Chapter 2

Data structures

2.1 General principles

In this chapter an overview of the data structures is given, as well as indicating how memory management is undertaken. For more information about how to use and develop data structures, you should see chapter 8 on designing data structures.

One of the main thrusts of Meschach is to use C's data structuring ability to "package" the objects so that they are self-contained and can be dealt with as single entities. This is combined with C's memory allocation and de-allocation techniques to make basic mathematical objects (vectors, matrices, permutations etc) work more like their mathematical counterparts. So, a vector structure contains not only the array of its components, but also the dimension of the vector, and the amount of allocated memory (which may be larger than the dimension). This vector can be used for ordinary vector operations, computing matrix-vector products, solving systems of linear equations, or just for storing data. If there is a mismatch in, say, the size of the vector and the vectors or matrices that it operates with, then an error is raised to indicate this. The vector can also be created when needed, and destroyed when not. It can be re-sized when desired to be larger or smaller.

The type of floating point number is Real, which is one of the floating point types. The default floating point type is double.

The integer vector and permutation data structures are very similar to the vector data structure, and contain not only the array of values, but also the current dimension or size of the integer vector or permutation and the amount of allocated memory in this array. Permutations are really restricted integer vectors; they are initialised differently (to the identity permutation, instead of all zeros) and the permutation routines preserve the property of being a permutation.

Matrices are represented by a more complex data structures, and are essentially a two-level data structure. To have variable size 2-dimensional arrays in C, pointer-topointer structures are needed, such as

```
Real **Aentries;
```

Aentries[3][4] $=2.0$;
The matrix data structure therefore has a pointer-to-pointer entry which can be used just as the Aentries variable can. The data structure also has entries containing the number of rows and columns of the matrix, and also the allocated number of rows, columns etc.

Sparse matrices are the most complex data structures and are, in fact, a three level system of data structures. They are also the most dynamic, as when operations are performed on sparse matrices, the number of non-zero entries in a row changes. There are also a number of additional components of the data structures that are used to facilitate operations, and are not needed to specify the sparse matrix that is represented.

Iterative routines operate on a data structure that combines a number of items into a single package. These items include the defining data structures for the system to be solved, preconditioners, current (approximate) solution, desired accuracy, limits on the number of iterations, and functions implementing the stopping criterion and for providing information to the user. By packaging the information in this way, and providing suitable defaults on initialisation, it enables the user to use the iterative routines in either a simple way (just use the defaults), or in a very sophisticated way (by specifying limits, preconditioners, stopping criteria etc).

2.2 Vectors

The vector data structure is the VEC structure:

```
typedef unsigned int u_int;
/* vector definition */
typedef struct {
    u_int dim, max_dim;
    Real *ve;
    } VEC;
```

The type u _int is a short-hand for unsigned int. The field dim is the dimension of the vector, while ve is a pointer to the actual elements of the vector. The field max_dim is the actual length of the ve array. Clearly we require dim \leq max_dim.

The normal method of obtaining a vector of a specified length is to call $v _$get (), which returns a pointer to VEC. To illustrate how this scheme operates, the code to obtain a vector of length n is shown below:

To access the $i^{\text {th }}$ element of x we have to go through the ve field:
$x_{1} i=x->v e[i] ;$
Note that the array index i is understood to be "zero relative"; that is, the valid values of i are $0,1,2, \ldots, n-1$.

The call v_resize(x, newdim) "resizes" the vector x to have dimension newdim. In this call, it is first checked if newdim $\leq x->$ max_dim. If so, then all that happens is that x->dim is set to newdim. Otherwise, memory is realloc ()'d for a vector of size newdim. Provided the realloc () is successful, both $x->$ dim and x->max_dim are set to newdim. Note that under this "high-water mark" system, the physical size of the vector's allocated memory can never decrease. To regain the memory that has been allocated, the vector must be deallocated entirely using V_FREE () or v_free (). (The former is a safer macro that uses v_free ().)

Usually, no objects of type VEC are declared within a program, routine or function. Rather, pointers to VEC structures are declared within a program, routine or function.
 of any initialisation that is needed. Pointers (as returned by these functions) can also be freed up. You should not declare objects to be of type VEC (as opposed to objects of type VEC *) unless you know what you are doing. For example,

```
VEC x:
    ......
V_FREE(&X);
```

will result in a compile-time error. Using v_free () instead of V_FREE () would most likely result in a program crash!

2.2.1 Integer vectors

There are also integer vectors which are pointers to type IVEC. These are implemented an a way that is essentially equivalent to the VEC data structures. There is the allocation and initialisation routine iv_get(), resizing routine iv_resize(), and iv_free () to destroy an integer vector.

The dimension (i.e. number of entries) of an integer vector $i v$ is $i v->d i m$. The i th entry of an integer vector $i v$ is $i v->i v e[i]$, and indexing is zero relative so i must be in the range $0,1, \ldots$, iv->dim-1.

These are useful for constructing index lists as well as other, general data structures.

2.2.2 Complex vectors

Complex vectors and matrices have been included in Meschach version 1.2. The basic complex data type in Meschach is a standard pair of floating point numbers:
typedef struct \{ Real re, im; \} complex;

There are a number of routines for dealing with complex numbers. The most basic is $z=z m a k e(r e a l$, imag); which returns a complex number with real part real and imaginary part imag. There are also routines to add complex numbers zadd $(z 1, z 2)$, to subtract $z \operatorname{sub}(z 1, z 2)$, multiply $z m 1 t(z 1, z 2)$, divide $z d i v(z 1, z 2)$, negate $z n e g(z)$, conjugate $z \operatorname{conj}(z)$, and compute square roots, exponentials and logarithms zsqrt $(z), z \exp (z), z \log (z)$. There is also the magnitude function which returns a floating point number: zmag $=z a b s(z) ;$.

Complex vectors are vectors of these complex data structures, and have the type zVEC. The structure of these vectors is otherwise equivalent to that of ordinary floating point vectors. For example, the i 'th entry of a complex vector $z v$ is $z v->v e[i] ;$ to extract its real part use $z v->v e[i] . r e$, and for its imaginary part use $z v->v e[i] . i m$.

The operations on complex vectors are also very similar to that for ordinary vectors: $z v=z v _g e t(10) ;$ to get a complex vector of length 10 ; $\mathrm{zV} 3=\mathrm{zv}$ _add ($\mathrm{zv} 1, \mathrm{zv} 2, \mathrm{ZVNULL})$; to add two complex vectors $\left(z_{3}=z_{1}+z_{2}\right)$.

2.3 Matrices

Matrices are very important throughout numerical mathematics, so it is natural that we have a separate data structure for them:

```
typedef unsigned int u_int;
/* matrix definition */
typedef struct {
    u_int m, n;
    u_int max_m, max_n, max_size;
    Real **me, *base;
    /* base is base of alloc'd mem */
    } MAT;
```

Here m is the number of rows of the matrix, n is the number of columns of the matrix (i.e. it is $m \times n$). The me field gives the actual means of accessing the elements of the matrix. For example, to access the (i, j) element of the matrix A we use:

```
MAT *A;
Real A_ij;
    ....
A_ij = A->me[i][j];
```

The base field is the pointer to the beginning of the memory allocated for the entries of the matrix. The max_size field is the size of this area in terms of Real numbers.

It should be noted that me is actually an array with elements of type Real *. The actual size of this array is given by the field max_m. This is a (usually small) memory overhead which speeds up the accessing of elements: only two additions are needed to locate me[i] [j], while a multiply and an addition are needed to locate
base $[m * i+j]$. The rows in a matrix are allocated contiguously, as long as this is reasonable, so that no problems arise from memory overhead or cache misses. Even if a matrix is resized, the rows are copied so that the rows of the resized matrix are contiguous.

As with vectors, only pointers to matrices are used, and this allows memory allocation and deallocation to be done conveniently. Also note that matrices are resized using a "high-water mark" approach so that the total amount of physical memory for row pointers and for entries of a matrix does not decrease unless the matrix is completely deallocated by M_FREE () (which is a safe macro) or m_free ().

2.3.1 Complex matrices

Complex matrices are also available and have the type zmat. These have the same structure as the ordinary MAT data type except that the entries are not of type Real, but of type complex. The operations that can be done to complex matrices are similar to those that can be performed on ordinary matrices. For example, here is some code to set an entry and to print out the value:

```
ZMAT *A;
complex z;
```

$\mathrm{A}=\mathrm{zm}$ _get $(10,10)$;
A->me[2][3] $=z_{\text {; }}$
printf("Real part $=\% g$, imaginary part $=\% g \backslash n "$,
A->me[2][3].re, A->me[2][3].im):
ZM_FREE (A):

2.3.2 Band matrices

Band matrices are a special class of sparse matrices where the nonzero entries all lie in a narrow band around the diagonal. Unlike general sparse matrices, these matrices can be factorised with well controlled fill-in. They can also be easily represented by listing the nonzero entries by their distance from the diagonal, and whether they lie above or below (or on) the diagonal.

There are two factorisation routines for band matrices: an $L D L^{T}$ variant of the Cholesky factorisation, and an LU factorisation with partial pivoting. Rather than develop a complete new data structure for these two routines, the BAND data structure used is actually just a MAT structure together with the lower and upper bandwidths Ib and $u b$ respectively. This is the actual data structure:

```
/* band matrix definition */
typedef struct {
    MAT *mat; /* matrix */
    int lb,ub; /* lower & upper bandwidth */
    } BAND;
```

The actual entries of A are stored as matrix entries in mat, which has the following layout. Let A be the $n \times n$ band matrix that is represented by this data structure. Then n is the number of columns of mat. Also, $l b$ is the lower bandwidth of A (this is the number of sub-diagonals in A), and $u b$ is the upper bandwidth of A (this is the number of super-diagonals in A). Note that for a general diagonal matrix, $l b=u b=0$, while for a tridigonal matrix, $l b=u b=1$. For $0 \leq i<l b$, row $l b-i$ of mat is the i th sub-diagonal of A; row $l b$ of mat is the diagonal of A; and for $l b<i \leq l b+u b$, row i of mat is the $(i-l b)$ th super-diagonal of A. The (i, j) entry of A (provided $-l b \leq j-i \leq u b)$ is the $(l b+j-i, j)$ entry of mat. This means that there are some wasted entries in mat, as is shown by this layout for $l b=3, u b=2$ and $n=10$. A \because ', denotes an unused entry of mat:

$$
\text { row } \begin{array}{r}
0 \\
1 \\
2 \\
3 \\
4 \\
4
\end{array}\left[\begin{array}{cccccccccc}
a_{30} & a_{41} & a_{52} & a_{63} & a_{74} & a_{85} & a_{96} & \cdot & \cdot & \cdot \\
a_{20} & a_{31} & a_{42} & a_{53} & a_{64} & a_{75} & a_{86} & a_{97} & \cdot & \cdot \\
a_{10} & a_{21} & a_{32} & a_{43} & a_{54} & a_{65} & a_{76} & a_{87} & a_{98} & \cdot \\
a_{00} & a_{11} & a_{22} & a_{33} & a_{44} & a_{55} & a_{66} & a_{77} & a_{88} & a_{99} \\
\cdot & a_{01} & a_{12} & a_{23} & a_{34} & a_{45} & a_{56} & a_{67} & a_{78} & a_{89} \\
\cdot & \cdot & a_{02} & a_{13} & a_{24} & a_{35} & a_{46} & a_{57} & a_{68} & a_{79}
\end{array}\right] \text { (main diagonal) } \text { (upper part) }
$$

For creating a band matrix A, use $A=b d _g e t(1 b, u b, n)$, for resizing use $b d _r e s i z e(A, I b, u b, n)$ (where $1 b$ etc. are the new values), for freeing use bd_free (A), and for transposing use bd_transp (A, B).

2.4 Permutations

Permutations are immensely useful in a number of matrix factorisation techniques, as well as for the representation of sets and so on. It was therefore decided that, as well as being important mathematical objects in their own right, they should be implemented as a concrete data structure in their own right. Here is the definition of the data structure used:

```
typedef unsigned int u_int;
/* permutation definition */
typedef struct {
    u_int size, max_size, *pe;
    } PERM;
```

The field size is the size of the permutation. The field pe is the means by which the elements of the permutation are accessed: to access $\pi(i)$ for a permutation π use

```
PERM *pi;
pi_i = pi->pe[i];
```

The actual size of the pe array is given by the field max_size.

As with vectors and matrices, only pointers to permutation data structures are used. Permutations may be resized and deallocated. A "high-water mark" method is used when resizing permutations, so that the physical memory used for storing entries does not decrease in size.

Whether or not the elements of an array of integers forms a permutation clearly depends on the entries of that array. This, to some extent is up to the programmer. However, there are a number of routines that try to help this aspect: px _get () initialises the permutation to be the identity permutation; if the argument to px_resize() is a true permutation, the result will be a true permutation, though if a reduction of size is requested, all the old data will be overwritten. Also there is px_transp () which transposes two entries in a permutation; it is expected that this would be the most common means of modifying a permutation. Finally, the input routines check that what is input is indeed a permutation.

2.5 Basic sparse operations and structures

Sparse matrix data structures are somewhat more complex than dense matrix data structures. The form chosen here is a row oriented sparse matrix data structure. The matrix consists of an array of rows, and each row is an array of row elements. A row element contains a value, a column number and some other numbers to help access elements in the same column. (These latter data items are intended to improve access speed for column oriented operations.)

To use these sparse matrix data structures you need to have the following at the beginning of your program:

```
#include "sparse.h"
```

Sparse matrices are declared as pointers, as is done with other data structures in the system:

SPMAT *A;
Initialising a sparse matrix requires calling the $s p$ _get () function:
$A=s p _g e t(m, n, m a x l e n)$;
Here m is the number of rows in A, n is the number of columns, and maxlen is the number of non-zero elements expected in each row. If you add more than maxlen elements to a row, then more memory has to be allocated to that row, which can be time consuming if it is done very frequently. Also note that the NULL sparse matrix is called SMNULL.

Unlike dense matrices, sparse matrices have a structure which can be understood as the pattern of nonzero entries. More accurately, it is the set of (i, j) where memory for the $a_{i j}$ entry is allocated. All entries outside this set are understood to have the value zero. The structure can be altered by processes such as fill-in during matrix factorisations or updates. However, all such alterations have a cost in terms of additional
time needed to update the data structures (as well as the values), overheads for memory reallocation, and in terms of the total amount of memory needed. Fill-in should be kept to a reasonable minimum. This can be done by using iterative methods, often in conjunction with incomplete factorisations, as are described later in this chapter.

Setting values of A can be done using the sp_set_val () function: To set the value of $a_{i j}$ to v, you should call sp_set_val ($\left.\mathbf{A}, \mathbf{i}, \mathbf{j}, \mathrm{v}\right)$. The value of $a_{i j}$ is returned from the function call $s p _g e t _v a l(A, i, j)$.

Copying sparse matrices can be done easily too: $\mathrm{B}=\mathrm{sp}$ _copy (A) returns a copy of the sparse matrix A, while $\mathrm{B}=\mathrm{sp}$ _copy2 (A, B) stores a copy of A in B, while preserving the structure of B. Preserving this structure can be extremely important in keeping the speed of factorisation algorithms high.

Input/output is generally done by two pairs of routines: $\mathbf{A}=$ sp_input () and sp_output (A) for input and output respectively from stdin and to stdout. For sending the output to a different file, use sp_foutput ($f p, A$), and for reading from a different file use $\mathbf{A}=s p _f i n p u t(f p)$ where $f p$ is the corresponding file pointer. As for dense matrices and vectors, the printed output can be read back in from a file. If you are typing input from a keyboard, you will be prompted for all the relevant input. However, for both means of input there is a limit of 100 entries for each row.

If worst comes to worst, and pointers are being mangled somewhere in the sparse matrix data structure, a sparse matrix can always be "dumped" out to a file by calling $s p _d u m p(f p, A)$ which will list all the pointer locations and column access numbers etc. as well as what is usually printed out by sp_foutput () and sp_output ().

There are routines for multiplying sparse matrices by (dense) vectors, both from the right and from the left: $s p _m v _m l t(A, x, o u t)$ forms $A x$ and stores the result in out, while sp_vm_mlt (A, x, out) forms $A^{T} x$, which is stored in out. Here the data types for x and out are both VEC *, while A has type SPMAT *. However, there is currently no routine for multiplying sparse matrices together as there is always the danger that this will lead to dense matrices. (For example, if a row of A is all ones, and a column of B is all ones, then, unless cancellation occurs, $A B$ will have every entry nonzero.)

2.6 The sparse data structures

The data structures used for representing sparse matrices is given below:

```
typedef struct row_elt { 
typedef struct sp_row {
    int len, maxlen, diag;
    row_elt *elt; /* elt[maxlen] */
```

 \} SPROW;
    ```
typedef struct sp_mat {
    int m, n, max_m, max_n;
    char flag_col, flag_diag;
    SPROW *row; /* row[max_m] */
    int *start_row; /* start_row[max_n] */
    int *start_idx; /* start_idx[max_n] */
        } SPMAT;
```

The sparse matrix data structure is the SPMAT data structure; this in turn is built on the sparse row SPRow data structure, and the row element row_elt data structure. Thus, the sparse matrix data structure used here is a row oriented data structure. (By contrast, see George and Liu's book "Computer Solution of Large, Sparse Positive Definite Systems", Prentice Hall (1981), which uses a column oriented data structure.)

To scan the elements of a particular row a simple loop is all that is required:

```
int i, j_idx, len;
    .•••
len = A->row[i].len;
for ( j_idx = 0; j_idx < len; j_idx++ )
    printf("A[%d][%d] = %g\n", i, A->row[i].elt[j_idx].col,
                        A->row[i].elt[j_idx].val);
```

Alternatively, using intermediate variables:

```
int i, j_idx, len;
SPROW *r;
row_elt *elt;
r=&(A->row[i]);
len = r->len;
elt = r->elt;
for ( j_idx = 0; j_idx < len; j_idx++, elt++ )
    printf("A[%d][%d] = %g\n", i, elt->col, elt->val);
```

To alleviate potential problems due to this row-oriented approach, some additional access paths were included to ease column-based access. These take the form of the start_row and start_idx arrays, and the nxt_row and nxt_idx fields of the row_elt data structure. These work as follows.

Suppose that \mathbb{A} is a sparse matrix where this access path has been set up (i.e. A->flag_col is TRUE). To set the access paths, call sp_col_access (A). The first row that a non-zero entry appears in column j is $i=A->s t a r t _r o w[j]$, and the index into the $\mathrm{A}->$ row [i].elt array which gives this entry is $\mathrm{k}=\mathrm{A}->$ start_idx [j] (i.e., A->row[i].elt[k].col == j).

Each entry (which has type row_elt) has its column number, and the row number nxt_row and the index number nxt_idx of the next non-zero entry in that column. If there is no remaining non-zero entry in that column, nxt_row has the value -1 . Listing all the entries of a particular column can then be written as a loop:

```
int i, i_tmp, j, j_idx;
sp_col_access(A);
/* j is column number */
i = A->start_row[j];
j_idx = A->start_idx[j];
while ( i >= 0 )
{
        printf("A[%d][%d] = %g\n", i, A->row[i].elt[j_idx].col,
                                    A->row[i].elt[j_idx].val);
        i_tmp = A->row[i].elt[j_idx].nxt_row;
        j_idx = A->row[i].elt[j_idx].nxt_idx;
        i = i_tmp;
}
```

Of course, the efficiency of this program fragment could be improved by doing the A->row[i].elt[j_idx] calculation only once:

```
int i, i_tmp, j, j_idx;
row_elt *elt;
/* j is column number */
i = A->start_row[j];
j_idx = A->start_idx[j];
while ( i >= 0 )
{
        elt = &(A->row[i].elt[j_idx]);
        printf("%g\n", elt->val);
        i_tmp = elt->nxt_row;
        j_idx = elt->nxt_idx;
        i = i_tmp;
}
```

What is assumed about this data structure is that the column indices (the col field of the row_elt data structure) are in order along the rows. This allows the use of binary searching to locate items. Adding new non-zero entries thus usually results in copying blocks of memory. The theoretically better techniques, such as B-trees and 2-3 trees, are considered too difficult to implement to be worthwhile in this context. Rather, we aim to avoid fill-in.

Whenever fill-in takes place, the column access path is rendered incorrect, as is the diag entry for that row. The column access path for \mathbb{A} can be reset by calling sp_col_access (A). Note, however, that calling sp_col_access (A) takes $O(m+N)$ time where m is the number of rows of A , and N is the number of non-zero entries in A. The diag entries for the entire matrix can be reset by calling
sp_diag_access (). However, in some matrix factorisations (especially Cholesky factorisation) it is more efficient to update these extra fields nxt_row and nxt_idx as fill-in occurs.

2.7 Sparse matrix factorisation

Two kinds of factorisations has been implemented, which are the sparse Cholesky and LU factorisations. The main routines are spCHfactor() and spLUfactor(). Both of these routines perform the full factorisation and create the fill-in as necessary. Supporting the sparse Cholesky factorisation is spchsolve () which solves $L L^{T} x=$ b for x once the (sparse) Cholesky factorisation $A=L L^{T}$ is found for A. For the sparse LU factorisation is spLUsolve () which solves $P^{T} L U x=b$ where P is the permutation defining the row pivots. Note that the sparse LU factorisation uses partial pivoting modified to avoid too much fill-in if this is possible.

Two other variants of the sparse Cholesky factorisation are included. They are spICHfactor() which forms an incomplete factorisation of A - that is, it is assumed that no fill-in will take place during the Cholesky factorisation of A. There is also spCHsymb () which does not do any floating point arithmetic, by rather does a symbolic factorisation of A. The routines spICHfactor() and spCHsymb() can work together: If a number of matrices have the same pattern of zeros and non-zeros, then the pattern of zeros and non-zeros can be worked out using spCHsymb (), and the matrices can be copied into the resulting matrix before using spICHfactor() applied to the copied matrix. The code for this follows:

```
SPMAT *pattern, *A;
/* get original A matrix */
pattern = sp_copy(A);
spCHsymb(pattern); /* determine fill-in pattern */
sp_copy2(A,pattern); /* preserve fill-in */
spICHfactor(pattern); / * no additional fill-in */
/* get new A matrix */
/* assume same pattern of non-zeros in A */
sp_copy2(A,pattern);
spICHfactor(pattern);
```

There is also an incomplete LU factorisation routine spILUfactor(). This is actually a modified incomplete factorisation which modifies the diagonal entries to ensure they do not become less than a certain user-specified amount in magnitude; if this amount is set to zero then the method is just a standard incomplete factorisation.

2.8 Iterative techniques

Dealing with large, sparse matrices often requires the use of iterative methods. However, writing iterative routines that only operate on sparse matrices is unlikely to be very flexible. To this end a general data structure ITER is used for a wide class of iterative methods, which can be used for a wide class of problems.

One of the basic types used in the ITER data structure is called Fun_Ax: this implements a "functional representation" of a matrix. An object Afn of type Fun_Ax is a function pointer where (*Afn) (Aparams, \mathbf{x}, y) computes $y=A x$ given x. The parameter Aparams is a pointer which can point to any user-defined data structure (or NULL if the function ignores it). Thus the user is completely freed from the trouble of having to deal with the built in sparse matrix data structures. If, for example, the matrix is defined in terms of networks, then the data structure describing the network can be passed as Aparams, and the matrix-vector multiply routine modified to work directly with the network data structure. Dealing with different networks doesn't require writing new functions: only the Aparams parameter needs to be changed. On the other hand, use of the standard sparse data structures isn't restricted: Afn is sp_mv_mlt, the sparse matrix-vector product routine, and Aparams is the actual sparse matrix data structure.

This is the ITER data structure:
typedef struct Iter_data \{
int shared_b, shared_x;
/* TRUE if b , x aliased by other pointers */
unsigned k; /* no. of direction vectors; $0=$ none */ int limit; /* upper bound on the no. of iter. steps */
int steps; /* no. of iter. steps done */
Real eps; /* accuracy required */

| VEC | *x; /* input: initial guess; |
| ---: | :--- |
| | output: approx. solution */ |
| VEC $\quad{ }^{* b ;} \quad$ / right hand side of $A * x=b * /$ | |

Fun_Ax $A x ; \quad / *$ function computing $Y=A * x * /$
void *A_par; /* parameters for Ax */

Fun_Ax ATx; /* function computing $y=A^{\wedge} T * x * /$
void *AT par; $/ *$ parameters for $A T X * /$
void *AT_par;/* parameters for ATx */
/* $\mathrm{B}=$ preconditioner */
Fun_Ax $B x ; \quad / *$ function computing $y=B * x * /$
void *B_par; /* parameters for $B x$ */
/* for the following two functions: res = residual; nres $=$ norm of residual res; pcres $=B^{* r e s ; ~ * / ~}$

| Field | Value |
| :--- | :---: |
| shared_b | FALSE |
| shared_x | FALSE |
| limit | ITER_LIMIT_DEF $=1000$ |
| k, steps | 0 |
| eps | ITER_EPS_DEF $=10^{-6}$ |
| x, b | allocated |
| Ax, Ax_par | NULL |
| ATx, ATx_par | NULL |
| Bx, Bx_par | NULL |
| info | iter_std_info() |
| stop_crit | iter_std_stop_crit () |

Table 2.1: Default values for the ITER structure
/* function giving some information for a user */
void (*info) (struct Iter_data *ip, double nres, VEC *res, VEC *pcres);
/* stopping criterion: stop if TRUE returned; */
int (*stop_crit)(struct Iter_data *ip, double nres, VEC *res, VEC *pcres);

Real init_res; /* the norm of the initial residual */ \} ITER;

The main routine for setting up an ITER data structure is ip = iter_get (b_dim, x_dim) which creates an ITER data structure with NULL functions, default values for the other components of the data structure, and with two vectors x and b created (of lengths x _dim and $b _d i m$ respectively). The other memory operations involved are iter_resize(ip, new_b_dim, new_x_dim) to resize ip, and iter_free(ip) (function) and ITER_FREE (ip) (macro) to free ip. The default values of the various entries of the ITER structure are given in Table 2.1:

Setting the values in the data structure requires setting the fields of the ITER structure directly. The function iter_dump (fp, ip) prints out information about the the ITER data structure $i p$ to stream/file $f p$. The routine iter_copy (ip1,ip2) copies the ITER structure and the x and b structures. (This is a deep copy.) The routine iter_copy2(ip1,ip2) copies all of the ITER structure's values but leaves ip2->x and ip2->b unchanged.

These ITER data structures are used in the main iterative routines, such as iter_cg(ip) which implements (pre-conditioned) conjugate gradients; iter_lanczos(ip,) which implements the basic Lanczos algorithm; iter_cgs(ip, r0) which implements Sonneveld's CGS algorithm; iter_gmres (ip) which implements Saad and Schultz's GMRES algorithm.

There are some additional routines which provide a simplified interface for applying iterative methods to sparse matrix data structures. These routines are named iter_sp...(...), such as iter_spcg(A,LLT,b,eps,x,limit,steps) for (pre-conditioned) conjugate gradients. The iter_sp...(...) routines work by setting up an ITER data structure and calling the appropriate main routine.

The use of more than one level of interface means that simplicity is not sacrificed for the sake of more sophisticated users.

2.9 Other data structures

The above data structures can be used as parts of other data structures. For example, here is an data structure for holding simplex tableaus for linear programmes:

```
typedef struct lp {
    MAT *tab;
    VEC *rhs, *cost;
    Real val;
    PERM *basis, *invbase, *allow;
    int card;
    } LP:
```

Routines for creating and destroying, inputting and outputting, and using this data structure have been written, based on the corresponding routines for the component data structures. It may be of interest that basis is a permutation, and that during operations on the simplex tableau, in_base is maintained as the inverse permutation to basis. Finally, the permutation allow together with card act as a set which consists of the elements

$$
\begin{gathered}
\{a 1 l o w->p e[0], a l l o w->p e[1], \text { allow->pe[2] }, \\
\ldots, \text { allow->pe[card-1]\}. }
\end{gathered}
$$

Meschach 1.2 allows you to incorporate your own data structures into various aspects of the library, such as tracking memory usage and deallocating static workspace when desired. For suggestions for implementing your own data structures and using Meschach routines in your applications, see chapter 8 on designing libraries in C .

