D}) \subset \mathbf{C}$, and thus wor must be a straight line segment in C.

Next we prove that w is one to one and onto. Let $\gamma:[0, \infty) \hookrightarrow \tilde{D}$ be a geodesic ray of unit speed on \tilde{D}. Then $(w \circ \gamma)^{\prime}(t)=w^{\prime}(\gamma(t)) \gamma^{\prime}(t)=\rho(t) e^{i \theta(t)} \neq 0$, since w^{\prime} and γ^{\prime} are both non-zero. Since γ is unit speed, $\left.1=\mid \gamma^{\prime}(t)\right)\left.\right|_{\tilde{g}}=\left|(w \circ \gamma)^{\prime}(t)\right|=\rho(t)$. Since wo is a straight line segment, $\theta(t)$ must be a constant, say θ_{0}. Thus we can write

$$
w(\gamma(t))=w(\gamma(0))+t e^{i \theta_{0}}
$$

This proves that w sends any geodesic ray one to one and onto a ray in \mathbf{C}.
Now by completeness, \tilde{D} is the union of all geodesic rays starting from 0 . Since w is locally a conformal diffeomorphism, different geodesic rays starting from 0 are mapped by w one to one and onto different rays starting from $w(\gamma(0)) \in \mathbb{C}$, thus w must be one to one and onto \mathbf{C}.

Now $w: \tilde{D} \rightarrow \mathbf{C}$ is a conformal diffeomorphism, so $\tilde{D}=\mathbf{C}$. Since the conformal universal covering of D is \mathbf{C}, conformally D must be either \mathbf{C} or $\mathbf{C}-\{0\}$.

Now we have to use the facts that $X: M \hookrightarrow \mathbb{R}^{3}$ has finite total curvature and \tilde{A}_{R} is hyperbolic in order to construct a complete metric $e^{2 h} \delta_{i j}$ on A_{R} such that h is harmonic.

Proposition 10.7 Let $D \subset \mathbf{C}$ be a hyperbolic domain and $g_{i j}=\lambda^{2} \delta_{i j}$ a Riemannian metric on D, such that $\triangle \log \lambda \geq 0$ and

$$
\begin{equation*}
\int_{D} \triangle \log \lambda d x d y<\infty \tag{10.44}
\end{equation*}
$$

Then there is a harmonic function h such that $\log \lambda \leq h$.
Proof. Since D is a hyperbolic domain, there is a Green's function $G(\zeta, z)$ on D for any $\zeta \in D$ which is positive except at ζ and such that $G(\zeta, z)+\log |z-\zeta|$ is a harmonic function on D. Since $\triangle \log \lambda \in L^{1}(D)$,

$$
u(\zeta):=\frac{1}{2 \pi} \int_{D} G(\zeta, z) \triangle \log \lambda d x d y
$$

solves the Poisson equation $\triangle u=-\triangle \log \lambda$. Note that $u \geq 0, h=u+\log \lambda \geq \log \lambda$ is the desired harmonic function.

Now by Lemma 10.5 the induced metric by $X \circ \phi^{-1}$ on \tilde{A}_{R} is $\Lambda^{2} g_{i j}$. Then the Gauss curvature is

$$
K=-\frac{\triangle \log \Lambda}{\Lambda^{2}}
$$

Since $K \leq 0$, we know that $\triangle \log \Lambda \geq 0$ is non-negative. Moreover, since

$$
K\left(\tilde{A}_{R}\right)=\int_{\tilde{A}_{R}} K d A=-\int_{\tilde{A}_{R}} \frac{\triangle \log \Lambda}{\Lambda^{2}} \Lambda^{2} d x d y=-\int_{\tilde{A}_{R}} \triangle \log \Lambda d x d y
$$

condition (10.44) is equivalent to $X \circ \phi^{-1}$ having finite total curvature. So we have a harmonic function $h \geq \log \Lambda$. Thus

$$
\log \Lambda(z)+\log \Lambda(1 / z) \leq H(z):=h(z)+h(1 / z)
$$

Obviously $e^{2 H} \delta_{i j}$ is a complete Riemannian metric on \hat{A}_{R}. Since $H(z)=h(z)+h(1 / z)$ is harmonic, by Proposition 10.6 we have $R=\infty$, a contradiction. This contradiction proves the first part of the following theorem due to Osserman:

Theorem 10.8 (Osserman, [66]) Let M be a Riemann surface without boundary and $X: M \hookrightarrow \mathbb{R}^{3}$ a complete minimal surface such that the total curvature $K(M)$ is finite. Then

1. There exists a closed Riemann surface S_{k} and a finite number of points p_{1}, \ldots, p_{r} on S_{k} such that M is conformally $S_{k}-\left\{p_{1}, \ldots, p_{r}\right\}$;
2. The Gauss map $g: M \rightarrow \Sigma$ can be extended to S_{k} such that the extension $\tilde{g}: S_{k} \rightarrow \Sigma$ is a holomorphic function. Moreover,

$$
\begin{equation*}
K(M)=-4 \pi \operatorname{deg} g \tag{10.45}
\end{equation*}
$$

Recall that if $g: S_{k} \rightarrow \mathbf{C}$ is a meromorphic function, where S_{k} is a closed Riemann surface, then there is a positive integer n such that for all but finitely many $p \in \mathbf{C}$, $g^{-1}(p) \subset S_{k}$ consists of n points. We say that g has degree n, and denote this by $\operatorname{deg} g=n$.
Proof. Since we have proved the first part, we only need prove the second part.
Recall that

$$
K=-\frac{16\left|g^{\prime}\right|^{2}}{|f|^{2}\left(1+|g|^{2}\right)^{4}} \quad \text { and } \quad \Lambda^{2}=\frac{1}{4}|f|^{2}\left(1+|g|^{2}\right)^{2}
$$

Recall that $\tau^{-1}: \mathrm{C} \rightarrow S^{2}$ is a complex chart of S^{2}. In this chart the volume form of S^{2} is

$$
d S(w)=\frac{4}{\left(1+|w|^{2}\right)^{2}} d u \wedge d v
$$

where $w=u+i v \in \mathbf{C}$. Obviously

$$
\int_{S^{2}} d S=\int_{\mathbf{C}} d S(w)=4 \pi
$$

Let U be a coordinate neighbourhood in M on which g has no pole. Since g is holomorphic, $\left|g^{\prime}\right|^{2}=\operatorname{det} D g$, where we interpret g as $g: U \rightarrow \mathbb{R}^{2}$. The induced metric by $g: U \rightarrow(\mathbf{C}, d S)$ has the volume form

$$
g^{*}(d S)=\frac{4 \operatorname{det} D g}{\left(1+|g|^{2}\right)^{2}} d x d y
$$

Since $g^{*}(d S)$ is well defined on $M-g^{-1}(\infty)$ (in fact on M), by

$$
\begin{gathered}
\int_{U} K d A=\int_{U} K \Lambda^{2} d x \wedge d y=-\int_{U} \frac{4\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}} d x \wedge d y \\
=-\int_{U} \frac{4 \operatorname{det} D g}{\left(1+|g|^{2}\right)^{2}} d x \wedge d y=-\int_{U} g^{*}(d S)
\end{gathered}
$$

we have

$$
\int_{M} K d A=-\int_{M} g^{*}(d S)
$$

Thus by the area formula we finally get

$$
\int_{M} g^{*}(d S)=\int_{\mathbf{C}} \sharp\left\{g^{-1}(w)\right\} d S(w)=4 \pi \operatorname{deg} g,
$$

where $\sharp\left\{g^{-1}(w)\right\}$ is the number of points in $g^{-1}(w)$. Since g is meromorphic, for almost every $w \in \mathbf{C}, \sharp\left\{g^{-1}(w)\right\}=\operatorname{deg} g$. The proof is complete.

Corollary 10.9 If $X: M \hookrightarrow \mathbf{R}^{3}$ is a non-planar complete minimal surface of finite total curvature, then the Gauss map $g: M \rightarrow \mathbf{C}$ can miss at most a finite number of points of \mathbf{C}.

Proof. Since g can be extended to a closed Riemann surface S_{k} and g is not a constant, (otherwise X will be contained in a plane) we know that $g\left(S_{k}\right)=\mathbb{C} \cup\{\infty\}$. Now $M=S_{k}-\left\{p_{1}, \cdots, p_{r}\right\}$, so $\mathbf{C}-g(M)$ has at most a finite number of points.

Corollary 10.10 (Bernstein's Theorem) Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a solution to the minimal surface equation. Then u is an affine function, i.e., $u(x, y)=a x+b y+c$ where a, b, and c are constants.

Proof. If u is not affine, then the graph of u is a non-planar complete minimal surface S of conformal type $\mathbf{C}=S^{2}-\{(0,0,1)\}$. In fact, the special isothermal coordinate in Section $5,(\xi, \eta): \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, is one to one and onto \mathbf{R}^{2}. If S has infinite total curvature, then the Gauss map g of S has an essential singularity at ∞, and hence g misses at most one point in C. If S has finite total curvature and is non-planar, then Corollary 10.9 tells us that g misses at most a finite number of points of \mathbf{C}. But since S is a graph,

$$
N=\frac{1}{\left(1+u_{x}^{2}+u_{y}^{2}\right)^{1 / 2}}\left(-u_{x},-u_{y}, 1\right)
$$

misses the lower hemisphere of S^{2}. This contradiction shows that S must be planar and forces $g \equiv$ constant, and hence u_{x} and u_{y} must be constant and u must be affine.

