
Chapter 2 

Data structures 

2.1 General principles 

In this chapter an overview of the data structures is given, as well as indicating how 
memory management is undertaken. For more information about how to use and 
develop data structures, you should see chapter 8 on designing data structures. 

One of the main thrusts of Meschach is to use C's data structuring ability to 
"package" the objects so that they are self-contained and can be dealt with as single 
entities. This is combined with C's memory allocation and de-allocation techniques to 
make basic mathematical objects (vectors, matrices, permutations etc) work more like 
their mathematical counterparts. So, a vector structure contains not only the array of its 
components, but also the dimension of the vector, and the amount of allocated memory 
(which may be larger than the dimension). This vector can be used for ordinary vector 
operations, computing matrix-vector products, solving systems of linear equations, or 
just for storing data. If there is a mismatch in, say, the size of the vector and the vectors 
or matrices that it operates with, then an error is raised to indicate this. The vector can 
also be created when needed, and destroyed when not. It can be re-sized when desired 
to be larger or smaller. 

The type of floating point number is Real, which is one of the floating point types. 
The default floating point type is double. 

The integer vector and permutation data structures are very similar to the vector 
data structure, and contain not only the array of values, but also the current dimension 
or size of the integer vector or permutation and the amount of allocated memory in this 
array. Permutations are really restricted integer vectors; they are initialised differently 
(to the identity permutation, instead of all zeros) and the permutation routines preserve 
the property of being a permutation. 

Matrices are represented by a more complex data structures, and are essentially a 
two-level data structure. To have variable size 2-dimensional arrays inC, pointer-to
pointer structures are needed, such as 

Real **Aentries; 
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Aentries[3] [4] = 2.0; 

The matrix data structure therefore has a pointer-to-pointer entry which can be used 
just as the Aentries variable can. The data structure also has entries containing the 
number of rows and columns of the matrix, and also the allocated number of rows, 
columns etc. 

Sparse matrices are the most complex data structures and are, in fact, a three 
level system of data structures. They are also the most dynamic, as. when operations 
are performed on sparse matrices, the number of non-zero entries in a row changes. 
There are also a number of additional components of the data structures that are used to 
facilitate operations, and are not needed to specify the sparse matrix that is represented. 

Iterative routines operate on a data structure that combines a number of items into 
a single package. These items include the defining data structures for the system to 
be solved, :preconditioners, current (approximate) solution7 desired accuracy, limits 
on the number of iterations, and functions implementing the stopping criterion and 
for providing information to the user. By packaging the information in this way, and 
providing suitable defaults on initialisation, it enables the user to use the iterative 
routines in either a simple way (just use the defaults), or in a very sophisticated way 
(by specifying limits, preconditioners, stopping criteria etc). 

2.2 Vectors 

The vector.data structure is the VEC structure: 

typedef unsigned int u_int; 
/* vector definition */ 
typedef struct { 

u_int dim, max_dim; 
Real *ve; 
} VEC; 

The type u_int is a short-hand for unsigned int. The field dim is the dimension 
of the vector, while ve is a pointer to the actual elements of the vector. The field 
max_ dim is the actual length of the ve array. Clearly we require dim :s; max_dim. 

The normal method of obtaining a vector of a specified length is to call v _get ( ) , 
which returns a pointer to VEC. To illustrate how this scheme operates, the code to 
obtain a vector of length n is shown below: 

#include "matrix.h" 

VEC *x; 
int n; 

x = v_get (n}; 
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To access the ith element of x we have to go through the ve field: 

x_i = x->ve [i]; 

Note that the array index i is understood to be "zero relative"; that is, the valid values 
of i are 0, 1, 2, ... , n- 1. 

The call v_resize (x, newdim) "resizes" the vector x to have dimension 
newdim. In this call, it is first checked if newdi:m ~ x- >max_dim. If so, then all that 
happens is that x->dim is set to newdim. Otherwise, memory is realloc () 'd for 
a vector of size newdim. Provided the realloc () is successful, both x->dim and 
x- >max_ dim are set to newdim. Note that under this "high-water mark" system, the 
physical size of the vector's allocated memory can never decrease. To regain the mem
ory that has been allocated, the vector must be deallocated entirely using v _FREE ( ) 

or v _free (). (The former is a safer macro that uses v _free () .) 
Usually, no objects of type VEC are declared within a program, routine or function. 

Rather, pointers to VEC structures are declared within a program, routine or function. 
Pointers are returned by v _get (), v _copy () and v _input () which also take care 
of any initialisation that is needed. Pointers (as returned by these functions) can also 
be freed up. You should not declare objects to be of type VEC (as opposed to objects 
of type VEC *) unless you know what you are doing. For example, 

VEC x; 

V_FREE (&x); 

will result in a compile-time error. Using v _free ( } instead of v _FREE ( ) would 
most likely result in a program crash! 

2.2.1 Integer vectors 

There are also integer vectors which are pointers to type IVEC. These are imple
mented an a way that is essentially equivalent to the VEC data structures. There is the 
allocation and initialisation routine i v _get (), resizing routine i v _resize (), and 
i v _free () to destroy an integer vector. 

The dimension (i.e. number of entries) of an integer vector iv is iv->dim. The 
ith entry of an integer vector i v is i v- > i ve [ i] , and indexing is zero relative so i 
must be in the range 0, 1, ... , iv->dim-1. 

These are useful for constructing index lists as well as other, general dat.a structures. 

2.2.2 Complex vectors 

Complex vectors and matrices have been included in Meschach version 1.2. The basic 
complex data type in Meschach is a standard pair of floating point numbers: 

typedef struct { Real re, im; } complex; 
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There are a number of routines for dealing with complex numbers. The most ba
sic is z = zmake (real, imag) ; which returns a complex number with real part 
real and imaginary part imag. There are also routines to add complex num
bers zadd(zl,z2), to subtract zsub(zl,z2), multiply zmlt(zl,z2), divide 
zdi v ( zl, z2), negate zneg ( z), conjugate zconj ( z), and compute square roots, 
exponentials and logarithms zsqrt ( z), zexp ( z), zlog ( z). There is also the 
magnitude function which returns a floating point number: zmag = zabs ( z) ; . 

Complex vectors are vectors of these complex data structures, and have the 
type ZVEC. The structure of these vectors is otherwise equivalent to that of ordi
nary floating point vectors. For example, the i 'th entry of a complex vector zv is 
zv->ve [i]; to extract its real part use zv->ve [i] .re, and for its imaginary part 
use zv->ve [i] • im. 

The operations on complex vectors are also very similar to that for ordinary vectors: 
zv = zv _get ( 10 ) ; to get a complex vector of length 1 0; 
zv3=zv_add(zvl, zv2, ZVNULL); to add two complex vectors (z3 = z1 + z2). 

2.3 Matrices 

Matrices are very important throughout numerical mathematics, so it is natural that we 
have a separate data structure for them: 

typedef unsigned int 
I* matrix definition *I 
typedef struct { 

u_int 

u_int; 

m, n; 
u_int max_m, max_n, max_size; 
Real **me, *base; 
I* base is base of alloc'd mem *I 
} MAT; 

Here m is the number of rows of the matrix, n is the number of columns of the matrix 
(i.e. it is m x n). The me field gives the actual means of accessing the elements of the 
matrix. For example, to access the ( i, j) element of the matrix A we use: 

MAT *A; 
Real A_ij; 

A_ij = A->me[i] [j]; 

The base field is the pointer to the beginning of the memory allocated for the entries 
of the matrix. The max_size field is the size of this area in terms of Real numbers. 

It should be noted that me is actually an array with elements of type Real *. 
The actual size of this array is given by the field max_m. This is a (usually small) 
memory overhead which speeds up the accessing of elements: only two additions are 
needed to locate me [ i] [ j ] , while a multiply and an addition are needed to locate 
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base [m*i+j]. The rows in a matrix are allocated contiguously, as long as this is 
reasonable, so that no problems arise from memory overhead or cache misses. Even 
if a matrix is resized, the rows are copied ·so that the rows of the resized matrix are 
contiguous. 

As with vectors, only pointers to matrices are used, and this· allows memory 
allocation and deallocation to be done conveniently. Also note that matrices are resized 
using a "high-water mark" approach so that the total amount of physical memory for 
row pointers and for entries of a matrix does not decrease unless the matrix is completely 
deallocated by ll/CFREE ( ) (which is a safe macro) or m_f ree ( ) . 

2.3.1 Complex matrices 

Complex matrices are also available and have the type ZMAT. These have the same 
structure as the ordinary MAT data type except that the entries are not of type Real, but 
of type complex. The operations that can be done to complex matrices are similar to 
those that· can be performed on ordinary matrices. For example, here is some code to 
set an entry and to print out the value: 

ZMAT *A; 
complex z; 

A= zm_get(10,10}; · 
A->me [2] [3] = z; 

printf("Real part = %g, imaginary part = %g\n", 
A->me[2] [3] .re, A->me[2] [3] .im); 

ZM_FREE (A) ; 

2.3.2 Band matrices 

Band matrices are a special class of sparse matrices where the nonzero entries all lie in 
a narrow band around the diagonal. Unlike general sparse matrices, these matrices can 
be factorised with well controlled fill-in. They can also be easily represented by listing 
the nonzero entries by their distance from the diagonal, and whether they lie above or 
below (or on) the diagonal. 

There are two factorisation routines for band matrices: an LDLT variant of the 
Cholesky factorisation, and an LU factorisation with partial pivoting. Rather than 
develop a complete new data structure for these two routines, the BAND data structure 
used is actually just a MAT structure together with the lower and upperbandwidths lb 
and ub respectively. This is the actual data structure: 

I* band matrix definition */ 
typedef struct { 

xaT *mat; 
int lb,ub; 
} BAND; 

I* matrix */ 
/* lower & upper bandwidth */ 
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The actual entries of A are stored as matrix entries in mat, which has the following 
layout. Let A be the n x n band matrix that is represented by this data structure. Then 
n is the number of columns of mat. Also, lb is the lower bandwidth of A (this is the 
number of sub-diagonals in A), and ub is the upper bandwidth of A (this is the number 
of super-diagonals in A). Note that for a general diagonal matrix, lb = ub = 0, while 
for a tridigonal matrix, lb = ub = 1. For 0 ~ i < lb, row lb- i of mat is the ith 
sub-diagonal of A; row lb of mat is the diagonal of A; and for lb < i ~ lb + ub, 
row i of mat is the (i - lb)th super-diagonal of A. The (i,j) entry of A (provided 
-lb ~ j- i ~ ub) is the (lb + j- i,j) entry of mat. This means that there are some 
wasted entries in mat, as is shown by this layout for lb = 3, ub = 2 and n = 10. A '.' 
denotes an unused entry of mat: 

0 a3o a41 a 52 a63 a74 ass a96 (lower part) 
1 azo a31 a42 a 53 a64 a15 as6 a97 

2 alO a21 a32 a43 a 54 a65 a76 as1 ags 
row 3 

aoo au a22 a33 a44 a 55 a66 a77 ass agg (main diagonal) 
4 ao1 a12 a23 a34 a45 a 56 a67 a7s agg 

5 ao2 a13 a24 a35 a46 a 57 a6s a79 (upper part) 

For creating a band matrix A, use A = bd_get ( lb, ub, n) , for resizing use 
bd_resize(A,lb,ub,n) (where lb etc. are the new values), for freeing use 
bd_free (A), and for transposing use bd_transp (A, B). 

2.4 Permutations 

Permutations are immensely useful in a number of matrix factorisation techniques, as 
well as for the representation of sets and so on. It was therefore decided that, as well as 
being important mathematical objects in their own right, they should be implemented 
as a concrete data structure in their own right. Here is the definition of the data structure 
used: 

typedef unsigned int u_int; 
I* permutation definition */ 
typedef struct { 

u_int size, max_size, *pe; 
} PERM; 

The field size is the size of the permutation. The field pe is the means by which the 
elements of the permutation are accessed: to access 7r( i) for a permutation 7r use 

PERM *pi; 

pi_i = pi->pe[i]; 

The actual size of the pe array is given by the field max_size. 
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As with vectors and matrices, only pointers to permutation data structures are used. 
Permutations may be resized and deallocated. A "high-water mark" method is used 
when resizing permutations, so that the physical memory used for storing entries does 
not decrease in size. 

Whether or not the elements of an array of integers forms a permutation clearly 
depends on the entries of that array. This, to some extent is up to the programmer. How
ever, there are a number of routines that try to help this aspect: px_get ( ) initialises 
the permutation to be the identity permutation; if the argument to px_resize () is 
a true permutation, the result will be a true permutation, though if a reduction of size 
is requested, all the old data will be overwritten. Also there is px_transp () which 
transposes two entries in a permutation; it is expected that this would be the most 
common means of modifying a permutation. Finally, the input routines check that 
what is input is indeed a permutation. 

2.5 Basic sparse operations and structures 

Sparse matrix data structures are somewhat more complex than dense matrix data 
structures. The form chosen here is a row oriented sparse matrix data structure. The 
matrix consists of an array of rows, and each row is an array of row elements. A row 
element contains a value, a column number and some other numbers to help access 
elements in the same column. (These latter data items are intended to improve· access 
speed for column oriented operations.) 

To use these sparse matrix data structures you need to have the following at the 
beginning of your program: 

#include "sparse.h" 

Sparse matrices are declared as pointers, as is done with other data structures in the 
system: 

SPMAT *A; 

Initialising a sparse matrix requires calling the sp_get () function: 

A= sp_get{m, n, maxlen); 

Herem is the number of rows in A, n is the number of columns, and maxlen is the 
number of non-zero elements expected in each row. If you add more than maxlen 
elements to a row, then more memory has to be allocated to that row, which can be 
time consuming if it is done very frequently. Also note that the NULL sparse matrix is 
called SMNULL. 

Unlike dense matrices, sparse matrices have a structure which can be understood 
as the pattern of nonzero entries. More accurately, it is the set of ( i, j) where memory 
for the aii entry is allocated. All entries outside this set are understood to have the 
value zero. The structure can be altered by processes such as fill-in during matrix fac
torisations or updates. However, all such alterations have a cost in terms of additional 
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time needed to update the data structures (as well as the values), overheads for memory 
reallocation, and in terms of the total amount of memory needed. Fill-in should be 
kept to a reasonable minimum. This can be done by using iterative methods, often in 
conjunction with incomplete factorisations, as are described later in this chapter. 

Setting values of A can be done using the sp_set_ val () function: To set the 
value of a;j to v, you should call sp_set_ val (A, i, j, v). The value of a;j is 
returned from the function call sp_get_ val (A, i, j ) . 

Copying sparse matrices can be done easily too: B = sp_copy (A) returns a 
copy of the sparse matrix A, while B = sp_copy2 (A, B) stores a copy of A in 
B, while preserving the structure of B. Preserving this structure can be extremely 
important in keeping the speed of factorisation algorithms high. 

Input/output is generally done by two pairs of routines: A = sp_input () 
and sp_output (A) for input and output respectively from stdin and to stdout. 
For sending the output to a different file, use sp_foutput ( fp, A), and for reading 
from a different file use A = sp_finput (fp) where fp is the corresponding file 
pointer. As for dense matrices and vectors, the printed output can be read back in from 
a file. If you are typing input from a keyboard, you will be prompted for all the relevant 
input. However, for both means of input there is a limit of 100 entries for each row. 

If worst comes to worst, and pointers are being mangled somewhere in the sparse 
matrix data structure, a sparse matrix can always be "dumped" out to a file by calling 
sp_dump ( fp, A) which will list all the pointer locations and column access numbers 
etc. as well as what is usually printed out by sp_foutput () and sp_output (). 

There are routines for multiplying sparse matrices by (dense) vectors, both from 
the right and from the left: sp_mv _ml t (A, x, out) forms Ax and stores the result 
in out, while sp_ v:m._ml t (A, x, out) forms AT x, which is stored in out. Here the 
data types for x and out are both VEC *, while A has type SPMAT *. However, there 
is currently no routine for multiplying sparse matrices together as there is always the 
danger that this will lead to dense matrices. (For example, if a row of A is all ones, 
and a column of B is all ones, then, unless cancellation occurs, AB will have every 
entry nonzero.) 

2.6 The sparse data structures 

The data structures used for representing sparse matrices is given below: 

typedef struct row_elt { 
int 
Real 

col, nxt_row, nxt_idx; 
val; 

} row_elt; 

typedef struct sp_row { 
int len, maxlen, diag; 
row_elt *elt; /* elt[maxlen] */ 

} SPROW; 
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typedef struct sp~at { 
int m, n, max_m, max_n; 
char flag_col, flag_diag; 
SPROW *row; /* row[max_m] */ 

int *start_row; /* start_row[max_n] */ 
int *start_idx; /* start_idx[max_n] */ 

} SPMAT; 

The sparse matrix data structure is the SPMAT data structure; this in tum is built on 
the sparse row SPROW data structure, and the row element row_el t data structure. 
Thus, the sparse matrix data structure used here is a row oriented data structure. (By 
contrast, see George and Liu's book "Computer Solution of Large, Sparse Positive 
Definite Systems", Prentice Hall (1981), which uses a column oriented data structure.) 

To scan the elements of a particular row a simple loop is all that is required: 

int i, j_idx, len; 

len= A->row[i].len; 
for ( j_idx = 0; j_idx < len; j_idx++ ) 

printf("A[%d] [%d] = %g\n", i, A->row[i].elt[j_idx].col, 
A->row[i].elt[j_idx].val); 

Alternatively, using intermediate variables: 

int i, j_idx, len; 
SPROW *r; 
row_elt *elt; 

r = &(A->row[i]); 
len = r->len; 
elt = r->elt; 
for ( j_idx = 0; j_idx < len; j_idx++, elt++ ) 

printf ( "A[%d] [%d] = %g\n", i, elt->col, elt->val); 

To alleviate potential problems due to this row-oriented approach, some additional 
access paths were included to ease column-based access. These take the form of the 
start_row and start_idx arrays, and the nxt_row and nxt_idx fields of the 
row_elt data structure. These work as follows. 

Suppose that A is a sparse matrix where this access path has been set up (i.e. 
A->flag_col is TRUE). To set the access paths, call sp_col_access (A). The first 
row that a non-zero entry appears in columnj is i = A- >start_row [ j], and the in
dex intotheA->row [i] • elt arraywhichgives this entry is k=A->start_idx [j] 

(i.e., A- >row [ i] . el t [k] . col == j ). 
Each entry (which has type row_elt) has its column number, and the row number 

nxt_row and the index number nxt_idx of the next non-zero entry in that column. 
If there is no remaining non~zero entry in that column, nxt_row has the value -1. 
Listing all the entries of a particular column can then be written as a loop: 
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int i, i_tmp, j, j_idx; 

sp_col_access(A); 

/* j is column number */ 
i = A->start_row[j]; 
j_idx = A->start_idx[j]; 
while i >= 0 ) 
{ 

} 

printf("A[%d] [%d] = %g\n", i, A->row[i].elt[j_id.x].col, 
A->row[i].elt[j_id.x].val); 

i_tmp = A->row[i].elt[j_id.x].nxt_row; 
j_idx = A~>row[i].elt[j_id.x].nxt_idx; 
i = i_tmp; 

Of course, the efficiency of this program fragment could be improved by doing the 
A->row[i] .elt [j_idx] calculation only once: 

int i, i_tmp, j, j_idx; 
row_elt *elt; 

/* j is column number */ 
i 
j_idx 
while 
{ 

= A->start_row[j]; 
= A->start_idx[j]; 

i >= 0 ) 

} 

elt = &(A->row[i].elt[j_idx]); 
printf ( "%g\n", elt->val); 
i_tmp = elt->nxt_row; 
j_idx = elt->nxt_idx; 
i = i_tmp; 

What is assumed about this data structure is that the column indices (the col field 
of the row_elt data structure) are in order along the rows. This allows the use of 
binary searching to locate items; Adding new non-zero entries thus usually results in 
copying blocks of memory. The theoretically better techniques, such as B-trees and 
2-3 trees, are considered too difficult to implement to be worthwhile in this context. 
Rather, we aim to avoid fill-in. 

Whenever fill-in takes place, the column access path is rendered incorrect, as is 
the diag entry for that row. The column access path for A can be reset by call
ing sp_col_a:ccess (A). Note, however, that calling sp_col_access (A) takes 
0( m + N) time where m is the number of rows of A, and N is the number of 
non-zero entries in A. The diag entries for the entire matrix can he reset by calling 
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sp_diag_access (). However, in some matrix factorisations (especially Cholesky 
factorisation) it is more efficient to update these extra fields nxt_row and nxt_idx 
as fill-in occurs. 

2. 7 Sparse matrix factorisation 

Two kinds of factorisations has been implemented, which are the sparse Cholesky 
and LU factorisations. The main routines are spCHfactor () and spLUfactor (). 
Both of these routines perform the full factorisation and create the fill-in as necessary. 
Supporting the sparse Cholesky factorisation is spCHsol ve ( ) which solves LLT x = 
b for x once the (sparse) Cholesky factorisation A = LLT is found for A. For the 
sparse LU factorisation is spLUsol ve ( } which solves pT LUx = b where P is the 
permutation defining the row pivots. Note that the sparse LU factorisation uses partial 
pivoting modified to avoid too much fill-in if this is possible. 

Two other variants of the sparse Cholesky factorisation are included. They are 
spiCHfactor () which fonns an incomplete factorisation of A - that is, it is 
assumed that no fill-in will take place during the Cholesky factorisation of A. There is 
also spCHsymb ( ) which does not do any floating point arithmetic, by rather does a 
symbolic factorisation of A. The routines spiCHfactor () and spCHsymb () can 
work together: If a number of matrices have the same pattern of zeros and non-zeros, 
then the pattern of zeros and non-zeros can be worked out using spCHsymb ( ) , and 
the matrices can be copied into the resulting matrix before using spiCHfactor () 
applied to the copied matrix. The code for this follows: 

SPMAT *pattern, *A; 

I* get original A matrix */ 

pattern= sp_copy(A); 
spCHsymb(pattern); 

sp_copy2(A,pattern); 
spiCHfactor(pattern); 

I* get new A matrix */ 

I* determine fill-in pattern */ 

/* preserve fill-in */ 
I* no additional fill-in */ 

I* assume same pattern of non-zeros in A *I 
sp_copy2(A,pattern); 
spiCHfactor(pattern); 

There is also an incomplete LU factorisation routine spiLUfactor (). This is 
actually a modified incomplete factorisation which modifies the diagonal entries to 
ensure they do not become less than a certain user-specified amount in magnitude; if 
this amount is set to zero then the method is just a standard incomplete factorisation. 
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2.8 Iterative techniques 

Dealing with large, sparse matrices often requires the use of iterative methods. How
ever, writing iterative routines that only operate on sparse matrices is unlikely to be 
very flexible. To this end a general data structure ITER is used for a wide class of 
iterative methods, which can be used for a wide class of problems. 

One of the basic types used in the ITER data structure is called Fun_Ax: this 
implements a "functional representation" of a matrix. An object Afn of type Fun_Ax 
is a function pointer where ( *Afn) (Aparams, x, y) computes y = Ax given x. 
The parameter Aparams is a pointer which can point to any user-defined data structure 
(or NULL if the function ignores it). Thus the user is completely freed from the trouble 
of having to deal with the built in sparse matrix data structures. If, for example, the 
matrix is defined in terms of networks, then the data structure describing the network 
can be passed as Aparams, and the matrix-vector multiply routine modified to work 
directly with the network data structure. Dealing with different networks doesn't 
require writing new functions: only the Aparams parameter needs to be changed. 
On the other hand, use of the standard sparse data structures isn't restricted: Afn is 
sp_mv_mlt, the sparse matrix-vector product routine, and Aparams is the actual 
sparse matrix data structure. 

This is the ITER data structure: 

typedef struct Iter_data { 
int shared_b, shared_x; 
/* TRUE if b, x aliased by other pointers *I 

unsigned k; I* no. of direction vectors; 0 = none *I 
int limit; I* upper bound on the no. of iter. 
int steps; I* no. of iter. steps done *I 
Real eps; I* accuracy required *I 

VEC *x; I* input: initial guess; 
output: approx. solution *I 

VEC *b; I* right hand side of A*x = b *I 

Fun_Ax Ax; I* function computing y = A*x */ 
void *A_par; I* parameters for Ax */ 

Fun_Ax ATx; I* function computing y = A~T*x *I 
void *AT_par;l* parameters for ATx *I 
I* B = preconditioner *I 
Fun_Ax Bx; I* function computing y = B*x *I 
void *B_par; I* parameters for Bx *I 

I* for the following two functions: res = residual; 
nres = norm of residual res; peres = B*res; */ 

steps *I 
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Field Value 
shared_b FALSE 
shared_x FALSE 
limit ITER_LIMIT _DEF = 1000 
k; steps 0 
eps ITER.EPS_DEF = 10-6 

x, b allocated 
Ax, Ax_ par NULL 
ATx, ATx_par NULL 
Bx, Bx_par NULL 
info iter _std_info () 
stop_crit iter_std_stop_crit () 

Table 2.1: Default values for the ITER structure 

/* function giving some information for a user */ 
void (*info)(struct Iter_data *ip, double nres, 

VEC *res, VEC *peres); 
/* stopping criterion: stop if TRUE returned; */ 
int (*stop_crit)(struct Iter_data *ip, double nres, 

VEC *res, VEC *peres); 

Real init_res; /* the norm of the initial residual */ 
} ITER; 
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Themainroutineforsettingupan ITER data structure is ip = iter_get (b_dim, 
x_dim) which creates an ITER data structure with NULL functions, default val
ues for the other components of the data structure, and with two vectors x and b 
created (of lengths x_dim and b_dim respectively). The other memory opera
tions involved are iter_resize ( ip, new_b_dim, new_x_dim) to resize ip, 
and iter_free(ip) (function) and ITER_FREE(ip) (macro) to free ip. The 
default values of the various entries of the ITER structure are given in Table 2.1: 

Setting the values in the data structure requires setting the fields of the ITER struc
ture directly. The function iter _dump ( fp, ip) prints out information about the 
the ITER data structure ip to stream/file fp. The routine iter_copy(ipl, ip2) 
copies the ITER structure and the x and b structures. (This is a deep copy.) The rou
tine i ter_copy2 ( ipl, ip2) copies all of the ITER structure's values but leaves 
ip2->x and ip2->b unchanged. 

These ITER data structures are used in the main iterative routines, such as 
i ter_cg ( ip) which implements (pre-conditioned) conjugate gradients; 
iter_lanczos (ip, .... ) which implements the basic Lanczos algorithm; 
i ter_cgs ( ip, rO) which implements Sonneveld's CGS algorithm; 
iter_gmres ( ip) which implements Saad and Schultz's GMRES algorithm. 
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There are some additional routines which provide a simplified interface for ap
plying iterative methods to sparse matrix data structures .. These routines are named 
iter_sp •.. ( .•• ),such as iter_spcg(A,LLT,b,eps,x,limit,steps) 
for (pre-conditioned) conjugate gradients. The i ter_sp •.. ( •.. ) routines work 
by setting up an ITER data structure and calling the appropriate main routine. 

The use of more than one level of interface means that simplicity is not sacrificed 
for the sake of more sophisticated users. 

2.9 Other data structures 

The above data structures can be used as parts of other data structures. For example, 
here is an data structur~for h?lding.simplex tableaus for linear programmes: 

typedef struct lp { 
MAT . ~tab; 
VEC *rhs, *cost; 
Real val; 
PERM *basis, *invbase, *allow; 
int card; 

} LP; 

Routines for creating and destroying; inputting and outputting, and using this data 
structure have been written, based on the corresponding routines for the component 
data structures. It may be of interest that basis is a permutation, and that during 
operations on the simplex tableau, in_base is maintained as the inverse permutation 
to basis. Finally, the permutation allow together with card act as a set which 
consists of the elements 

{allow->pe [0] ,allow->pe [1], allow->pe [2], 
... ,allow->pe [card-1] }. 

Meschach 1.2 allows you to incorporate your own data structures into various 
aspects of the library, such as tracking memory usage and deallocating static workspace 
when desired. For suggestions for implementing your own data structures and using 
Meschach routines in your applications, see chapter 8 on designing libraries in C. 


