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Some Topical Variational Geometry Problems in 
Computer Graphics 

G.N. Newsam. 

Abstracto 
Smooth interpolation of arbitrary curves and surfaces is a major problem in 
computer graphics. There are very successful variational formulations of 
similar problems in smooth interpolation of arbitrary functions; these have 
given rise to the (linear) theory of splines. However, there appears to be as 
yet no equivalent useful formulation of the general problem, so present 
computer graphics algorithms for cunres and surfaces use somewhat ad hoc 
extensions of the linear results based on parametric representations of splines 
and surface patches. The paper briefly describes the present state of affairs in 
the hope that variational geometers will pick up on some of these unsolved 
problems and develop a coherent theory of smooth interpolation of arbitrary 
geometrical objects. If such a theory can be developed, it may possibly 
revolutionize computer graphics. 

! . Introduction. 

Computer graphics is one of the many amazingly fast growing technologies spawned in the last 

two decades (see [4] for a general reference). Apple's Macintosh brought 2D graphical 

interfaces to the masses, and standard workstations will soon feature interfaces that simulate 

reality with full 3D graphics. This has been brought to fruition by perhaps the most intensive 

application of geometry ever, but has been carried out mainly by engineers and computer 

scientists; surprisingly little has been done by geometers. This paper outlines some pressing 

problems in the field in the hope of enticing variational geometers to take a more active role in 

their solution. 

The problems described here revolve around construction of smooth curves and surfaces 

subject to constraints, the most common being that they interpolate a given set of points. A 

large family of smooth interpolants of functions (the linear splines) are naturally defined 

through variational forms, yet there seem to be no formulations with equivalent explanatory 

power for general smooth interpolants. The standard consnuctions used in computer graphics 

are therefore based on parametric splineso Linear splines are easy to compute but result in 

coordinate dependent approximations, while parametric splines depend strongly on the chosen 

parameterization. In contrast, a general variational formulation holds the promise of a truly 
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coordinate independent construction, but results so far have been disappointing. The hope is 

that variational geometers have both the insight and the tools to remedy this situation. 

The question of what is the "correct" construction is of much more than academic interest. 

Considerable effort is put into implementing constructions in silicon so that they will run as fast 

as possible, and efficient constructions can greatly reduce the number of nodes needed to 

accurately represent a curve or surface. At present graphics chips automatically approximate 

curves or surfaces with geometric constructions such as lines, arcs of conics, Bezier curves and 

NURBS (non-uniform rational B-splines). There is as yet no compelling justification, 

however, for any particular approximation so the door is still open to new constructions of 

proven merit. Unfortunately, with the increasing trend towards adoption of standards there is a 

real possibility that existing constructions may soon be chosen as the basis of a future set of 

graphics approximation standards. This would erect a formidable barrier to further innovation, 

no matter how beneficial it might be. Thus the whole issue of smooth interpolants needs to be 

settled quickly. It may be that variational geometers have in fact already done so (I make no 

claim to be familiar with the literature in this field), in which case there is still a job to do in 

communicating the results to those who most need them. 

The structure of the paper is as follows. Section 2 starts by outlining some of the major results 

in the smooth interpolation of functions of a single variable by polynomial splines, and their 

extension to the problem of fitting a smoothing spline through noisy function values. It then 

notes how these results form the basis of smooth interpolation of arbitrary curves by parametric 

splines. Finally it summarizes the successes and failings of this approach. Section 3 then 

looks at the smooth interpolation of an arbitrary 2D curve by minimization of the squared 

curvature; it sketches the form of the solution and indicates why this has proved unsa~isfactory 

for practical applications. Section 4 looks at the smooth interpolation of surfaces by thin plate 

splines and surface patches, and notes that no general variational principle seems to exist for 

this problem. Finally section 5 summarizes the discussions in the previous sections as a list of 

open problems which may interest someone somewhere sufficiently to solve at least one or two 

of them. 

2 . Interpolation of curves by splines, 

In order to illustrate the various important issues in smooth interpolation we briefly review the 

foundations of spline approximation to smooth functions and its achievements in fitting smooth 

graphs to given data sets. These achievements indicate what we would like of a more general 

theory for fitting arbitrary smooth curves to given data in two or more dimensions. 
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2 .1 Analogue methods of curve fitting. 
The original draughtsman 's spline was a flexible piece of wood used in the drawing of smooth 

curves (especially cross-sections of ship hulls) through predefined points. Weights (known for 

some reason as ducks) were loaded on the curve at various locations to force it through the 

points and the shape of the curve was then traced out Alternatively the points could be marked 

by pegs and the wood then bent around the pegs. The curve would assume a shape that 

minimized the bending energy away from the weights or pegs: in a thin rod this energy could 

be reasonably modelled as the square of the curvature of the curve. 

2. 2 Polynomial splines and smooth interpolation of functions. 
Using pegs to form a shape gives a truly coordinate free curve invariant under rotation of the 

drawing board, but using weights will really only work well if the curve does not deviate too 

far from the horizontal. Since gravity imposes a preferred coordinate direction in many design 

problems, this is not an unreasonable restriction. Moreover it also leads to considerable 

simplification of the mathematical model. Suppose that the curve S is to pass through the 

points {x;,yJ : i = 1, ... , N and that these points sufficiently nicely distributed that S will be a 

graph y = j(x) w.r.t. to the x-y axes. Then the bending energy of S can be linearized w.r.t. to 

the coordinate system giving: 

J ~e 2 (s) ds 

s 
= r /f'(x)/2 dx 

1 + /f'(x)/ 2 
r /f"(x)/ 2 dx 

Consequently s can be approximated as the solution to the constrained optimization problem: 

rnr r /f"(x)f2 dx (1) 

XJ 

subject to Yi = f(xi) i = 1, ... ,N 

Setting this up as a Lagrangian and using calculus of variations shows that the solution f is 

given by: 

rn;n r /f'(x)f2 dx 

XJ 

+ .~/· [ rf(x) ii(x-x;) dx - Yil 

N 

<=> f""(x) = l Aj O(X-Xj) 
i = 1 

with 
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0 

Yi 

Thus f must be a cubic within each interval (x1,xi+I) and must be C 2 on the whole interval 

[x1.xN1. More generally, given a set of points x1 i = 1, ... , N, a polynomial spline f(x) of degree 

m and smoothness k is a function that is a polynomial of degree m in each subinterval (x1,xi+1) 

and is of order c• over the whole interval. The points x1 are termed knot points. If in 

addition, f(x) is a spline of order 2m+l, smoothness m and is chosen to minimize IJJ!"'i(x)/ 2 dx 

subject to f(xi) = Yi at the knot points, then f is termed a natural spline. [3] is the standard 

reference on polynomial splines, [11] describes splines in more general settings. 

The most convenient formulation for determining f uses a basis of B-splines. A B-spline is a 

generic polynomial spline with finite support; in particular the cubic B-spline associated with 

the generic knot points { -2, -1, o, 1, 2) is: 

r2)' -2 S X S -J 

(x+2) 3 - (x+1)3 -J S X S 0 
B(x) = (2-x)3 (1-x)3 0 S X S J 

(2-x) 3 ] :f> X S 2 

Simple rescaling will map this generic spline to the cubic B-spline B;(x) on any set of 5 knot 

points {x1_2, x;_1 x1, x1+l> x1+:d· Now expanding f as: 

N 

f(x) 'I.aiBb) 
i = 1 

gives a simple linear system Ba = y for the coefficients a,. The matrix B has entries B,1 = 
B;(x1), so its only non-zero elements are on the main diagonal and its two off-diagonals, so the 

system can be rapidly solved in O(N) operations. Moreover a complete stability analysis can be 

done that shows that the inversion is in general well-conditioned. 

Error analysis for natural splines is fairly straightforward; the main result is that if g "' C2m+2 

and f is the natural spline of order 2m+l interpolating g at N knots, then: 

jjg(k)_ j(k)//oo ~ C h2m+2-kjjg(2m+2)//oo 

where h = max /x,-x,_1j, and c is a constant independent of h and g. 

Cubic splines have been extremely successful in many applications involving approximation of 

functions, interpolation of time series and suchlike. In particular, as well as being accurate, 
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easily computed and easily interpreted, they are visually satisfying; it appears that the eye can 

detect discontinuities in the first or second derivatives of a function of a single variable, but that 

a C2 or better function appears smooth. These successes set up the benchmarks that smooth 

interpolants of general curves are judged against, and have motivated the extensions of cubic 

splines to curve fitting that will be discussed later. 

2. 3 Smoothing splines. 
In many practical situations the available data is noisy and is best modelled as: 

where f is the unknown function to be estimated from the data. In such cases it is more 

appropriate to construct a smoothing spline h. that only approximately fits the data by trading 

off goodness-of-fit against smoothness. In particular, for a given A, !:~. is defined to be the 

solution of: 

m;n r /f'(x)/ 2 dx 

XJ 

Expanding fl in B-splines gives: 

N 

+ It L [f(x;) - YiF 
i = 1 

N 

f;,.(x) L a:J.,iBb) 
i = 1 

where the vector a._ is the solution of the system: 

J B /'(x) B/'(x) dx 

If the variance u2 is known a priori, then an optimal choice can be made for A that minimizes 

the expected error. However this is unlikely in practice so we need a robust automatic 

procedure for choosing It based on the data alone. Fortunately this can be done through cross

validation. In ti.is, for a given It the smooth approximation h .. • is defined to be the solution of 

the smoothing problem got by dropping the datum (xk·YJ from the data set, i.e. to solve: 

mjn r /f'(x)/ 2 dx 

XJ 

We now define the cross-validation functional: 
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N 

V(A-) L Wk [h.k(Xk) - Yk)2 
k = 1 

V(?..) essentially measures how good a particular A. is in predicting missing data values. The 

choice of the optimal A.* is then the minimizer of V(A.). It can be shown that this A.* is 

asymptotically optimal in that as N r = it tends to the A. that would be chosen if the variance 

was known. Moreover under certain reasonable choices for the weights w< it can be shown 

([5], see also [6, 11]) that V(A) need not be calculated by constructing h .. ix<) separately for 

each k, but can be expressed in terms of A., y and the generalized eigenvalues A; of the 

system Ax; = A; B TBx;. 

Again spline smoothing with the use of cross validation for estimation of the smoothing 

parameter has worked very well in a wide range of practical problems, and so one would hope 

that it could be included within the framework of a general variational construction for fitting 

arbitrary smooth curves through noisy data. 

2. 4 Parametric splines for interpolating curves in two or more dimensions. 
The success of splines in interpolating functions has made them the basis for a number of 

constructions for interpolating arbitrary smooth curves in higher dimensions. These 

constructions, however, are all based on a parametric representation of the curve followed by a 

spline interpolation of each coordinate as a function of the parameter. As there appears to be no 

natural variational form associated with any of these representations, the justification for using 

any particular representation has to fall back on less intuitively satisfying reasons such as ease 

of use. 

In order to define these splines we use the following notation. x; = x{u;) = {xlu;), ... , xa(u,)} 

will denote points on a curve in d dimensions parameterized by the variable u with knot points 

at u;, i = 1, ... , N. A description of all these splines can be found in [4], but see also [9] for 

details on NURBS and [1] for details on P-splines. 

Bezier splines 

In these the interpolating spline is represented as: 

N 

x(u) L ai B f (u) 
i = 1 

where B~(u) 

are the Bernstein polynomials. The a; are termed the control points. Bezier splines are 

perhaps the oldest of the various splines used to approximate arbitrary curves and are the basis 

of many smoothing routines in interactive drawing packages such as MacDraw. Note that the 
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curve interpolates the first and last control points, so a1 = x1 and aN= xN but the remainder of 

the control points must be found by solving a dense system of equations, whose conditioning 

will depend both on the data x1 and on the distribution of knots u1• For this reason individual 

Bezier splines are often restricted to a low degree, and large curves are interpolated by patching 

together several splines. Continuity of the curve's tangent vector across patches can be 

enforced by noting that the direction of the tangent at an endpoint (say x1) lies along the line x2 

- x1• Note also that x(u) always lies in the convex hull of the control points a;, a property that 

also holds true for parametric B-splines and NURBS. 

Parametric B-splines 

In these the interpolating spline is represented as: 

N 

x(u) L aiB/u) 
i = 1 

where the B;(u) are the B-splines defined above. 

Non-Uniform Rational B-Splines (.NlJRBS} 

In these the interpolating spline is represented as: 

x(u) 

N 

La; w;B;(u) 
i = 1 

N 

Lw,B 
i = 1 

where the B;(u) are again B-splines (almost always cubic splines). In addition to the properties 

noted above NURBS have some additional virtu.es. First, since conics can be parameterized by 

rational quadratics, NURBS can represent conic sections exactly. Second NURBS are 

invariant under affine and projective transformations. In particular, for affine transformations 

X --7 Ax+b: 

Ax(u) + b 

N 

L (Aai +b) w;B;(u) 
i = 1 

N 

L w1B;(u) 
i = 1 

For perspective transformations, let x ---- n(x) denote the projection through a viewpoint c on 

to a plane that passes through the point p and has normal n. Then 

n(x) = (1- a)x + ac where a (x-p) en 
(x-c) •n 
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N 

L n(ai) wiBi(u) 
i = 1 

N 

L W;Bi(u) 
i = 1 

This result is very useful in graphics displays since any 3D curve must be ftrst projected onto 

the screen before it can be displayed. Thus a representation which is invariant under such 

transformations can be used for both 2D lind 3D curve fitting without need for re-expression 

when changing views. 

a-splines 

~-splines were introduced to take advantage of the fact that geometric smoothness (e.g. 

continuity of the tangent vector and curvature) of a parameterized curve is a weaker requirement 

than parametric smoothness (e.g. C2 continuity of the coordinates w.r.t. to u). In particular, 

starting with a parameterized cubic B-spline representation, and relaxing the condition of 

parametric smoothness to require only geometric smoothness frees up two parameters which 

can then be adjusted to meet other objectives. The resultant curve is written as 

N 

x(u) · = L ai f]lu : /h/h) 
i = 1 

where /31 controls the bias of the spline towards either endpoint and f32 controls the tension 

(i.e. if f32 = 0 then the spline is an ordinary B-spline, while if /32 = oo the spline consists of 

straight line segments). 

2. 5 Strengths and weaknesses of interpolatory splines. 
The main advantage of interpolatory splines for curve fitting is that the underlying theory is 

linear. The main disadvantage is that the basic theory of natural splines is derived in the context 

of approximating functions. The advantages of a linear theory are simple algorithms for curve 

fitting whose performance can be exhaustively analysed. The disadvantage is a setting that is 

not invariant w.r.t. coordinate rotation, and so many results do not carry through to the fttting 

of arbitrary curves. We now briefly list some of the consequences of this. 

First, a non-invariant setting means that natural polynomial splines do not necessarily preserve 

many important geometric properties such as convexity. Moreover they will suffer from 

instability when approximating functions with infmite derivatives even if the function graphs 

are well behaved when viewed simply as cur\res in the plane. The following example shows a 

typical example of these problems: a cubic spline is used to approximate log x and the 

approximation becomes increasingly oscillatory near the <>rigin. 
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Nevertheless, viewed as a curve in the plane, log x is a very well behaved convex curve and 

one would expect that a "true" interpolatory spline got by minimizing curvature would also be 

convex, and also be a very accurate approximation. 

Second, the lack of an invariant variational formulation means that many useful results on 

function approximation by splines do not apply when approximating curves by parametric 

splines. In particular, any result depends crucially on the parameterization, and there seems to 

be no optimal way to specify this from the data (although an algorithm is given in [9] for 

determining knot points for NURBS that at least guarantees that the associated matrix B of 

spline values is totally positive definite and so can be inverted using Gaussian elimination 

without pivoting). I know of no results, for instance, on approximation of curves by 

parametric splines that parallel the error bounds on approximation of functions by natural 

splines. In practice most interpolation by parametric splines is done locally, so that the control 

points ai are determined only by a few nearby x;. This is necessarily done on essentially ad 

hoc basis. The same comments also apply to smoothing by parametric splines. 

3 . Interpolation of curves by splines minimizing curvature. 

Given the drawbacks of existing methods of curve fitting, we could try and define smooth 

interpolants by a more exact model of the original draughtsman's spline. In particular, given 

data {x; =(xi.YJ : i = 1 •...• N} we seek to fit a curve S through the data points that minimizes: 

J IC2(s) ds 

s 
(where s denotes arc length) and to explore the properties of the solution. 
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3. 1 Formal solution to the variational problem. 

The minimization can be solved using much the same approach as for the linear case. In 

particular, we flrst parameterize the curve S = {x(s) : 0 = s1 s s s sNJ by arc length, and switch 

to intrinsic coordinates ( rp( s), s) where (/!( s) denotes the inclination of the curve to the horizontal 

at the distance s along the curve. Since K2(s) = fql(s)j2, we have that the problem can be re

formulated as: minimize over knot points s; and angular functions q; the expression: 

subject to: 

r /<p'(s)/ 2 ds 

S· 1 r x'(s) ds Sr· 1 ~COS ({J(S)J dS 
Lsin <p(s) 

Xi+l - X; 

Fonning a Lagrangian as before by introducing the Lagrange multipliers A.; = p; (cos 'If;, sin 'If;) 

and solving the Euler equations shows that q; must satisfy: 

-p; sin (qy(s)- ljli) 

subject to 0 

and appropriate continuity conditions at the knots. An exact solution can be found for cp in 

tenns of elliptic functions with two free parameters; this then leaves a system of nonlinear 

equations to be solved for these parameters plus the knots si and the multipliers A.i. 

3. 2 Problems with the formal solution. 

There are a number of theoretical problems with this minimization as well as the obvious 

practical problem of having to solve a fairly large nonlinear system of equations. First, there is 

no guarantee that a solution even exists. The reason for this is that it is always possible to 

reduce the value of the functional by appropriately lengthening the curve. To see why this is 

possible, consider a very large circle of radius R. Then the length of this is 2nR and its 

curvature is 1 !R, so the value of the functional is 2rc!R which can always be reduced by 

increasing R. Thus even if a local minimum of finite length has been found, a lower cost 

solution can be produced by taking out a segment of this curve between any two knot points 

and replacing it by a very large loop. 

Second, the splines produced by the formal solution are not always intuitively satisfying. For 

example, Lee and Forsythe [7] show that the local minimizer of square curvature interpolating 

points on a circle is not necessarily the circle. 
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3. 3 Alternative approaches and ltmreso!ved issues. 
The difficulties mentioned above mean that curvature minimizing splines are not widely used. 

A survey of algorithms for their construction are given in [8], while [2] presents an algorithm 

for constructing approximations based on spiral splines, in which the curvature is constrained 

to vary only linearly between data points. An even simpler algorithm can be derived based on 

approximation by arcs of circles; while this cannot be geometrically smooth, it has the 

advantages of being simple to calculate and of being composed of objects that are standard 

subroutines in many graphics systems. 

The problem of non-existence of global minimizers may be due to an incorrect formulation; 

perhaps with an alternative choice of curvature functional a global minimum may exist. 

Likewise it may be possible to prove error bounds for smooth interpolants minimizing certain 

curvature functionals; or that particular geometric properties (such as convexity or circularity of 

the point data) are preserved by the interpolant; or that the functional form of the curve is 

preserved under perspective projection. Finally it would be very useful to find a fommlation 

that allowed the rigourous derivation of smoothing curves for noisy data along the lines of the 

results for smoothing splines. These sort of results, however, appear to require the skills and 

insights of a specialist variational geometer. Nevertheless, if a consistent theory could be 

developed that established at least some of them, there would be considerable interest among 

numerical analysts and computer graphics specialists in actually constructing the interpolants the 

theory described. 

4. Interpolation of surfaces. 

We now look briefly at interpolation of surfaces and higher dimensional objects. Again there is 

a fairly comprehensive linear theory of interpolating splines for smooth graphs, but in contrast 

there seems to have been no practical work at all on constructing interpolating surfaces that 

minimize some general function of curvature. In many ways this is an even more pressing 

problem than construction of smooth curves, as the increase in full 3D graphics modelling, 

especially in CAD (computer aided design), has required the construction of very large smooth 

surfaces and therefore placed a premium on efficient representation. Moreover, as in many 

CAD models these surfaces are often used to actually define an object, these representations 

must also be invariant under rotation and suchlike transformations if they are to define the same 

object under different views. 

To bring this point home, let us roughly estimate the number ofpar<Lmeters needed to accurately 

represent an smooth surface. I am aware of no useful results on the approximation of arbitrary 

surfaces, but consider instead the simpler problem of approximating a smooth function f : 5Jid 
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-+ 9r from an approximation space sh ~:;; CF-1 where h represents some measure of resolution. 

Then typically sh will have dimension N- O(h-<~). Moreover the best approximation PI to f 

in Sh will be in error by Iff- P/1/ - O(hP), so that in order to ensure that Iff- P/1/ ~e we will 

have to choose Sh to be sufficiently large that its dimension satisfies: 

N O((plh)d) O((pfeliP )d) 

Thus by upping the order of the approximation we can substantially reduce the size of the 

approximation needed to accurately represent the function. This is of special importance when 

we consider that while display of the approximation takes only O(N) operations, many other 

important tasks, such as finding a CAD object represented as a surface in a database of such 

objects may take O(N2) operations, or even more. 

4 .1 Thin plate splines. 
The natural extension of Eq. (1) for defining a smooth interpolant to surface data is: 

m;n J /f:xx(x,y)j2 + 2 /fxy(x,y)/ 2 + //yy(x,y)/ 2 dx dy 

9(;;>2 

subject to Zi = f(xi,Yi) i = 1, ... ,N 

Letting x denote the point (x,y), calculus of variations establishes that: 

!l 2f(x) 

with 

N 

- L. Ai O(X-Xi) 
i = 1 

Zi 

plus the condition that f(x) asymptote to a hyperplane as fx/ i oo. Therefore 

N 

f(x) L ai cp(fx-xJ) + ao + a_1X + 
iN 1 

where 0 L ai 
i = 1 

and cp(r) = r2[nr 

a_zy 

The resulting splines are known as thin plate splines as the physical analogue of this procedure 

(corresponding to a draughtsman's use of a spline to interpolate a curve) is to load a thin metal 

plate with weights at the locations x; and so force it to take on heights z;. Thin plate splines 

have been successfully used in a number of applications [11], and can be generalized to 
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interpolate surfaces in higher dimensions or with smoother functions; the basic spline derived 

by minimizing derivatives of order m in d dimensions is: 

qJ(r) 
v2m-d ln r 
Lr2m-d 

d even 

d odd 

Extensions to the case of smoothing splines are straight-forward; Dr. M. Hutchinson of CRES 

at ANU has a FORTRAN package that uses cross validation to fit smooth thin plate splines 

through arbitrary data sets. 

4. 2 Surface patches. 
Unlike B-splines, thin plate splines do not form the basis for any surface constructions in 

computer graphics. The main reason for this is that they have infinite support and so are not 

suitable for modelling essentially localized surfaces and cannot be easily modified. Instead 

most surface modelling in computer graphics is done using quadrilateral patches formed by 

taking tensor products of the parametric splines described in section 3. A typical patch 

composed of B-splines would be: 

x(u,v) 

M N 

L L au B ;(u) Bj(v) 
i=lj=l 

where the a;j are now control points in 913 and the patch is defined over a grid of knots 

formed by taking the product of the two knot vectors for u and v respectively. 

The patches themselves are usually C2 or better, but it is difficult to ensure better than C 1 

continuity when joining two patches. This is actually not a major problem as it when it comes 

to surfaces, it seems that a surface is visually smooth simply as long as its tangent plane is 

continuous. Moreover this geometric continuity is even weaker than the C 1 parametric 

continuity achieved by most patch joins. Patches run into difficulty, however, when fitting data 

that can not be arranged onto an essentially rectangular grid of knot points; while the odd 

irregular element within a grid can be coped with, truly irregular grids present very messy 

problems. More generally, surface fitting by patches is an involved and intricate discipline, 

albeit one of great importance (see [9, 10] for further details), 

':L 3 Variational problems in surface fitting. 
As already noted there appears to be no available results on characterization or calculation of 

smooth interpolants that minimize curvature measures. There is some reason to believe that 

these interpolants may differ significantly from the thin plate splines described in section 4.1; 

the singularities at the origin (and therefore at data points) exhibited by thin plate splines may 

not be the same as those of true curvature minimizing interpolants at data points. Nevertheless 
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both the general shape of such interpolants and any properties they may have is still obscure, 

and equally importantly there is no obvious way of actually calculating them. 

There are a number of other important variational problems in surface modelling by patches. In 

particular a surface defined by a very large and possibly irregular grid of patches often needs to 

be systematically re-gridded to produce a smaller, more regular but essentially equally accurate 

representation. This problem arises very commonly in CAD surfaces constructed from 

measuring real world shapes. Data may be collected, for example, by shining a finely spaced, 

regular grid of bright lights onto the surface and then measuring the resultant distortion of the 

grid in an image of the surface: the distortion gives the depth of the surface in the direction of 

view. This and similar methods have two problems: they tend to heavily over-sample smooth 

regions of the object; and they produce very irregular grids in areas where the object's local 

topology is definitely not a graph (e.g. where the handle of a cup joins its body). 

If the surface is topologically equivalent to a disk, one possible solution is to find a conformal 

mapping 'J of the surface onto the unit disk (or square). Next a uniform grid can be placed on 

the disk and then mapped back to the surface by ;r-1• The resulting grid on the surface will 

also be regular and so suitable for patch construction. Moreover the surface grid should be 

concentrated in regions of high curvature, but spread out in smoother regions. Conformal 

maps can be constructed as the minima of certain curvature functionals; the question is whether 

these are the most suitable variational forms for this particular problem. 

5 . Summary of open questions. 

In conclusion, it seems that the following questions are still open. Positive answers to them 

would be not only of considerable theoretical interest in extending existing results for the linear 

theory of approximating smooth graphs to the approximation of smooth curves, but also of 

great practical import for computer graphics. The theoretical questions are: 

1 . Is there a natural variational formulation for defining a smooth curve I surface to 
interpolate arbitrar; data in two or more dimensions? 

2. Can the solutions to such formulations be characterized? 

3. Do the solutions preserve general geometric properties such as convexity? 

4. Can useful error bounds be derived for the approximation of smooth curves I surfaces? 

5 . Can the formulations be extended to define smoothing curves I surfaces for noisy data, 
and do these have same form as the exact interpolants? Can smoothing be done robustly and 
automatically? 
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6. Is the general functional form of the interpolants invariant under perspective 
transformations? 

The more practical questions are: 

7. What is the "best" set of graphics primitives for generating curves and surfaces in 
software and hardware? 

8. Can the solutions be efficiently computed? 

Finally, in regard to the last question, the nonlinear nature of the problems means that iterative 

methods are likely to be used for their solution. Consider the general problem: 

min V(S) 
s 

Jl(K(s)) ds 

s 
subject to various constraints 

where I(K) is some function of curvature. Direct application of steepest descent would give 

(constrained) iterates of the form: 

This looks very similar to general surface flow problems of the form: 

d~~t) - VV(S(t)) 

that have been widely studied by variational geometers, so that it may be possible to use 

existing results both to prove existence of solutions and convergence of numerical algorithms to 

them. Furthermore, higher order iterative algorithms such as Newton's method: 

where Hv is the Hessian, can also be translated into surface flow problems of the form: 

dS(t) 
dt 

-{Hv(S(t))]-1 VV(S(t)) 

In the light of the many extra stability and convergence properties that Newton's method has in 

comparison with steepest descent, it is interesting to speculate what extra convergence 

properties the above surface flow may have. 
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