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VARIATIONAL PROPERTIES 
OF SOME SIMPLE BOUNDARY INTEGRAL EQUATIONS 

W. McLean 

1. INTRODUCTION 
In the classical method of I. Fredholm and C. Neumann, layer potentials are used to 

reformulate the Dirichlet and Neumann Problems for the Laplace equation as Fredholm in­
tegral equations of the second kind over the bounding curve (in two dimensions) or surface 
(in three dimensions). However, there are alternative reformulations which lead instead 
to Fredholm integral equations of the first kind over the boundary. My aim here is to 
give a fairly self-contained and non-technical account of these first-kind integral equations, 
emphasising the relationship between, on the one hand, the bilinear forms associated with 
the boundary integral operators, and on the other hand, the Dirichlet bilinear form asso­
ciated with the Laplace operator. The existence and uniqueness of solutions in the energy 
spaces is established by showing that the first-kind integral operators are symmetric and 
positive-definite. 

Tl:>is variational. approach to boundary integral equations has important consequences 
for numerical methods. In particular, for any Galerkin method, the linear system that 
arises has a symmetric positive-definite coefficient matrix, and Cea's lemma implies an 
optimal error estimate in the energy norm. Just this analysis was used by Hsiao and 
Wendland [11] to treat the Dirichlet problem in two dimensions, and by Giroire and Nedelec 
[8] to treat the Neumann problem in three dimensions. These are two of the earliest papers 
on the convergence of boundary element methods involving first-kind integral equations. 
More recently, Costabel [1], [2] and Costabel and Stephan [4] have studied variational 
approaches to the coupling of finite element and boundary element methods. 

The described below has been generalized by Costabel and Wendland [6] to 
deal with a class of elliptic value problems, and Costabel and Stephan [5] 
use similar techniques to treat a transmission problem. In another extension of the 
Costabel [3] has treated Lipschitz thereby allowing of the results to 
vn,u•"u·"' on regions with corners and 

The paper is arranged as follows. Section 2 is a :rapid summary some proofs) of 
the main properties of the single and double layer potentials. The bilinear forms associated 
with the first-kind boundary integral operators are studied in Section 3, and the results axe 
then applied in Section 4 to establish some mapping properties of the operators. Finally, 
in Section 5, there is a brief discussion of the Dirichlet and Neumann problems. 

2. LAYER POTENTIALS 
It will be useful to begin by :reviewing some standard facts concerning the single and 

double potentials. More detailed treatments of most of this material may be found 
in many texts that treat potential theory, e.g., Gunter [9], Kellogg [12], Mikhlin [15] and 
Smirnov [17]. 

Let n+ be a bounded, open set in Rn. For simplicity, I will assume that ~n+ is simply­
connected and has a coo boundary r, and that the dimension n is either 2 or 3. Let n­
be the complement of n+ u r in R n, so that 

here, the dot over U indicates a disjoint union. Denote by 11 the unit normal to r directed 
into n+' let ds denote the element of arc length or surface area on r, and define the bilinear 
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form 

(</>,1/;} = 1r if;(x)1j;(x)dsx. 

The function E: R" \ {0}---+ R defined by 

' 1 r I 2log-l I' 
E(z) = ) 7rl z 

l 47rlzl' 

if n = 2; 

if n = 3; 

is a fundamental solution to Laplace's equation in n dimensions, i.e., 

- V 2 E = 8 as distributions on R n, 

(2.1) 

where 6 is the Dirac delta functional. The full significance of the r > 0 in the 
definition of E when n = 2 will be seen in the sequel- for the moment, it is worth noting 
that E(z) > 0 for lzl < r. 

Given a function <P defined on r, the single layer potential V ¢> and the double layer 
potential W if> are defined by 

(V <ft)(z) = L E(z- y)if;(y) dsy, 
"r 

(W </>)(z) = l { 0~11 E(z- y) }q)(y) ds 11 , 

for zEn+ U n-. Since E is harmonic on R" \ {0}, it is dear that 

V 2 (Vt,b) = 0 = \72 (l'Vq)) on n+ U n-, 

and one can easily verify that as lzl ---+ oo, 

and 

(2.2) 

(2.4) 

Suppose u is a function defined on n+ u n-. Denote the boundary values of u on I' 
by , i.e., 

whenever these limits exist, and write 

-±( ) _ { u(z), 
u z = ±(-) 

u '"" ' 

if zEn±; 
if z E r. 

If u+ a.""ld .u- are C" on n+ (J r and n- u r, respectively, then tt is said to be sectionally 
c~<. For brevity, I will denote the normal derivatives of a sectionally C 1 function u by 

u~ = v · (Vu)±, 

and write 
[] _J. - d ['- + -u = u · - u an Uj 11 = u.,- u, 

for the jumps in u and fJujov across r. 
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THEOREM 2.1. If <P E C 2 (r), then V <P and W .P are sectionally C1 and satisfy 

Furthermore, 

for all </>, '¢ E C2(I'). 

[V 4>] = 0 = [W </J]v;­
[W </>] = 4> = -[V </>]v· 

(2.5) 

(2.6) 

(2.7) 

Proof (This approach is similar to that used in Courant and Hilbert [7).) Choose any 
function ( E C2(Q+ U I') satisfying 

c+ = 0 and (;J = ¢ on r; 

e.g., define (near I' by ((x+tv.,) =: t¢(x) for x E I' and 0 < t <E. Write Ez(Y) =.: E(y-z), 
then V 2Ez(Y) = 8(y- z) and so Green's theorem, 

(2.8) 

implies 

(Strictly speaking, one should excise a small disk or ball of radius p about zEn+, apply 
Green's theorem, and then send p ~ 0.) It is not difficult to verify that fo+ Ez V2 ( dy is 
continuously differentiable across r as a function of z, so V ¢is sectionally C 1 , with 

as claimed in (2.5) and (2.6). 
To handl.e the double layer potential, one extends ¢ to a C 2 function on Q+ U I' in 

such a way that if>t = 0 on r; e.g., near r let </>(x +tv,)= ¢;(x) + t2 • Replacing (by <P 

in (2.8) gives 

for z Eft+; 

for zEn-; 

thus, W <P is sectionally C 1 with 

which completes the proof of (2.5) and (2.6). 
By applying the divergence theorem to the vector field u\lv, one finds that 

(2.9) 
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provided u and v decay suitably at infinity. Extend </1 to a C 2 function with compact 
support in R n, then put u = rjJ and v = Ez in (2.9) to obtain 

(W rft)(z) = ± ( \lq)(y) · \lE(y- z) dy, zEn±. 
Jn:.t= 

The right hand sides are continuous functions of z, so 

Thus, 

(W¢)±(x)=±f 'Vify(y)·VE(y-x)dy, xEf. ln'f 

((Wq\)±,1/!)= f{± ( Vq)(y)·VE(y-x)dy~¢(x)dsx 
Jr JfH J 

=± j~'f Vrft(y)·{lr VE(y-x)¢(x)dsx}dy 

= ± ){ Vrft(y) · V(V.¢)(y)dy = ¢4'(V¢)'J 
!H 

which proves (2.7). The last step follows 
Now define the linear operators 

taking u =¢and v = V¢ in (2.9). 

: C2(r) -+ C(r) and S, T: C2(r) -+ C1(f) 

by 
R¢ = -(W.P)t = --(Wrft);:-, 
S¢> = (Vq\)+ = (V.p)-, 

then (2.6) implies 

(W\b)± = t(±.P + Tify) and CV ¢); = t(=F¢> + T'¢>), 

and (2. 7) implies 
(T¢,¢) = (¢,Tt¢}. 

0 

(2.10) 

(2.11) 

Thus, Tt is the transpose ofT. It is not difficult to show that S, T and Tt can be written 
as integral operators, 

(S¢)(x) = t E(x- y)if>(y)dsy, 

(T,P)(x) = 2 t { a:
11 
E(x- y) }q\(y) dsy, 

(Tt¢)(x) = 21 {a~, E(y- x) }<t>(y)dsy, 

for X E r. Notice that 
~E(x- y) = ]_ v(y). (x- y), 
8v11 w., lx - Yi" 

where W:! = 2?r and Wg = 4?r. Since r is smooth, 

v(y) · (x- y) = O(lx- yj 2 ) for x, y E f, 

which implies that T and T' have smooth kernels if n = 2, and only weakly singular 
kernels if n = 3. The operator Sis also only weakly singular, however R has formally the 
hyper-singular kernel 

-~~Ex-y =...!-{ Vx·v11 -nv.,·(x-y)!/11 ·(x-y)}· 
8v, 8v11 ( ) w., • lx- Y!" lx- Yln+2 

Some further relationships between the four boundary operators in (2.10) are conse­
quences of the following properties of Harmonic functions. 
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THEOREM 2.2. If u E C 2(n+ U r) and V 2u = 0 on n+, tken 

u = Wu+- Vu;!" on n+, 

with 
Su+- _l(u+- Tu+) and Ru+ =·-l(u+ + Ttu+) on r. 

V - 2 2 II II 

Proof Replacing ( by u in (2.8) yields 

(Vu;!")(z)- (Wu+)(z) = -u(z) for zEn+, 

(2.12) 

(2.13) 

which proves (2.12), and then (2.13) follows at once from (2.11). D 
COROLLARY 2.3. For all 4> E C 2(r), 

SR¢ = t(¢- T 2 ¢) and RS¢ = H4>- (Tt) 2¢). 
Proof In (2.13), take u = W 4> and V ¢>, respectively, and then make use of (2.11 ). D 

3. BILINEAR FORMS 
Recall that, given any open set U ~ Rn, the Dirichlet bilinear form associated with 

the Laplace operator on n is defined by 

Dn(u,v) = fo Vu · \Jvdy. 

The next two theorems set out the relationship between D n+Un- and the bilinear forms 

associated with the boundary operators Rand S defined in (2.10). 
THEOREM 3.1. For every ¢>, 'if; E C2(r), 

(3.1) 

and 
{R¢>, ¢>) = 0 implies ¢; = constant. (3.2) 

Proof Using the first of the jump relations (2.6), and putting u = W ljJ and v = W 4> 
in (2.9), one obtains 

(R¢, 1/J) = (R¢, [WijJ]} = -((W <P)t, (WijJ )+) + ((W ¢;);, (WijJ)-} 

= f \J(W ¢). \l(W'!f;) dy + f \l(W ¢) · \l(WijJ) dy, 
ln+ in-

which proves (3.1). (Application of the divergence theorem to u\lv on n- is by 
the behaviour of the double layer potential at infinity; see (2.3) and (2.4).) 

Now suppose that (R¢,¢) = 0, then (3.1) implies \lW{b= Oonf!+!GJ:Q-,.sacthe:reare 
constants c+ and c- such that W ¢ = c± on n± .. .Hence, ijJ = JW ¢] = c+ - c- = constant 
on r. D 

By applying the divergence theorem to the vector field VE(·- z), it is easy to see 
that the double layer potential of the constant function ¢ = 1 is just 

Wl(z)={ol ifzEf!+; 
if zEn-. 

Hence, Rl = 0 and so, for any ¢ E C 2(r), 

R¢ = 0 if and only if tjJ = constant, 

which shows that the converse of (3.2) holds. 

(3.3) 

(3.4) 

For the operatorS, there are differences between the two- and three-dimensional cases. 
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THEOREM 3o2o Suppose ¢>, 1jJ E C 2(r). If n = 3, then 

(3.5) 

and 
(S¢>, if>) = 0 implies ¢> = 0. (3.6) 

If n = 2, then (3.5) and (3.6) hold provided {¢>, 1) = 0. 
Proof This time, use the second of the jump relations (2.6), and put u = V ¢>and v = V¢ 
in (2.9), to obtain 

(S¢>, 1(;) = (S¢>, -[V 1jJ ],) = -{(V .p)+, (V 1,b )t} + ((V ¢>)-, (V 1jJ );) 

= { v(V<P)·v(V1j;)dy+ f \l(V<P)·V(V1j;)dy, 
~+ ~-

which proves (3.5). When n = 2, the condition (</1, 1) = 0 is needed to ensure that (V <P)(z) 
is O(lzl-1 ) rather than O(log l.zl) as izi ---roo; see (2.3). 

Now suppose that {S</1, </1) = 0, and assume (</;, 1} = 0 if n = 2, then (3.5) implies 
VV ¢ = 0 on n+ U n- and hence </; = -[V ¢], = 0. D 

The remainder of this section is devoted to a more detailed study of the operator S 
in the two-dimensional case; cf. Sloan and Spence [16]. 
THEOREM 3.3, Suppose n = 2. There exists a ·unique function e E C 00(r) such that 
se is constant on r and (0, 1} = 1. lvforeover, this function satisfies {):?::: 0 on r. 
Proof By (2.10) and (3.3), the constant function ifJ = 1 satisfies Tl = 1, and is therefore 
a non-trivial solution of the homogeneous equation if>- Trp = 0. Since T is a compact 
linear operator on L2(r), the transposed equation ,P- Tt<P = 0 has a non-trivial solution, 
say ¢ = 8 E L 2(r), by the Fredholm alternative. Furthermore, since Tt has a c= kernel, 
the function(:)= Tt(} is c= on I'. By taking u = v = VO in (2.9), and recalling (2.11), one 
sees that 

Dn+(VB, VB) = -{(Ft~)+, (VB)t} = (SB, k(e- TtB)) = 0, 

so VB is constant on n+, and hence SfJ = (VB)+ is constant on r. Next, observe that 
if (8, 1) = 0, then (SB,fJ) = (constant)(l,B) = 0 and so() = 0 by Theorem 3.2. This 
contradiction shows that (B, 1) :f. 0, and hence (} can be normalized so that (B, 1} = 1. 
To see that () is unique, suppose sej = Cj and (Bj, 1) = 1 :for j = 1 and 2, then the 
difference ¢ = 81 - B2 satisfies (S¢, ¢} = {c1 - c2 , fh - 82 } = 0 and{¢, 1} = 0, so </; = 0 by 
Theorem 3.2. Finally, (2.3) implies that (VB)(z)-+ -oo as lzl -+ oo, and therefore, since 
(VB)- = SB is constant on r, the maximum principle imlpies that (VB); :?::: 0 on r. Also, 
(VB);t = t( -8 + TtB) = 0, and hence B = -[VB]., = (V ¢); :?::: 0. D 

I will writeS= S,. and e = B,. whenever it is necessary to indicate the dependence on 
the parameter r appearing in (2.1). Let K,. = 21rSrer and, given any 1> E C 2(r), write 

</>o,r = ¢- {</>, 1)8,. 

so that (</>o,r, 1} = 0, then a simple calculation shows 

{S,.<fo, 1/J} = (S,.</>o,,.,1/Jo,r} + 2"''" {</;, 1}(1/J, 1} 
7r 

(3.7) 

This means that if 
~>,,. > 0, (3.8) 
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then (Sr¢>, If;) ~ 0, and there is no need to assume ( </>, 1} = 0 in (3.6). Also, since Br ~ 0 it 
is clear that 

"-r ~ log diro:(r), 

so a sufficient condition for (3.8) is that 

r > diam(r). 

The simplest case is a circle: if r = { z E R 2 : iz- zol = p }, then 

1 
Br=-

21rp 

r 
and "-r = 27r(V8r)(zo) =log-, 

p 

because from symmetry, Br must be constant on r. 
Another consequence of (3. 7) is that 

and therefore 
Kr = 21rmin{ (S,.</>, t./>) : 4> E C 2(r) and(¢>, 1) = 1 }. 

In fact, since e .. ~ 0, 

The quantity ~~: 1 is called Robin's constant for the curve r, and the related quantity e-~<t 
is called the transfinite diameter of see Hille [10, p. 280]. Notice that for any r > 0 and 
r 1 > 0, 

(t./>.1} r 
Sr</1 = s,,q_, + - 2-· -log-; 

7r r 

and hence 
r 

"-r =~>,.,.,+log-,. 
r 

In particular, Kr > K..,., whenever r > r 1 > 0. 

4. THE ENERGY SPACES 
Throughout this section, the parameter r in (2.1) is assumed to be large enough so 

that the condition (3.8) is satisfied. 
Introduce the linero· operator 

then 

and consequently, by (3.2), 

{R1t./>, t.f;) = 0 if and only if if!= 0. 

Notice that R11 = lfl, where lfl = (1, 1) = fr d.~ is the arc length or surface area of r. 
For if;, '¢ E C 2(f), define 
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then Theorems 3.1 and 3.2, together with (3.7) in the case n = 2, imply that (·i·)R and 
(·J·)s are rea.l inner products on C 2(r). Denote the associated norms by 

II<PIIR = }(<Pi.P)R and II.PIIs = v'C.Pl.P)s, 

and let 1-lR and 1-ls be the respective abstract Hilbert spaces formed by completion of C 2(r) 
in these norms. Thus, 1-lR is the energy space of the operator R, and 1is is the energy 
space of S. 

Next, introduce the dual spaces n:Tf. and 1-l~, with norms 

11!11~= sup !(f,c,D)I and 
11</>iiR=l 

then, forall q) E C2 (r), 

llfll~ = sup 1(!, q))j, 
II.PIIs=l 

Hence, R 1 and S have unique extensions to bounded linear operators 

( 4.1) 

indeed, these are the canonical unitary isomorphisms. The operator R itself has a unique 
extension to a bounded linear operator 

because j(q), 1}1::.; II<PIIR· 
The closed subspaces 

: {</>, 1) = 0} and if.~= { f E 1-lk_: (f, 1} = 0} 

(4.2) 

are the kernels of the projection¢ ;.--y lfl-1 (q), 1} viewed as an operator on 1-lR and 1-lk_, 
respectively, so 

1-lR = ifR El7 span{1} and 1i~ = Ef) span{l}. 

In fact, these are orthogonal direct sums, because by (3.4), 

(q.\jl)R = {q), 1} for all q) E 1tR. (4.3) 

THEOREM 4.1. The kernel and image of the operator (4.2) are given by 

kerR= span{l} and imR =ilk. 

Proof Since C2(r) is dense in 1iR, it follows from (3.4) that kerR consists of the constant 
functions. Iff E im R, say iff = R,P, then {!, 1) ·= (R¢, 1) = {Rl, q)) = 0 so f E HR. 
Conversely, suppose f E if R, then because R1 in ( 4.1) is invertible, there exists a unique 
<P E 1iR such that f = R1 ¢. Using ( 4.3), 

so f = R1r/> =Ref; E im.R. 0 
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The results above show that the linear operator 

defined by Ro<P = R¢ for <P E HR, is an isometric isomorphism. In fact, because 

one can view R0 as the canonical unitary isomorphism from the Hilbert space HR onto its 
dual. 

It is possible to obtain further information about 1-lR and 1-ls by showing that R and 
S are classical elliptic pseudodifferential operators of order +1 and -1, respectively. In 
particular, it can be shown that 

where H 8 (f) denotes the usual Sobolev space of orders E R. When n = 2, these results 
can be proved quite easily using Fourier series- e.g., see McLean [13], [14]. 

5. BOUNDARY INTEGRAL EQUATIONS 
There are two standard methods of reformulating the Dirichlet problem, 

'i12u=0 onn+, 

u+ = g on r, 

as a boundary integral equation of the form 

S¢> = f on r. 

(5.1) 

(5.2) 

The indirect method consists of choosing f =: g, then u = V¢; on n+ by (2.2) and (2.10). 
The direct method is based on Theorem 2.2: take f = -!(g - Tg), then the solution 
of (5.2) is the unknown Cauchy data, i.e.,</;= ut, and sou= W g- V 4> on n+. 

Next, consider the Neumann problem, 

\72 u = 0 on n+, 

ut = g on r, 
(5.3) 

noting that if u is a solution, then so is u + c for any constant c. Also, applying the 
divergence theorem to the vector field Vu yields 

so a necessary condition for the existence of a solution to (5.3) is that 

{g,l)=O. (5.4) 

There are two standard reformulations of (5.3) as a boundary integral equation with a side 
condition: 

R,P = f on r, and (¢>, 1} = 0. (5.5) 
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By Theorem 4.1, there is a unique solution <P provided f satisfies 

(!, 1} = 0. (5.6) 

For the indirect method, one chooses f = -g, then (5.4) implies (5.6), and u = VV <P 

on n+ by (2.2) and (2.10). As with the Dirichlet problem, the direct method is based on 
Theorem 2.2: let f =: -~(g+Ttg), then (5.4) implies (5.6) because, using (2.11) and (3.3), 

{f,l} = (-!(g-:-Ttg),l} = ·-(g,!(l +Tl)} = -(g,(Wl)+) = -(g,l). 

The solution of (5.5) is <jJ = u+- c, where c = ifi-1 (u+, 1), so ·u = W<jl- Vg +conn+. 
The preceding remarks are rather informal, and to make any precise statments about 

existence and 1miqueness it is necessary to specify appropriate f=ction spaces. Very briefly, 
the following is the case; d. Costabel [3] or Costabel and Wendland [6]. With the Dirichlet 
problem (5.1), one assumes g E H 112(r), then there is a unique solution u E Jfl(u+). 
For both the direct and indirect methods, f E H 112(r) = Hs so the boundary integral 
equation (5,2) has a unique solution ¢; E H-112(r) = With the Neumann problem, 
one assumes g belongs to H-112 (f') and satisfies (5.4), then a solution u E J:f 1(fl+) exists, 
and is unique up to an arbitrary constant term. For both the direct and indirect methods, 
f E itR. so (5.5) has a unique solution ¢; E Note that H 1(H+) is the energy space for 
the Dirichlet bilinear form Dn+, and that in general the boundary values u+ and u;J must 
be interpreted as traces on r. 
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