
THE INVERSE SPECTRAL PROBLEM FOR PLANAR DOMAINS 

RICHARD MELROSE 

1. INTRODUCTION 

In these five lectures1 on the spectral, and more particularly the inverse spectral 
theory of the Dirichlet problem in planar domains I wish to show how the inves
tigation of a concrete mathematical question can draw on quite extensive areas of 
mathematics. Thus I hope that these talks will help to bind together various parts 
of the material you will have seen, or be seeing, elsewhere in this Workshop. 

Each of the lectures will centre on one or two explicit 'results' which I will try to 
put into context. Then, as time permits, I will outline some of the proofs and discuss 
extensions and refinements of the various questions. For the most part I will refer 
elsewhere for details 

In summary the topics of the five lectures will (probably) be: 

I. Spectrum and resolvent of the Dirichlet problem 
II. Heat kernel and heat invariants 

III. Wave kernel and length spectrum 
IV. Short geodesics 
V. Polygonal domains and Other problems 

2. DIRICHLET PROBLEM 

Consider a smooth planar domain n C R 2• By this I mean a compact subset which 
0 0 

is the closure of its interior n with boundary an= n \ n consisting of a finite number 
of smooth simple, non-intersecting closed curves 

(2.1) an = 11 u 12 u · · · u IN. 

The first curve, 11 , will always be taken as the 'outer curve', i.e. the unique curve 
which bounds a compact set containing n. 

The basic analytic problem I will consider is the search for solutions to 

(2.2) 

. 0 

(Ll- s)u =finn 
u ran= o. 

Here Ll = -::2 - ::2 is the (geometer's) Laplacian, f E C00 (S1) is a given function, 
u E C00 (S1) is the unknown function and s E C is a complex number. The space 
coo(n) deserves some discussion, it is the space of continuous functions u : n ----+ c 
which have derivatives of all orders 

(2.3) 
ai+k . 

axjayk contmuous on n. 

1 In the end there were only four since I decided to spend the last Friday in Sydney at the beach 
in preparation for a return to the frozen north. 
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FIGURE 1. A planar region 

3. SPECTRUM 

The problem (2.1) is 'Fredholm' for each fixed s E <C. This means that there are 
finitely many linear conditions on f which are necessary and sufficient for there to 
exists a solution and then there is a finite dimensional vector space of solutions, this 
space I will denote as Eig(s) c C00 (!1). Let D(s) = dimEig(s) be its dimension. By 
definitions is an eigenvalue of the Dirichlet problem if D(s) i= 0. The spectrum is 
the set of eigenvalues but I shall consider the 'augmented spectrum' 

(3.1) Spec(!1) = {(s,N) E <C x N;s E <C and N = D(s) :/= 0} 

which also contains multiplicity information. 
Although I shall not pay too much attention to it, the Diriclet problem is self

adjoint on the appropriate domain in L2 (!1). My intention here is to bring out the 
geometric aspects of these problems so I shall not make much use of such Hilbert space 
methods. Not only are the eigenvalues real but they form a discrete set, so another 
way to arrange the information in (3.1) is to write the eigenvalues as a non-decreasing 
sequence, with each s repeated exactly D( s) times 

(3.2) 

Here I have also included two additional facts, that s 1 is simple (i.e. D(s1 ) = 1) and 
that there are infinitely many eigenvalues. 

4. KAc's QUESTION 

The basic subject of these lectures is 

Does the Dirichlet spectrum determine the domain? 
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D 

FIGURE 2. The augmented spectrum 

In this form the answer is obviously NO, since translations, rotations and reflections 
of n lead to (generally different) domains with the same Dirichlet spectrum, so we 
amend the question by adding 

. . . up to rigid motion? 

This is the famous question of Mark Kac ([15]) which was rephrased by Lipman Bers 
as 'Can one hear the shape of a drum?' In fact Kac mostly considered the question 
for polygonal domains,2 rather than smooth ones. In that case, as I shall discuss at 
the end, the answer in this form has recently been shown to be no. However the main 
issues still remain open, for example for convex domains.3 So in general it is only 
fair to warn you that I do not know the answer! 

Before briefly reviewing the proof of the results on the spectrum that I have dis
cussed above (they all date from the nineteenth or early twentieth century) let me 
mention some extensions and related questions. Essentially everything that I have 
said, or will say, remains true with only minor modifications for the Neumann problem 
in place of (2.2) 

0 

( 4.1) (L1-s)u=finn 

OvU I an= 0 

2 Mostly, I think, in view of the methods available at the time. It seems to me that the smooth 
case is more interesting than the polygonal, which is inherently finite _dimensional. 

3 Whether polygonal or not. The recent progress for polygonal domains has all been in the form 
of examples. 
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where av is the inward pointing normal to an. The only formal difference is that 0 
is a simple eigenvalue so the spectrum becomes 

(4.2) 

5. DIRICHLET VS. NEUMANN 

One standard characterization of the eigenvalues in the Dirichlet case is by the 
mini-max principle 

(5.1) v . {foJV'uJ2 ~ } s . = m1n max · u = L.- a ·u · 
J u,, ... ,uJO;/oaE~J foluJ2 ' i=l J J 

where the minimum is taken over all j-tuples ul, ... 'Uj E C00 (0) which satify u I 
an = 0 and which are linearly independent. 4 The same characterization holds for 
the Neumann eigenvalues with the minimum being taken over the larger set of all 
independent j-tuples in C00 (0). From this it follows that 

(5.2) 

for any smooth domain. More remarkable (and remarkably recent) is a result of L. 
Friedlander ([7]) which states that 

(5.3) 

Note that this can be described as saying that for a drum with 'sliding' boundary the 
first positive frequency of vibration is smaller than for a drum with fixed boundary. 

There is an old conjecture related to (5.3) which shows just how little we know. 
Poly a conjectured (at least for convex domains) that 

(5.4) (sf) 2 :::; 4;r Atn)j <(sf? V j and V n. 

here A(D) is the area. It is known that (5.4) holds for 'generic' strictly convex 
domains for j > J(D). 

6. SPECTRAL PROBLEM 

Although I am putting empahsis in these lectures on the inverse problem I should 
make clear that the main questions really concern the forward spectral problem. One 
can put this very bluntly 

(6.1) Exactly which sequences (3.2) can occur as the eigenvalues 
of the Dirichlet problem for a (smooth) planar domain? 

This seems to be well beyond current understanding. Of course every time something 
is proved about the spectrum another necessary condition is added, the problem is 
to find non-trivial sufficient conditions for a sequence to arise from a domain. This 
is by way of a very non-linear Fourier transform. 

So, to look for a moment on the positive side, what sort of things do we know? 
The results I shall describe are of the following types. 

(1) Spectral invariants. Certain properties of the domain are known to be deter
mined by the spectrum. Examples include the area and the boundary length. 

4Try to use this characterization of the eigenvalues to see that the first eigenvalue is simple 
because it must correspond to a non-negative eigenfunction. Some small effort is required. 
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(2) Determined domains. Some domains are known to be distinguishable by their 
spectra amongst all domains. One example is the disk. Indeed I claim (but 
there is no proof written down so you shouldn't believe me) that all ellipses 
are so determined. 

(3) Restricted problems. There are restricted classes of domains the elements of 
which can be distinguished, one from another, by their spectra. 

( 4) Counterexamples. There is a fair number of these! If one restricts the infor
mation in the spectrum in various ways (related to approaches to the problem) 
then one can give counterexamples to show that this restricted information 
is not enough to differentiatiate between certain domains (generally rather 
special ones). 

7. THE RESOLVENT FAMILY 

Now to the 'meat' of the Dirichlet problem. I have written the spectral information 
in the form (3.1) to make it into a divisor in the algebraic-geometric sense. This is 
natural because of 

Proposition 1. There is a unique (weakly) meromorphic family of operators R( s) : 
c=(n) ----7 c=(n) which gives the solution to (2.2), u = R(s)f, fors -I- Sj, and which 
has a simple pole of rank D( Sj) at each eigenvalue, 

(7.1) 
p 

R(s) = _J_ + Rj(s) 
S- Sj 

where Rj ( s) is holomorphic near s = Sj and Pj is the self-adjoint projection onto 
Eig( Sj ). 

I cannot give the complete proof of this proposition, which forms the basis for a 
large part of the subject of Functional Analysis, but I will describe the 'second half' 
of the proof, to do with analytic Fredhold theory, today and (maybe)discuss the first 
half tomorrow. I give this proof (very informally) because it is of a type that occurs 
in many places. 

My starting point is the assumption (justified at least roughly tomorrow) of the 
existence of a parametrix for the problem. To describe what this is, let me first define 
the notion of a smoothing operator. A smoothing operator (on n) is a linear operator 
A: c=(n) ----7 c=(n) which is given by integration against a smooth kernel 

(7.2) Af(s) = k A(z, z')f(z')jdz'i where A(·,·) E C00 (D x D). 

Here jdzl = dxdy is just the usual Lebesgue measure. I will write w-oo(n) for the 
space of smooth operators (considered as the space of pseudodifferential operators of 
order-=). Thus w-=(n) is just a pseudonym for the space c=(n X n) viewed as a 
space of operators. It is important that it is an algebra5 

(7.3) 

Of course coo(n X n) is also an algebra under pointwise multiplication, the algebra 
structure in (7.3) is different, it is for instance non-commutative. 

5This is really a form of Fubini's theorem; check that you see why it is true. 
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By a parametrix for (2.2) I shall mean an entire family of operators E( s) 
c= ( n) ---+ c= ( n) satisfying 

0 

(7.4) (.<1- s)E(s) = Id+A(s) in D with A(s) E w-oo(D) and 

E(s)f I aD= 0 V f E C00 (D). 

Thus, E( s) solves the problem up to a smoothing error. 

8. ANALYTIC FREDHOLM THEORY 

So, let us assume that such a parametrix exists and see how to construct R( s). 
This depends really on the properties of w-oo(D), rather than those of E(s). 

Lemma 1. If A(s) is an entire family of smoothing operators and E, R > 0 are given 
then there is a finite rank entire smoothing operator 

(A'(s)f)(z) = j A'(s;z,z')f(z')idz'l where 

(8.1) M 

A'(s;z,z') = Lh(s;z)fHs;z') 
j=l 

with the fj, fj E coo (D) for j = 1, ... , M depending holomorphically on s and 

(8.2) sup IA(s; z, z')- A'(s; z, z')l ~E. 
l!xO,Isi:SR 

Proof. This can be shown using Fourier series (or many other approximation meth
ods). 0 

Lemma 2. If B E w-oo(D) has kernel satisfying 

(8.3) sup IB(z, z')l < 1/A(D) 
(z,z1)Erlx0 

then Id+B: C00 (D)---+ c=(D) is invertible with inverse 

(8.4) 

Proof. The Neumann series for G 
00 

(8.5) G = 2.:.(-lFBj 
j=l 

converges in C0(D X D) because of (8.3). The sum can be seen to be in C00 (f! X D), 
i.e. w-oo(n), since G = -B + B 2 - BoG o B.6 D 

Using these lemmas the resolvent family R( s) can be related to the parametrix 
E(s). First we use Lemma 1 to improve the parametrix, for lsi < R. Thus we can 
write A(s) = A'(s) + A"(s) where A'(s) is finite rank as in (8.1). Choosing E small 
enough we can arrange that (8.3) holds for A"(s) = A(s)- A'(s) for all lsi< R, so 
(Id+A"(s))o(Id+G(s)) = Id where G(s) E w-oo(D). Applying the operator Id+G(s) 
on the right to both sides of the first equation in (7 .4) reduces it to 

(8.6) (.1- s)E'(s) = Id+F(s), F(s) = A'(s) + A'(s) o G(s) E w-oo(D). 

In fact F( s) is finite rank. 

6 This is the hi-ideal property of smoothing operators. If A and B are smoothing operators and 
Dis, for instance, a bounded operator on £ 2 (!:2) then A o DoBis a smoothing operator. 
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It follows that for each jsj < R (where in fact R is arbitrary) the problem is 
Fredholm in the sense that iff satisfies the finite number of conditions F(s)f = 0 
then u = E'(s)f solves (2.2). To see that there is only a finite dimensional space of 
solutions we can use duality. Suppose v E Eig(s) for somes and u E Coo(n) satifies 
u I an = 0. Integration by parts (Green's theorem) then gives 

(8.7) k v(z)(Ll- s)u(z)jdzj = k ((Ll- s)v(z))u(z)jdzj = 0. 

Thus, if there is a solution, u to (2.2) for a given f then 

(8.8) k v(z)f(z)jdzj = 0 V v E Eig(s). 

This gives D( s) dim Eig( s) independent linear constraints to be satisfied by f 
for (2.2) to have a solution. It follows that dimEig(s) must be finite. In fact this 
argument can be reversed to show that (8.8) gives all the constraints for solvability 
of (2.2). 

It remains only to show that all eigenvalues are real and that they form a discrete 
set in the real line. The reality of the eigenvalues follows from Green's formula 

(8.9) k u(z)(Ll- s)u(z)jdzj = k (1V'uj 2 - sjuj 2)jdzl. = 0. 

if u = 0 on an and u is an eigenfunction. The discreteness follows from (8.6) using 
the finiteness of the rank of F(s). 

The main difficulty of the inverse spectral problem is, obviously enough, the ex
traction of information from the spectrum. The individual eigenvalues are functions 
of the domain, but it is difficult to come to grips with such functions, especially col
lectively. It is therefore natural to try reorganize and filter the information in some 
helpful way. There are various approaches and 'transforms' which have been used. 
The first one I will talk about is the heat transform and associated invariants. 

9. HEAT EQUATION 

The analytic problem on which the effectiveness of the heat transform is ~ed is 
the initial value problem for the heat operator 

(at+ Ll)v = 0 in (O,oo) x n 
vi {t = 0} = Vo E coo(n), vI [O,oo) X an= 0, 

(9.1) 

where v E C00 ((0, oo) x n) and Coo(n) C Coo(n) is the subspace of functions vanishing 
to infinite order at the boundary. 

Proposition 2. The initial value problem for the heat equation, (9.1), has a unique 
solution v E C00 ((0, oo) X n) for each Vo E Coo(n) and the operators so defined 

(9.2) e-t.d: C00 (n)---+ C00 (n), e-t.dVo = v(t, ·) 

are, for t > 0, a semigroup of smoothing operators. 

The semigroup property here is the condition e-t.d o e-s.d = e-(t+s).d, t, s > 0, As 
usual I shall only give an indication of the proof, and that towards the end of the 
lecture. The proof I have in mind is rather constructive and it gives quite a bit of 
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information about the heat kernel, which is the function HE C00 ((0,oo) X n X f!) 
such that 

(9.3) e-tL\v0 (z) = k H(t, z, z')vo(z')ldz'l, t > 0, 

the existence of which is guaranteed by the proposition. 

10. TRACE 

Let me consider some further properties of smoothing operators. The trace of 
A E w-oo(f!) is defined to be 

(10.1) Tr(A) = k A(z, z)ldzl. 

That is, Tr(A) is the integral of the restriction of the kernel of A to the diagonal. 
One reason for interest in the trace functional 

( 10.2) 

is Lidskii's theorem which states that 

(10.3) 

where the Aj(A) are the eigenvalues of A repeated according to their (algebraic) 
multipicity, which is finite for Aj(A)-=/- 0. If A(z', z) = A(z, z') is Hermitian symmetric 
then the Aj(A) are necessarily real and the multiplicity is just the dimension of the 
associated eigenspace. In particular this is the case for e-tL\. Moreover it is easy to see 
that the eigenvalues of e-tL\ are the numbers Aj = e-tsJ where Sj are the eigenvalues 
of the Dirichlet problem and the multiplicity is exactly D(sj)· Thus we see that the 
function 

(10.4) 

is a spectral invariant. 

11. HEAT INVARIANTS 

As a spectral invariant h(t), for any positive value oft, is not much different to the 
individual Sji in brief it is difficult to say much about it. The important question is 
what happens as t 1 0. Notice that e-tL\Vo -+ Vo as t 1 0 for Vo E c=(f!). Thus, in 
some weak sense, e-tL\ -+ Id as t 1 0. Clearly then something has to happen to h(t) 
because the right side of (10.4) is formally infinite at t = 0. The most fundamental 
point I want to make is that singularities are interesting. Here is a basic example. 

Proposition 3. As t 1 0 the heat transform has a complete asymptotic expansion 

(11.1) h(t) "'coC1 + bor~ + c1t0 + L bjtj-~ + L cjtj-1. 
j>O j>l 

First, let me make sure that you understand the meaning of the relation "' m 
(11.1). The right hand side is a formal sum of the type 

(11.2) 
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for some constants ap. The precise meaning of (11.1) is that, given any J EN there 
is a constant C J such that 

(11.3) ih(t)- L ajrHj/2 1 :::; cJri+J/2 in 0 < t < 1. 
j<J 

Here the term on the right is just the size of the first missing term on the left. In 
fact a stronger form of this statement is true with similar estimates for the derivates 
(essentially what one would get by differentiating both sides of (11.3).) The most 
important point is that the constants Cj and bj are determined by (11.1). Another way 
to look at the meaning of (11.1), together with all the relations for the derivatives, is 
that the function r2 h(r2 ) is coo down tor= 0 and (11.1) is its Taylor series expansion. 

The constants are the heat invariants of the domain n. There is no known universal 
formula for them but their structure can be described fairly easily. The first three 
are 

(11.4) co= cuA(O), bo = cuL(n), c1 = cux(O). 

Here I am using cu to denote various constants which are universal (independent of 
!1) and non-zero. The functions A, L and x are respectively the area, the length 
of the boundary and the Euler characteristic of the domain, the latter being N - 1 
where N, in (2.1), is the number of boundary components. 

12. DISKS ARE DETERMINED 

Before describing the higher heat invariants let me give the first, simple, inverse 
spectral result (due I believe to Kac). 

Theorem 1. Amongst planar domains the disks are determined by their Dirichlet 
spectra. 

Proof. The proof is the isoperimetric inequality which states that for any planar 
domain 

(12.1) 

with equality only for disks. D 

L2 
A<- 411" 

13. THE HEAT INVARIANTS ARE NOT ENOUGH 

This seems a good start towards the inverse spectral problem and spurs one on 
to look at the higher invariants. To describe these I have to briefly consider the 
parameterization of domains. Let me first restrict myself to simply connected do
mains, i.e. those having only one boundary component. The domain is determined 
once we know 1, its bounding curve so the simplest thing is to consider the arclength 
parameterization of curves. The curve is then described in terms of its curvature 
K E c=(""ff!?../L) as a function of arclength. If 6(s) is the angle between tangent and 
x-axis then 

(13.1) 
d 

K(s) = -e(s). 
ds 

The curve, up to rigid motion, can be recovered from K. 
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FIGURE 3. Tangent angle to a curve 

All the heat invariants, other than c0 , are integrals over arclength of polynomials 
in the curvature and its derivatives. The interesting ones are the bj which can be 
written 

(13.2) . _ . I (j-1) 1L 
b1 -

0 
B1 ( K, K , ... , K )ds 

for a polynomial Bj. Here K(p) = dPKjdsP is the pth derivative of K with respect to 
arclength. Even more can be said, namely that 

(13.3) 

There is also an overall homogeneity property in that 

The Cj, for j 2': 1 are similar. Before considering some positive conclusions that we 
can draw from these properties let me note a nasty counterexample. 

Example 1. There is a family, depending smoothly on any given finite number of 
parameters, of strictly convex dmnains no two of which are equivalent under rigid 
motions but on which all the heat invariants are constant. 

Description. Start with a circle. Then make a finite number (one more than the num
ber of parameters desired) of small smooth disjoint deformations of the boundary. 
This can be done so that the domain remains convex. Now consider the domains ob
tained by 'sliding' these perturbations with respect to each other around the original 
circle. The heat invariants are constant since the integrals (13.2) are merely being 
rearranged. D 

These rather simple counterexamples really suggest many more questions. For 
example, do the heat invariants determine real analytic domains? Do they locally 
determine domains under perturbation from a small, generic domain (in particular 
one which is not the circle!) I don't know any results in this direction. The obstruction 
seems to be finding the coefficients of the polynomials Bj in sufficient detail. 
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.L:------- -.:... 

FIGURE 4. Deformation with constant heat invariants 

14. BOUNDEDNESS OF ISOSPECTRAL SETS IN THE Coo TOPOLGY 

Althought this may seem disheartening, notice that in passing from h(t) (which 
has exactly the same information as Spec( D)) to the heat invariants we have dropped 
information. Next time I will describe some methods for keeping more of this lost 
information. Let me note one consequence of the properties of the heat invariants 
which can be found in [23]. 

Proposition 4. For any isospectral set of domains (i.e. set of domains with the 
same set Spec(D)) there are uniform bounds on all the derivatives of the curvature 
(of all the components of the boundary) 

dP "'(s) 
(14.1) sup 1--1 < C 

s dsP - P 

with Cp independnet of D in the isospectral set. 

Proof. This follows from (13.3) and use of the Sobolev embedding theorem. 0 

CJ 

FIGURE 5. Non-compactness with curvature bounds 

The estimates (14.1) show the 'precompactness' of the iso~pectral sets. They don't 
quite show compactness because they do not show that the isospectral sets are closed. 
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Indeed for sets of domains satisfying uniform estimates ( 14.1) there is still the pos
sibility that two distant parts of the boundary will approach each other along a 
sequence. If there are several boundary components it is equally possible that one 
boundary component might approach another. Later I will describe methods which 
show that the isospectral sets are indeed compact and that such degeneration cannot 
occur. 

15. ZETA FUNCTION 

The next analytic object I want to talk about is the zeta function (treated first 
in this sort of centext by Seeley in [26]). This is really rather closely associated to 
the heat transform. Indeed with h(t) defined by the first equation in (10.4) the zeta 
function is given in terms of the Mellin transform of h(t) 

(15.1) 
1 { 00 dt 

((7) = f(s) lo h(t)r-r T· 

Formally inserting the second part of (10.4) gives 

(15.2) ((7)="L:sj. 
j 

In fact the series in (15.2) converges for ~7 < -~ and then the equality holds. 

Lemma 3. The zeta function extends to a meromorphic function with simple poles 
only at the points 7 = -~ + j /2 for j = 0, 1, 2, ... and in fact there is no pole at 
7 = 0. The residues at the poles (together with the value at 7 = 0) can be expressed 
in terms of the heat invariants and conversely. 

16. DETERMINANT 

Thus the singularities of (( 7) carry the same information as the heat invariants. 
However there is at least one extra invariant of some significance which can be ex
tracted from ((7). Namely if (15.2) is formally differentiated and then evaluated at 
7=0 

(16.1) ('(O)" = ""L:logsj. 
j 

Thus it is reasonable to define the determinant of the Dirichlet problem to be 

(16.2) det(L1) = exp(('(O)). 

Unlike the heat invariants themselves this is not a local invariant, i.e. cannot 
be expressed as a local integral of the curvature and its derivatives. However its 
properties were analyzed by Osgood, Phillips and Sarnak ([23]) enough to see that 

Proposition 5. Any set of simply connected domains on which all the heat invariants 
and the determinant are fixed is compact in the sense that they are uniformly smoothly 
embedded. 

In particular this shows that isospectral sets are compact in the coo topology and 
cannot degenerate along any sequence. 

There are difficulties treating non-simply connected domains this way so I shall 
instead deduce this result from a discussion of the wave trace, to which I now turn. 
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17. WAVE EQUATION 

This third and last transform of the spectral data is based on the initial value 
problem for the wave equation 

(17.1) 
(Di - L1)w = 0 in R. X n, w I R. X an= 0 

wf{t=O}=wo, Dtwl{t=O}=wl. 

Here Dt t8/8t. For each pair (w0 , w1 ) E C00 (D) there is a unique solution w E 
coo (R. x n) to ( 17.1). This existence and unqueness theorem can be encapsulated in 
the existence and properties of the wave group 

(17.2) U(t) (wo) = ( w(t, ·) ) . 
w1 Dtw(t, ·) 

This extends to a group of operators on the 'domain of iJ=' which is to say on the 
space of functions C0 (D) 2 where 

(17.3) 

The group property U(r) o U(s) = U(r + s) follows from the uniqueness of solutions 
to (17.1 ). Amongst the many interesting properties of this wave group are the finite 
propagation speed 

(17.4) 
wo(z),wi(z) = 0 in {lz- z'l < r} ==? w(t,z) = 0 in {lz- z'l < r -ltl}. 

18. TRACE OF THE WAVE GROUP 

As distinct from the heat semigroup the operators U(t) can never be smoothing, 
since they are invertible! So to take the trace we need to smooth them. This can be 
done by averaging in the time variable. Let S(R.) be Schwartz space of c= functions 
of rapid decrease at infinity. 

Lemma 4. For any cp E S(l~.) the averaged wave group 

(18.1) U(cp) = ~ cp(t)U(t)dt 

is a 2 X 2 matrix of smoothing operators on f2 with trace 

(18.2) Tr U( cp) = L J;p .. j) 
>-]=sj 

where 

(18.3) ¢()..) = j e-i>.tcp(t)dt 

is the Fourier transform of cp. 
1 

The sum in (18.2) is over those real numbers Aj = ±sJ (since the Sj are positive.) 
It is quite easy to see where (18.2) comes from and not too hard to prove it. Formally 
the wave group can be written as a function of the Laplacian with Dirichlet boundary 
condition 

(18.4) U(t) = ( cos(tVLl) sin(tVLl)/v'Lf\ 
VLlsin( tVLl) cos( tVLl) } 
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This leads one to expect that Tr U ( t) = 2 Tr cos( tv:21). Thus an eigenvalue s j of L1 
should contribute a term 2cos(t>.j) = ei>.jt + e-i>.jt where>.] = Sj. This shows why 
(18.2) and (18.3) should hold. 

Another way of writing (18.2) is to observe that Tr U( ¢) defines a (tempered) 
distribution which I will denote B(t) E S'(JR.). Then (18.2) can be rewritten 

B( t) = :F (5 where :F is the Fourier transform and 

(18.5) (]"(A)= L b(A-Aj)· 
>.}=s; 

This is sometimes called the Poisson formula for (the Dirichlet problem on) n. 

19. POISSON RELATION 

As always the usefulness of the transform B(t) of the spectral data lies in our 
ability to say something about B(t) directly, other than using (18.5). This amounts 
to studying the hyperbolic problem (17.1). For the moment let me discuss, without 
precisely defining, the notion of a geodesic for the domain n. As we shall see, these 
curves arise in the study of B(t). A geodesic is a curve inn, i.e. a continuous map 

(19.1) 

for some non-empty interval I C JR. (it could be open, closed or infinite at either 
end but I do not want it to be either empty or just to consist of one point; more 
precisely it is an infinite connected subset of JR.) which near each interior point (of 
D) is a straight line segment parameterized by arclength. At a boundary point of 
n the curve is supposed to satisfy 'Snell's Law' of equal angle reflection. For the 
moment I do not want to make this precise. A geodesic is closed if I = JR. and X is 
a periodic function with some period L. Let £ C (0, oo) denote the set of lengths of 
closed reflected geodesics in n. Then the Poisson relation states that 

(19.2) singsupp(B) C -£ U {0} U £. 

Note that, by definition, a point tis in the singular support of B if B is not equal to 
a smooth function in any open neighbourhood of f 

The relation (19.2), proved in [11] (see also [10]), is part of the general principle 
that singularities are interesting. It is unfortunate that it is only an inclusion, but 
what it is trying to tell us is that the length spectrum is a spectral invariant of 
n. Unfortunately this is not known to be the case since there is the possibility of 
cancelation; in a certain sense every closed geodesic contributes a singularity to 8, 
all that can happen is that two (or more) such contributions from geodesics of the 
same length may cancel out. Under certain circumstance the inclusion in (19.2) can 
be reversed. Before saying something about this let me first discuss the singularity 
at t = 0. 

20. WEYL ASYMPTOTICS 

The singularity of B at t = 0 turns out to be a simple one. First note that it 
is always isolated, i.e. there cannot be a sequence of closed reflected geodesics of 
length Lj > 0 such that Lj --+ 0. Thus the set £ has a positive infimum Lrrun· Take 
a smooth function p E C00 (lR.) which is identically equal to 1 in a neighbourhood 
of 0 and which vanishes in say \t\ > ~Lmin· Let us take the Fourier transform of B 
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localized near 0. This gives a smooth function which turns out the have a complete 
asymptotic expansion as A --+ oo 

(20.1) 

The coefficients here are therefore spectral invariants. They do not depend on the 
choice of p and might therefore appear to be very interesting. Alas, they tell us 
nothing new because they are in reality simply the old heat invariants (slightly reor
ganized.) 

This might indicate that the singularity of () at t = 0 is of no particular inter
est; from the point of view of inverse spectral theory this is true since the same 
information can be gleened from h(t). However the mere existence of the expansion 
(20.1) does not follow from any reasonable properties of h(t). This alone has an im
portant consequence, known as 'Weyl's law' for the growth rate of the eigenvalues. 
Put N(,\) = max{j; 0 < Aj SA}. This just counts the number of eigenvalues of the
Dirichlet problem, with multiplicity, which satisfy Sj S A2 . Then 

(20.2) N(A) = cuAA2 + O(A) as A--+ oo. 

This notation means that there is a constant C (which depends on D) such that 

(20.3) 

I should point out that (20.1) is not so easy to prove, basically because no way has 
(yet) been found to construct the singularities of the wave kernel for a general planar 
domain (it has been done in both the strictly convex and strictly concave cases). The 
result (20.1) is due to Ivrii [14]. The estimate (20.2) was first proved by Seeley, [27], 
[28] by a slightly different method. 

The estimate (20.2) can be improved, under the condition that the set of closed 
geodesics has measure zero, to 

(20.4) N(A) = cuAA2 + cuLA + o(,\) 

where the 'small oh' notation means that 

Given E > 0, ::3 T such that 

IN(,\)- cuAA2 - cuLAI S EIAI for A> T. 
(20.5) 

This is due to Ivrii, [14], extending earlier ideas of Duistermaat and Guillemin [6]. As 
far as I am aware, for planar domains, it is not known whether (20.5) always holds; 
in particular it is not known whether for smooth planar domains the measure of the 
set of closed reflected geodesics can be positive (the half sphere is an example among 
manifolds with boundary). 

21. NON-COMMUNICATING ROOMS 

Later I shall talk about some positive results, including further spectral invariants, 
which follow from the study of the non-zero singularities of fJ(t). First let me cast 
the usual pall on proceedings! Here the 'data' one might hope to read off from fJ 
is concerned with its singularities. Thus two domains with wave traces which differ 
by a smooth functions would be troubling. Such an example was found by Michael 
Lifshits some years ago (but not published); see also the paper of Rauch [25]. 

Example 2. There are two smooth planar domains which are not equal up to rigid 
motions yet whose wave traces differ by a smooth function. 
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Before describing this example I have to be a little more precise about the meaning 
of a reflected geodesic than I have been up to now. 

Definition 1. A reflected geodesic is a curve 

(21.1) x:I--d?-

such that there is an open dense subset of the parametrizing interval I' C I on each 
maximal open interval of which X is smooth, parametrized by arclength and is either 
a straight line segment or a segment of the boundary near each point of which D zs 

0 

locally convex. Fu7'thermore the following conditions hold at points of I" = I' n I 
(1) x(I") c an. 
(2) If t' E I" is the end point of an interval of I' such that x meets the boundary 

transversally at x( t') then t' separates two intervals of I' with equal angle 
reflection at x(t'). 

(3) There is no point t' E I" such that the region is strictly concave near x(t'). 
( 4) For any other point of I", the curvature of the boundary vanishes at x( t') and 

X is differentiable and tangent to the boundary. 

FIGURE 6. Two closed coo geodeics 

With this definition of a reflected geodesic (sometimes called a coo geodesic) each 
curve X can be extended maximally to a reflected geodesic defined on JR. On cer
tain domains with boundary points at which the curvature vanishes to infinite order 
there may be non-uniqueness of such an extension (somewhat contrary to intuition), 
the first example was given by Taylor ([31 ]). This cannot happen if the domain is 
real analytic. The length spectrum £ is the set of periods of maximally extended 
geodesics. 

Description of Example 2. This construction starts with a non-circular ellipse. The 
ellipse is unusual in that one can describe its closed geodesics in essentially complete 
detail. Let me just note the fundamental property it has, which is that any geodesic 
passing upwards across the major semiaxis, between the foci, is reflected from the 
top of the ellipse back across the major semiaxis between the foci. We then make 
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FIGURE 7. Non-communicating rooms 

a smooth modification of the bottom half of the ellipse as pictured, adjusting the 
boundary curve so that it touches the major semiaxis precisely at the two foci and 
at which it is simply tangent. We also insist that the part of the bounding curve 
above some line parallel to the major semiaxis but below it is symmetric under the 
reflection around the minor semiaxis. Now, the geodesics can be divided into two 
classes; namely the first class consists of those which either meet the major semiaxis 
between the foci or lie completely in the 'tongue' between and below the foci. The 
second class consists of the rest. 

Now consider the domain obtained by reflecting the tongue around the minor 
semiaxis, but not the rest of the domain. This is smooth because of the symmetry 
insisted on. For an appropriate choice of domain it is not rigidly equivalent to the 
original but it does have all geodesics of the same length. A little further investigation 
shows that in fact the wave traces of these two domains differ by a smooth function. 
The reason for this is a result which can briefly be described (somewhat crudely) as 
saying that the singularities of solutions to the wave equation (17.1) travel along coo 
geodesics, see [20], [21] and [13]. 0 

Notice that in this example there are open sets within the connected region which 
cannot communicate with each other directly, i.e. no geodesic from one can_ pass 
into the other. One can elaborate on this example to provide arbitrarily large finite 
sets of domains with the corresponding fJ's all equal modulo c=(JR) but with no two 
equivalent under rigid motions. [Hint, chain together many copies of examples as 
above.] I know of no continuous family of such domains. 
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22. FINER SINGULARITIES 

One subtlty here is the notion of smoothness. I have been talking about coo 
singularities. The example above in all likelihood fails if the notion of singularity 
is refined, for instance to real analyticity. However it is very difficult to analyze 
these finer singularities for anything other than real analytic domains. There is no 
counterexample that I know of to the statement that for real-analytic domains the 
singularities of (), modulo real analytic functions determine the domain (up to rigid 
motion). There is, for strictly convex domains, even some hope that this is true. For 
a discussion of Gevrey regularity for the wave equation see the work of Harge and 
Lebeau [12] and references therein (especially [16]). 

23. BILLIARD BALL MAP 

Now I want to draw some information from the Poisson trace formula (18.5). First 
will consider strictly convex domains, then discuss two results arising from the 

transversally reflected closed geodesics. 
So, let me first discuss strictly convex domains, those for which the curvature of 

the boundary is everywhere strictly negative. In this case the definition of geodesics 
simplifies. Clearly the case 4 of Definition 1 cannot occur. It can be shown that any 
geodesic is either some part of the boundary curve or else consists of transversally 
reflected segments, with the points of reflection forming a discrete set. 

p' 

FIGURE 8. Billiard ball map 

There is a simpler way to examine these reflected geodesics, in terms of the billiard 
ball map. Consider the annular region formed by the set 

(23.1) B =an x [-1r, 1r] 

where for a point (p, a) E B, p E an and a should be thought of as the angle between 
the (anti clockwise) tangent and a line through the point p. By the strict convexity, 
provided a -f- ±1r, the line meets the boundary at exactly one other point p' with 
angle -a'. This then defines the billiard ball map 

(23.2) f3: B ~B. 

Then closed geodesics (up to translation of the parameter) are in 1-1 correspondence 
with periodic orbits under /3, i.e. finite sets q1 , q2 , ... , qk with f3qj = qi+b 1 ~ j < k, 
f3qk = ql· 
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One of the most important properties of B is that it preserves the area form 

(23.3) w = cos(a)dsda. 

In terms of differential forms this can be written f3*w = w. Alternatively it means 
that the integral of cos( a )dsda over (3( S) is the same as the integral over S for any 
measurable set S C B. This allows me to make precise the meaning of the condition 
under which (LIII.20) holds, that the measure of the closed geodesics is zero. In this 
case it just means that the measure of the set of periodic points for B is zero. Is this 
always true? 

24. EXISTENCE OF CLOSED GEODESICS 

Returning to the direct characterization of closed geodesics, still in the strictly 
convex case, let me recall a result of Birkoff ([1]). 

Lemma 5. For every integer n 2': 2 and every 1 ~ m < n/2 there are at least two 
distinct closed geodesics making n transversal reflections and having winding number 
m, i.e. such that the sum over reflections of the change of tangent angle is 2?rm. 

Proof. Geodesics can be obtained by finding critical points for the length of a curve 
under variation. Look at the 'configuration space' of n ordered points in the boundary, 
successive points being distinct, such that the closed curve obtained by joining them 
by line segments, in order, has rotation number m. Denote this set Pn,m C (an)n. 
Now fix the first point arbitrarily and let P~,m(P) be the subset with first point p. 
Maximize the length of the curve over P~ m. The length of the curve is a continuous 
function on P~ m, this set is not compact (because successive points must be distinct) 
but the distan~e does not approach its maximum on the boundary (separating two 
points which have coallesced increases the length because of the convexity). Thus the 
maximim of the distance is attained in the interior. This maximum, as a function of 
p E an is continuous (in fact it is smooth). Points on an at which this function takes 
critical values produce closed geodesics as desired. The maximum and minimum 
therefore give at least two, if they are equal then all boundary points give closed 
geodesics. In any case there are at least two closed geodesics as claimed. For related 
material see the book of Petkov and Stoyanov, [24], and papers cited there. D 

25. APPROXIMATION INVARIANTS 

Let ln,m and Ln,m be, respectively, the maximum and the minimum of the lengths 
of closed geodesics making n reflections and with winding number m. For fixed m 
one can show that for each r > 0 there exists Cr such that 

(25.1) 

Furthermore one can see that 

(25.2) ln,m "'L dj(m)n- 2j as n--+ oo. 
j 

The numbers dj ( m) are the 'approximation invariants' of the boundary. Clearly 
d0 (m) = mL, the higher invariants are more interesting. 

Lemma 6. The approximation numbers dj(1) can be written as integrals of polyno
mials in "'113 , "'-l/3 and the derivatives of "' with respect to arclength. They are 
spectral invariants of nearly circular regions. 
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FIGURE 9. Closed geodesic with n = 6 and m = 2 

Using these invariants (see [17], [18]) one can for example show that there are 
families of strictly convex regions, with any number of parameters, which are (each) 
determined by their spectra amongst all regions. 

26. lSOSPECTRAL COMPACTNESS AGAIN 

Next let me return to the alternative proof of isospectral compactness that I 
promised. This is based on the following result. 

Proposition 6. If n is a planar region such that the infimum, Lmin, of£ is attained 
as a local minimum and only by closed geodesics making two reflections then Lmin is 
a sing·ular point ofTr U(t). 

Consider a family of domains on which all the heat invariants are constant. Suppose 
there is a sequence in the family which is not uniformly embedded. As noted earlier, 
the only way for embedding to fail in these circumstances is for points on the boundary 
which are either in different component curves, or are bounded away from each other 
in terms of arclength on the boundary, to approach each other. A subsequence 
then satisfies the hypothesis of Lemma 6 and has Lmin ---+ 0. The family cannot 
be isospectral since Proposition 6 would lead to a contradiction of the fact that, 
for any domain, 0 is an isolated point in the singular support of Tr U(t). Indeed, far 
enough along the sequence Lmin is a singular point of Tr U(t), which is by assumption 
independent of the element. 

27. ANALYTIC DOMAINS 

Let me mention another result which was obtained, using the Poisson relation, by 
Colin de Verdiere ([5]) 

Consider a domain satisfying a strengthened form of the hypothesis of Proposition 6 
as illustrated in Figure 10. 
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FIGURE 10. Short geodesic 

The infimim of the length spectrum is attained for exactly 
one geodesic, the minimum is non-degenerate and the 
domain has a reflection symmetry about the orthogonal 
bisector of the geodesic segment. 

Proposition 7. There can be no one-parameter real analytic family of real analytic 
domains all satisfying (27.1). 

Proof. Using invariants constructed from the singularity arising from the shortest 
geodesic, the Taylor series of the variation of the curvature at each end point of the 
geodesic (the symmetry forces them to be the same) can be shown to vanish. The 
assumed real analyticity therefore forces the variation to be trivial. D 

28. TRIANGLES 

In this last talk7 I wanted to describe some result for polygonal domains, i.e. rather 
than consider n to be a smooth planar domain suppose instead that it is bounded 
by a (non-reentrant) polygon. There are two basic results I know of, the first one is 
in the positive direction. 

Proposition 8. Any two triagular domains can be distinguished by their Dirichlet 
spectra. 

This was shown by F.G. Friedlander and C. Durso. 
Although the disussion above of the spectral theory for the Dirichlet problem and 

the heat and wave equations does not carry over verbatim, especially as regards 
smoothness, similar results can be obtained in the case of polygonal domains (in fact 
this case is in most senses simpler). For instance the heat invariants are defined. 
Unfortunately there are only two which are non-trivial, namely the area and the 
length of the bounding polygon. Clearly a triangle, up to rigid motion, has three 
independent parameters. These can be taken to be, for instance, the length of one 
side, the height from that side and the opposing angle. The triangle can be recovered 
from area, boundary length and height. The main problem is to show that the height 
can be recovered, under appropriate conditions, from the Poisson formula. 

7The notes are very brief, since the talk was not given. 
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29. lSOSPECTRAL POLYGONAL DOMAINS 

Let me now briefly describe what are the only known examples of isospectral planar 
domains which are not equivalent under rigid motions. The origin of their construc
tion lies in group theory. The basic idea was formulated by Sunada ([29]) (although 
there were some examples in higher dimensions before). The two-dimensional case 
was analysed by Buser ([2], [3]) who produced examples of two-dimensional flat man
ifolds with corners (including 'interior corners') which are isospectral but not isomet
ric. These were finally shown to be embeddable in the plane (actually immersible in 
such a way as still to give isospectra.l domains) by Gordon, Webb and Wolpert ([9]). 
See [8] for more details and extensions. 

See also the recent article of Buser, Conway, Doyle and Semmler [4] in which an 
example of this type is shown to have the stronger isospectrality property that the 
two domains are 'homophonic'. Not only are the eigenvalues the same, but there is 
a point in each of the domains such that the expansions of delta functions at these 
points, in terms of the eigenfunctions for the corresponding domain, have the same 
coefficients. This means that the 'drums' struck at the appropriate points sound 
exactly the same. 

30. OTHER THINGS 

Finally let me finish these five lectures by describing some other 'related' ideas. I 
have talked about the resolvent family, the heat equation, the zeta function and the 
wave equation in relation to planar domains. These same objects appear in many 
different settings. For instance 

Direct generalization. There are all sorts of things one can do to simply generalize 
the problem and ask all the same questions. For instance one can replace the Laplace 
operator Ll by some other operator or pass to higher dimensions (where generally less 
is known). For instance if V E coo ( 11) one can think of it as a potential and consider 
instead of Ll the operator Ll + V. The analysis goes through with minor changes. 
If V is real then the eigenvalues may become negative. The heat invariants involve V 
as well and so on. If V becomes complex then the eigenvalues can become complex 
too (but only a little bit). One virtue of the method I have described briefly above 
to construct the resolvent family is that it is not seriously affected by allowing V to 
become complex. Somethings change however, for example the Poisson trace formula 
must be modified. 

Boundary measurement. There is an inverse problem which is more 'analytic' 
than the spectral problem that I have discussed. To say that 0 is not in the spectrum 
of the Dirichlet problem for Ll + V is to say that the boundary problem 

(30.1) 

has a unique solution u E C00 (11) for each f E c=(f1). This actually implies that the 
Dirichlet problem itself 

(30.2) (Ll + V)u = 0, u I an = Uo 

also has a unique solution for each u0 E c=(on). Indeed, to solve (30.2), take any 
function u' E c=(n) with u' I an = Uo. Then set f = (Ll + V)u' and let u" be the 
solution of (30.1) for that f. Then u = u'- u" solves (30.2). The uniqueness follows 
from the uniqueness of (30.1). 
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The map (sometimes called the Dirichlet to Neumann, or just the Neumann, map) 

(30.3) 

is one of the basic examples of a pseudodifferential operator (it is close to being IDs I). 
One can ask the question 

(30.4) Does knowledge of N (and D) determine V? 

Indeed it does if V is small enough in L 00 norm. See the work of Sylvester and 
Uhlmann [30] and Nachman [22]. 

Scattering theory. Suppose one considers the exterior problem instead of the in
terior problem I have been discussing. Thus suppose that D is the exterior of a 
smooth simple closed curve. Then the nature of the spectrum of .1 changes consider
ably; its spectrum is continuous rather than discrete as in the compact case discussed 
above. There are still inverse problems (solved in part but there are lots of interesting 
questions which are open). There is a lot of mathematical activity in this general 
direction involving spectral and scattering theory on non-compact spaces, often much 
more general than Euclidean space. You may (indeed I hope you do) find [19] a useful 
introduction to this area - see also the references listed there. 
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