
2 Definition of Minimal Surfaces 

Definition 2.1 A minimal surface in R 3 is a conformal harmonic immersion X : M <--+ 
R 3 , where M is a 2-dimensional smooth manifold, with or without boundary. Here 
conformal means that for any point p E M there is a local coordinate neighbourhood 
(U, (u, v)) on M, such that in U the vectors 

ax (ax1 ax 2 ax3 ) ( 1 2 3 ( 1 2 3 
Xl :=Xu= au = au ' ou ' au = Xu,Xu,Xu) = Xl,Xl,XJ 

and 

are perpendicular to each other and have the same length. Thus 

Here • is the Euclidean inner product. Such a coordinate neighbourhood (U, ( u, v)) is 
called an isothermal neighbourhood, its coordinates ( u, v) are called isothermal coordi
nates. 

The word immersion means that for any p E M, X* := dX : TpJivf -t Tx(p)R3 is a 
linear embedding. In the case X is conformal, it means simply that A > 0 on M. 

The word harmonic means that 

If M is connected, then we say that the surface X is connected. We will only consider 
connected surfaces. Furthermore, since any non-orientable surface has an orientable 
double covering, we will only consider oriented minimal surfaces. 

A homothety of R 3 is the composition of a rigid motion and a dilation or a shrinking. 
Let T be a homothety of R 3 , X : M <--+ R 3 be a surface. It is easy to see that X is 
a conformal harmonic immersion if and only TaX is. Thus we consider all surfaces in 
R 3 up to a homothety. That is, we do not distinguish the surfaces X : M <--+ R 3 

ToX: M <--+ R 3 . 

A classical theorem says that any Ck immersion, 2 ~ k ~ oo, can have an atlas 
of isothermal coordinate charts, so that X being conformal is not a special property 
of minimal surfaces. The important fact which distinguishes minimal surfaces is that 
under these isothermal charts, X is harmonic. 

For an orientable surface X : M <--+ R 3 , let {(Ua:, Za = Uo: + iva)}a:EA be an atlas 
of isothermal coordinates of the same orientation, then { (Ua:, za)}aEA defines a complex 
(conformal) structure on M. 
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Precisely, we will prove that if V is any isothermal coordinate neighborhood, with 
the Coordinates W = X+ iy having the same orientation as Z = U + iv on U n V, then 
zow-1 : w(U n V) ---+ z(U n V) is a holomorphic function. Which is equivalent to saying 
that the functions u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations 

To see this, compute 

au 
ax 

av au 
ay' ay 

ax ax au ax av ax ax au ax av 
ax = au ax + av ax' ay = au oy + av ay. 

Since both coordinates are conformal, we get that 

av av au au 
and ---oxay axay· 

Thus we have that 

(au .au) 2 
_ (au) 2 (au) 2 .au au -+z- - - - - +2z--ax ay ax oy ax ay 

= ( av) 2 
- ( av) 2 

- 2i av av = ( av - i av ) 2 

ay ax ax ay ay ax 
Hence 

(au+ iau) = ± (av _ iav). 
ax ay ay ax 

But if 

(au+ iau) = _ (av _ iav) 
ax ay ay ax ' 

then 

det ( ~~ ~~ ) = au av _ au ov = _ ( av) 2 
_ ( av) 2 < 0 

av av ax ay ay ax ay ax ' 
ax ay 

contradicting the fact that U and V have the same orientation. So 

(au+ iau) = (av _ iav) , 
ax ay ay ax 

which is the complex form of the Cauchy-Riemann equations. 
Since M is orientable, we get a complex analytic atlas { (Ua, za) }aEA on M, and M 

is diffeomorphic to a one-dimensional complex manifold. A one-dimensional complex 
manifold is usually called a Riemann surface. 
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Since any smooth orientable 2-dimensional manifold can be conformly embedded in 
·· R 3 , we see that any 2-dimensional smooth orientable surface M is diffeomorphic to a 

Riemann surface. 
Moreover, if X is minimal, under this complex structure on M, X is harmonic, hence 

locally is the real part of a holomorphic mapping. It is here that complex function theory 
enters and plays an important role in the study of minimal surfaces. 

Thus when we consider a minimal surface X: M "---+ R 3 , we can always assume that 
M is a Riemann surface with a conformal structure given as above. 

The easiest global property of minimal surfaces is that if M is a closed Riemann 
surface (compact manifold without boundary), then there is no minimal immersion 
X : M --+ R 3 . In fact, since M is compact, each component of X is a bounded harmonic 
function, and hence must have a maximum value on M. Thus X is a constant by the 
maximum principle, since M has no boundary. But then X is not an immersion. 

Another definition of minimal surfaces is that the mean curvature of X : M "---+ R 3 

vanishes. 
Remember that the mean curvature H of X is defined by 

2H = 911 hu + 2912h12 + l 2 h22, 

where 9ii = Xi • X 1, hij = Xij • N ( N is the Gauss map, i.e., the unit normal vector 
X1 A X2/IX1 A X 2 1, where A is the cross product in R 3), (9ii) = (%)-1, see any 
differential geometry textbook. 

In case X is conformal, 911 = 922 = A 2 , 911 = 922 = A - 2 , 912 = 912 = 0. Thus 

H = .6.X•N = ~ .6. X•N 
2A2 2 X ' 

where .6.x is the Laplace-Beltrami operator under the metric (9ij). Remember that .6.x 
is given by 

2 1 a ( 2 .. a.) 1(82 a2 ) 488 
.6.x := t; ...!§ oxi {; .../§9'3 oxi = A2 8x2 + 8y2 = A2 oz az' 

where 9 = det(9ij), (xl, x2) = (x, y), z = x + iy, and 

a 1(a .a) a 1(a .a) 
az = 2 ax - z oy ' crz = 2 ax + z ay · 

Thus in our case (conformal immersion), X is minimal (hence harmonic) implies that 
H = 0, which is essentially an equivalent definition of minimal surface. In fact, this 
definition is easier to generalise to define minimal submanifolds in arbitrary Riemannian 
manifolds. 

More precisely, H = 0 implies that X is conformal harmonic under a certain complex 
structure. To see 'this, let us recall that for any immersion X : M "---+ R 3 , 

.6.xX = 2HN. (.2.1) 
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Since we can always make X conformal, (2.1) shows that X is a minimal surface if and 
only if the mean curvature is zero. 

Let us give the proof of (2.1) as a short review of differential geometry. Let us first 
recall that from the Gauss equation we have 

where 

We calculate 

2 

X;j = L rzjxk + h;jN, 
k=l 

rk. = ~ ~ kz (8g;z 8gjz _ 8g;j) 
ZJ 2 L g 8u] + 8ui 8u1 > 

l=l 

1 I: 8 ( .. ) - -. g'lvgX· 
In .. 8u' J v ::J ~,J 

. . 8gij 1 '"' 8g .. L g'l xij + L --i xj +- L -ig'l xj. 
. . . . 8u 2g .. 8u 
t,J 2,J 't,J 

Now we have an identity 

~ ag = Tr (( kl) (8gkz)) = L kzagkz >:~ . ace g >:~ . g ,::, . , 
g uu' uu' uu' k,l 

see the proof in the next section. Thus we have 

_ '"' ij . . '"' agij . ~ '"' ij kzagkz . 
6xX- L g X,J + L 8 i XJ + L.t g g 8 i XJ. 

i,j i,j u 2 i,j,k,l u 

We claim that 6xX is perpendicular to the tagent planes, i.e, planes generated by 
(X1, X2). In fact, since Lj %gjk = 6;k, we have 
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Thus 6xX is in the direction of N, and 

6xX = (6xX•N)N = (2:::gijXij•N) N = (2:::gijhij) N = 2HN. 
~,J IJ 

Equation (2.1) also tells us that if X is conformal, then 6X is always perpendicular 
to the corresponding tangent plane of X. 

Note that equation (2.1) holds for hypersurfaces in Rn, n ~ 3, our proof is valid in 
the general case. 
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