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COUPLED DERIVATIVE/MIXED FINITE ELEMENT 
APPROACH TO VISUAL RECONSTRUCTION 

David Suter 

1 INTRODUCTION 

We are primarily concerned in this paper with the reconstruction of quantities 

from an image. We include in this class image reconstruction (where the re-

constructed quantity is a restored or enhanced version of the image) or visual 

reconstruction (where the reconstructed quantity can be the distance to objects 

within the scene or some other "real world" quantity of interest). 

It has become popular in these areas to seek a regularized solution since 

one can consider the problem as being an inverse problem. Typically, one may 

characterise the regularised problem as seeking a function W that minimises some 

functional 

(1) E(w) = D(w; g) + s(w) 
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where g is the given data, and the functionals D and S are chosen to 

encourage solutions that are faithfull to the data and are smooth (respectively). 

A com_mon choice for the smoothness functional is a (possibly weighted) 

sum of the squares of various· orders of derivative of the function \II (usually 

this becomes a Sobolev norm or semi~norm). This paper proposes an approach 

where various orders of the derivative are explicitly reconstructed simultaneously 

with the function \II itself. Such an approach creates a series of coupled sub­

problems. We also suggest a novel analog (neural network-like) implementation 

for the solution of these coupled sub-problems. 

Our proposed scheme is similar in philosophy to the Harris Coupled Depth­

Slope model of visual reconstruction [Har87], and also to methods of solution of 

partial differential equations that are known as mixed finite element methods. 

Section 2 outlines the variational theory behind our approach. We then 

(section 3) introduce our mixed finite element formulation and a novel mathe­

matical programming approach to solve these formulations. We also illustrate 

with some examples. 

2 VARIATIONAL FORMULATION 

The abstract minimization problem is formulated for a subset U of a normed 

vector space V, a continuous bilinear form a(·,·) : V x V ~--+ R, and a continuous 
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linear form f : V H R. This problem is to select the element u E U such that: 

(2) J(u) = inf J(v) 
v E U 

1 
J(v) = 2a(v,v)- f(v). 

It can be shown (e.g. [Cia78] pp. 3-8) that the solution u of the abstract 

minimization problem 2 satisfies: 

(3) a(u,v) = f(v) ,'1:/v E U 

if U is a closed subspace. Moreover, 3, can have relevance whether a(·,·) is 

symmetric (in which case J is an energy functional) or not. 

Proofs of well-posedness within this variational setting generally rely upon 

the generalized Lax-Milgram theorem [0083]. 

Terzopoulos [Ter82] used the type of theory just outlined to formulate and 

to prove uniqueness and existence of a solution to his thin plate visual surface 

reconstruction formulation: we will need to elaborate on this theory to provide 

a basis for our mixed finite element reformulation. In essence, our approach 

depends upon Augmented Lagrangian formulations. These formulations can be 

considered to be the generalization (or blending) of the Lagrangian (see section 

2.1) or Penalty (see section 2.2) approaches to constrained minimization. 
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2.1 ABSTRACT LAGRANGE MULTIPLIER FORMU­

LATION 

Suppose we wish to find a minimizer u E U of 2 subject to the condition: 

(4) b(u,q) = g(q), 

for q E Q and "data" g. 

We now form the Lagrangian L : U X Q 1-+ R: 

(5) L(v,q) = J(v) + b(v,q)- g(q) 

and seek the saddle point u, .\: 

(6) L(u, q) ~ L(u, .\) ~ L(v, .\), \fv E U, q E Q. 

We denote by PLag the problem of finding the solution u, ,\ to the Lagrangian for­

mulation. Furthermore, where appropriate, we denote by Piag the corresponding 

finite dimensional problem using a discretization characterized by the parameter 

h. 

It is easy to show that the saddle point must satisfy the necessary condi-



tions: 

(7a) 

(7b) 

0 

0 
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a(u, v) + b(v, >.) = f(v) , 'Vv E U 

b(u, >.) = q(>.) , 'Vq E Q 

Existence and uniqueness of a solution can be ensured using either the theory 

outlined by Babuska [BA73] or Brezzi [Bre74]. 

2.2 PENALTY METHODS 

Let P: U ~--+ R be a penalty functional ([C083] p.149, Theorem 2.7 [Hag85]), the 

sequence of solutions {up}p>-+oo defined as the minimum u of: 

(8) Jp(v) = J(v) + pP(v) p > 0, v E U 

converges under appropriate conditions on P, to the required solution of the 

constrained problem. We denote the penalty problem of minimizing 8 by Ppenp 

,an:d the corresponding finite dimensional problem obtained under discretization 

Ppen!. However, a naive discretization of the Ppenp does not generally work in 

practice ([C083] p. 153) in that the approximate penalty term may fail to vanish 

when the constraints are satisfied. 
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2.3 AUGMENTED LAGRANGIAN 

It is well known (e.g. [Ber76] [Ber82]), at least in a finite dimensional context, 

that the Lagrangian methods can be greatly enhanced in terms of stability by 

adopting an Augmented Lagrangian approach. 

We denote by PAug the problem formulated using the Augmented La-

grangian approach. The Augmented Lagrangian itself is defined as: 

(9) LA= L(v,p) + pP(v). 

where pis some positive constant, and P(·) is defined as in section 2.2. In our 

case we propose to use P( v) = ~ II Bv - g II~: 

(10) 
1 

LA= J(v) + [q,Bv- g] + p2,(Bv- g,Bv- g). 

It is a straightforward task to derive the abstract Euler-Lagrange equations for the 

Augmented form: the last term, after expansion, simply contributes [Bu-g, Bv] 

to the expression. As such, the augmenting term does not affect the existence 

(and nature) of the solutions: it does add stability to many algorithms that solve 

Lagrangian formulations. For simplicity, we will generally omit the Augmenting 

term, but it is generally to be understood, for implementation, we will use the 

Augmented Lagrangian form. 
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2.4 REPRESENTING THE MULTIPLIERS 

One common objection to the use of primal-dual approaches such as Lagrangian 

or Augmented Lagrangian techniques is that it would appear to be very costly 

(at least in terms of storage to represent the additional multiplier variables -

if not also in terms of computation) to have to expand the dimension of the 

problem by introducing the Lagrange multiplier space. It turns out, however, 

that in our intended applications, the Lagrange multipliers have a particular 

interpretation that makes them useful quantities to estimate. Specifically, the 

problems of interest to us here are of the type: 

(11) 
J(u) 

minimize {n: Bn = q} = F(Bu) + G(u) , 

where F(x) = Hx,x), and B is a linear operator; and we are interested in seeking 

approximations to both u and q. Naturally we transform this into the uncon-

strained problem of seeking a saddle point of: 

(12) L(u, q, >.) = F(q) + G(u)+ < >., (Bu- q) > . 

The Euler-Lagrange equations then follow: 

(13a) 1iL(~,qq, >.) = (q, q') - (>., q') = 0, V admissible q1 

(13b) SL(~~q, >.) = (>.', (Bu- q)) = 0, V admissible>.'. 
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Equation 13a thus implies that q = .V and, in turn, equation 13b implies that q = 

Bu. Thus we do not need to explicitly represent and calculate q and ,\ separately. 

Furthermore, even in cases where no useful interpretation of these variables can be 

found, it can be unnecessary to specifically compute these variables if one adopts a 

multiplier method approach to the solution of the Augmented Lagrangian [Ber76]. 

2.5 STANDARD MIXED METHODS 

Our coupled "sub-problem/mixed finite element" approach (section 3) borrows 

heavily from, and was partly motivated by, standard mixed methods for solving 

elliptic boundary value problems. We will outline these methods before defining 

our approach. 

The particular mixed methods we consider here fall under the general term 

"Decomposition-Coordination" approaches ([FG83] Chapter III). In its more re­

stricted forms, our formulation is very close to that of standard mixed methods 

for boundary value problems. In this more simple form, our approach can be 

directly applied to decompose the thin-plate visual reconstruction approach of 

Terzopoulos [Ter82] into two coupled membrane problems. Such an approach 

not only has consequent computational advantages, but also is capable of deliv­

ering independent approximations to various bending moments (which could be 

used, for example, in a process that seeks likely candidates for edge points in 

segmentation}. 

1 More precisely, they differ only by a quantity that is orthogonal to the admissible functions. 
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We will illustrate the standard methods in this section, for the 4th order 

problems. 

4th order Biharmonic Equation 

Example 2.1 This 4th order problem is particularly interesting since it is closely 

related to the thin-plate visual reconstruction formulation of Terzopoulos {Ter82}. 

It is well known that minimizing the quadratic variation gives rise to the 

biharmonic equation for the Euler-Lagrange equations: 

(14) 

In attempt.s to solve the biharmonic equation, several authors have used a two 

stage decomposition: 

{15a) 

(15b) 

u + .1-w = 0 

-Au=f 

{e.g. {OC83} page LU}. In addition to the computational advantages, such meth­

ods have been used to obtain simultaneously the stream function and vorticity in 

hydrodynamics (e.g. {CR74}}, or to obtain the plate displacement and second or­

der moments for the thin plate problem (e.g. {BR77j}. Indeed, if one views the 
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4th order problem as the minimization of the functional: 

(16) J(w, u) = ! r u 2 , 
2 ln 

subJ'ect to the constraint b. W = u, then one naturally approximates the two scalar 

fields \]!, u. If, instead 2 , one chooses to minimize the quadratic variation by 

seeking to minimize: 

(17) ( ) 1[ 2 2 2 J W,p,q,r =- p +2q +r , 
2 0 

subiect to g~ = p, g! = q, %:0 = r, one approximates the moments as well as the 

function itself. We have already mentioned that the moments may prove useful 

for segmentation purposes. 

Thus these mixed methods are immediately applicable to the problem of 

reconstruction of depth values in stereopsis if one maintains the standard for-

mulation of [Ter82]. This allows one to take advantage of the computational 

advantages that accrue from the decomposition process. In particular, they al-

low the use of much more simple elements. We can thus avoid the complex 

non-conforming element of Terzopoulos [Ter82]3. 

2 Terzopoulos [Ter82] formulated, in principle, his problem as the convex combination of the 
Laplacian and the quadratic variation (i.e. both of these alternatives); although he later special­
ized to the quadratic variation 

3 It is well known (see [C083] p. 35, for example) that if the solution actually belongs to the 
Sobolev space H•(n), the variational statement contains elements from the space Hm(n), and 
the finite element basis functions contain complete polynomials up to degree k; then the error in 
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3 MIXED FINITE ELEMENT VISUAL RE-

CONSTRUCTION 

In this section we introduce an approach4 to visual reconstruction that makes 

explicit every order of derivative (i.e. the reconstructed function, the first deriva-

tives, the second derivatives, and so on) up to the highest order5 included in the 

regularization. 

The general idea of our mixed finite element approach is to decompose 

higher order smoothness constraints into a cascade of lower order smoothness 

constraints by independently approximating each order of derivative by a sep-

arate function. We then introduce a series of constraints connecting these ap-

proximations to the appropriate order of derivative of the function we wish to 

the interpolant uh (measured in the H' norm) satisfies the following error estimate as h f-+ 0 : 

(18) 

provided that r ;?:: k + 1 > m. In the above, C is a constant, and the inequality essentially states 
that the error is O(h"+l-•). For second order problems m = 1 and thus k > 0. Whilst for 
fourth order problems m = 2 and so k > 1. Therefore, if we decompose a fourth order problem 
into. 2 second order problems, we can use finite elements constructed from linear elements rather 
than quadratic elements. It would seem that we pay a price for this simplicity by a poorer 
reconstruction of the function between nodal points: this can be alleviated somewhat by employing 
postprocessing techniques such as those discussed in [BX89], for example. 

4 We call this approach by several names. This reB.ects the fact that, what we propose, in total, 
includes contributions at all stages (formulation, discretization, algorithms, and implementations). 
Thus we will sometimes refer to our "coupled sub-problem approach" (the general decomposition 
idea), our "mixed finite element approach" (discretization), or our "neural network/mathematical 
programming approach" (our implementation and algorithms). We will also use "coupled depth­
slope" or "explicit depth slope" to describe our approach. These emphasize the similarity with 
the analog network proposed by Harris [Har87]. 

6 Although our complete model calls for the independent approximation of all derivatives up to 
the highest order included in the formulation, we often find it sufficient to approximate only some 
of these. Furthermore, we may sometimes wish to approximate a combination of some partial 
derivatives, rather than each one separately. Thus our approach. is the natural generalization of 
the mixed methods outlined previously. 
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reconstruct. 

This idea is actually independent of the discretization/ approximation stage 

(i.e. the finite element part), and provides a very general mathematical model 

that is an abstract generalization of the "Coupled Depth Slope" structural model 

of of analog computation in visual reconstruction [Har87]. It should be empha­

sized that the model we propose is not only more abstract and mathematical, 

but we make it more general by identifying two different methods for ensuring 

consistency between the function and the approximations to its derivatives: one 

is through penalty terms, and the other is through Lagrange multipliers (leading 

directly to the mixed finite element formulation). Indeed, our proposed Aug­

mented Lagrangian approach combines the two formulations and hence can be 

specialised to either. 

Being able t<'b represent and approximate all orders of derivatives simultane­

ously has some potential advantages: for example in shape from shading problems 

the data directly constrains the slopes but, ultimately, we may wish to calculate 

the depth. In general surface approximation the second derivatives are useful for 

detecting "roof" edges, the first derivatives for step edges; so the recovery of all 

derivatives up to order 2 would aid simultaneous reconstruction and segmentation 

approaches. Various combinations of second derivatives could be used as feature 

detectors [ZB90] and may be useful in optical flow calculations [VGT90]. 

A complete formulation of this, for arbitrary order and arbitrary dimension 

of the problem, is possible but may involve excessively burdensome notation. We 
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note that, in general, a second order Sobolev norm is the highest order generally 

used in practice, so we restrict our illustrations to a that order. We also restrict 

our attention to functions in one dimension: generalization to higher dimensions 

are straightforward. 

3.1 SURFACE RECONSTRUCTION 

The reconstruction problem is formulated as one of determining a saddle point 

of a Lagrangian L('if;,u,p). The Lagrange multiplier terms enforce the correct 

relationship between the functions 'if;, u,p (i.e. they are zero'th, first, and second 

order derivatives of w!). 

We than discretize this functional to obtain a finite dimensional problem 

involving the nodal values '1/;;,u;,p;: this corresponds to a mixed finite element 

formulation. In order to solve this discrete saddle point problem we use the 

scheme of Platt [PB87] and Snyman [Sny88] where one performs gradient descent 

on the primary variables 'if;; and ascent on the dual variables u;,p;. This leads to a 

set of differential equations that must be intergrated to find the stationary point 

of the network/ dynamical system. In these simple examples we use a straight 

forward6 Euler integration routine. 

Example 3.2 We begin by construction our functional. In this example we con-

6 Pun intended! 
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sider using first order and second order smoothness terms: 

(19a) 

(19b) 

and the "spring" data compatibility term [Ter82}: 

(20) 

where G is some set of constraint points. 

Thus, our ob;"ective is to find 'ljJ that minimizes: 

(21) 

Following our coupled approach, we introduce independent representations 

for the first two derivatives and thus reformulate as the constrained minimization 

problem of finding ,P, u,p that minimizes: 

(22a) 

(22b) subJ"ect to: U - '!31!. 
- dz 

(22c) and -~ P- dz2 " 

We can then use Lagrange multipliers >.1 and .\2 to turn the problem into one of 
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seeking a saddle point of: 

(23) L(t/1, u,p, At. >..2) = 

In >..1(~- u) dx +In >..2(g.- p) dx. 

Furthermore, it can easily be shown that the following holds (section 2.4): 

(24a) 

(24b) 

so we can simplify 29 to: 

(25) 

Finally, we transform the last term to its weak constraint equivalent 

(26) 

We now have to discretize 26. We choose to use the most simple finite 
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fu uJ_ 

II II\ ~ 1/~1 ~-~II 

I 

M ~~ ~~~ ~ 
_.....,._ . .,.._u o-1:10 .to..,..mo 

Figure 1: Step edge corrupted with guassian noise a= 16 
Original data of 128 samples. The step edge has been corrupted by additive 
gaussian noise of standard deviation sigma = 16. 

elements possible - linear elements for '1/J, u, and p; over domains that are equal 

size intervals partitioning n into n parts. we label the nodal points i : i = 0 ..• n. 

We now have a finite dimensional saddle point problem. To solve this 

problem, we adopt the mathematical programming approach of Platt {PB87] and 

Snyman {Sny88j. In this approach, one performs gradient descent on the primary 

variables tjJ,, and ascent on the dual variables u,,p,. This leads naturally to a 

dynamical system or neural network analog scheme: 

(27a) 
d.,P, aL 

= 
dt a.,p, 

(27b) 
du; aL 
dt . au, 

(27c) 
dp; aL 
di= ap,· 

These equations were integrated for the 128 data samples taken from Blake 
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Figure 2: Reconstructed Step Edge- 1000 iterations 
After 1000 iterations of the integration procedure, the function has been consid­
erably smoothed. 

{Bla89} with standard deviation of the noise u = 16 (figure 1}. It is well known 

that the optimal value of (3, in a bayesian sense, is 2!, : this value was chosen 

in all simulations. The original values of the function were set to the data and 

the initial values of all derivatives are zero. A stepsize of 0.01 was used in the 

integration. The results are displayed after 1000 iterations (in figures 2, 3 and ..f), 

and after 10000 iterations {in figures 5, 6 and 7}. The results clearly demonstrate 

that the method can effectively reconstruct the function and its first and second 

derivatives simultaneously. 

3.2 DISCONTINUOUS REGULARIZATION 

In this section, we consider whether the proposed scheme can be adapted for dis-

continuous regularization: i.e. to be able to reconstruct a piecewise continuous 

function. We have already demonstrated how the reconstruction process simul-
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Figure 3: Reconstructed 1st Derivative - 1000 iterations 
After 1000 iterations, the smoothness in the reconstructed function is reflected 
by the present estimate of slopes. The slope of the original step edge clearly 
dominates. 

Figure 4: Reconstructed 2nd Derivative - 1000 iterations 
After 1000 iterations, there is a clear zero crossing of the second derivative at the 
edge location. 
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Figure 5: Reconstructed Step Edge - 10000 iterations 
After 10000 iterations of the integration procedure, the function has been 
smoothed to a point where no apparent noise remains. As expected, the edge 
is over smoothed. 

taneously yields estimates of the derivatives of the reconstructed function: these 

estimates could be used to locate edge candidates during the reconstruction. It 

is then possible to imagine a type of feedback where the output begins to inhibit 

the smoothness constraint in regions where there are high derivatives. In other 

words, the output of the derivative estimator "neurons" may inhibit certain ac-

tions of the smoothness "neurons". For simplicity, we illustrate this with first 

order "membrane" smoothness only. 

Example 3.3 We proceed in a similar manner to the previous example. Firstly, 

our objective is to minimize the functional: 

(28) 
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1\ 
L ~ 

~ 

....,.. ____ •....,_M 0-PD ........ 

Figure 6: Reconstructed t•t Derivative - 10000 iterations 
After 10000 iterations, the step edge is clearly visible in the dominant peak of 
the first derivative. Smoothing has considerably broadened this peak, however. 

------.... - ••. ·--••.o..~~...-o.z 

Figure 7: Reconstructed 2nd Derivative: 10000 iterations 
After 10000 iterations, there is a dominant zero crossing of the second derivative 
at the edge location. Note: however, the smoothing has progressed to such an 
extent that the second derivative is much smaller everywhere (the vertical scale 
is now much smaller than in figure 4) and, as a result, the noise is more apparent. 
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After introducing the auxiliary variable u to represent the slope, and reformulating 

as a saddle point problem, we obtain the Lagrangian: 

(29) 

In order to discretize this functional, we choose piecewise linear elements for '1/J 

{as before} and, now, piecewise constant elements for u. This can be viewed as 

associating a single node at the mid-point of each domain to denote the slope of 

the function over that interval. Such a choice is sensible as we require no higher 

order derivatives. So we have the discrete Lagrangian 

(30) 

Again, we have arbitrarily set the nodal spacing to one unit. 

We now perform gradient descent on this Lagrangian for the primary vari-

able '1/J, and ascent for the dual variable u. 

(31a) 

(31b) 

d'l/J; = { -(3('1/J;- d;)- Ui-1 + U; i = 1. . . n 
dt 

-(3('1/Jo-do)+uo i=O 

dd~; = { -u; + ('t/Ji+1 - 'lj;,) i = 0 ... n- 1. 

We again can integrate these equations, and as expected, we obtain smoothed 

versions of the function and its derivative. 
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Figure 8: Reconstructed Step Edge- Discontinuity Allowed 

However, in this example, it is immediately transparent how to allow a dis­

continuity {known to exist between data items 69 and 64). We already have, in 

our previous formulation, two discontinuities: one at the start and one at the end 

of our sample. It is immediately apparent that we only need to modify our update 

for tPa4 by deleting the reference to t/Jas· A similar analysis, although more te­

dious, can be made for more complicated functionals. For our purposes we simply 

demonstrate the results with the present functional (see 8 and 9}. Our previous 

example has shown how, during the reconstruction process, the first derivative is 

reliably reconstructed. Therefore, in "real life" applications it is possible that a 

thresholded first derivative may be used to decide at which points to turn off the 

smoothness constraint. 
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Figure 9: Reconstructed 1•t Derivative - Discontinuity Allowed 

4 Conclusion 

In addition to having an appealing theoretical form, our approach also has many 

potential advantages in terms of computational simplicity, ability to incorporate 

constraints upon the derivatives, natural analog implementation, and the ability 

to simultaneously reconstruct various derivatives (perhaps for segmentation or 

for feature extraction). 

It is interesting that the approach outlined here seems to provide the nec­

essary generalization and framework for the analog network approaches to visual 

reconstruction of Harris [Har87] [Har89] and of the recent digital approaches to 

shape from shading [Hor89] (the latter being motivated more on computational 

stability grounds). A more complete discussion of these issues can be found in 

[Sut90]. 
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