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A Statistical View of Some Aspects of Inverse 

Problems 

Mark Westcott 

Abstract 

This paper illustrates, mainly by example, the links between some exist

ing inverse problem formulations and methodologies, and statistical formu

lations of the same problems. The examples are from curve fitting, density 

estimation, image restoration and emission tomography. 
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1 Introduction 

When Bob Anderssen asked me to speak on a statistical approach to inverse prob

lems, my immediate instinct was to retort 'Statistics is an inverse problem', and 

refer him to a worthy text on the subject. However, it is not prudent to treat 

one's scientific superior with such levity, so I sought a more modest interpretation 

of his request. I decided to use recent statistical interest in several areas of inverse 

problems as the framework for some more general observations. 

This paper is the result. It does not say anything very original, and draws 

extensively on several other excellent contributions. I hope that it will illustrate 

two main themes: (i) how statistical ideas and methods link in with some of the 

existing formulations of inverse problems; (ii) if there is a natural setting for the 

problem, which will often include constraints on some elements, this should be 

exploited in formulation and analysis. The latter point is neatly summed up in the 

following quotation from Green [11], in a paper on tomographic reconstruction: 'We 

also take the view that more fundamental than the algorithm for reconstruction is 

the principle underlying that algorithm: what is being estimated, what is the basis 

for that estimation, and what is the performance of the algorithm with respect to 

that basis?' 

The plan of this paper is to use the general topic of smoothing to introduce 

the two points mentioned above, and to illustrate each by discussion of a few 

applications, particularly image restoration and emission tomography. 

2 The Smoothing Paradigm 

Suppose there is a quantity f that we wish to estimate from data x. Typically 

f will be a function of some sort, but it could also be a vector of constants. We 

would like the estimate to achieve the usually conflicting aims of: 
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s keeping faith with the data; 

• reducing roughness due to noise. 

That is, we want a result that is not manifestly perverse in comparison with the 

data, but whose features are not swamped by data variability. 

Titterington [26] introduces a compromise criterion to quantify this idea. He 

defines the form 

(1) 

where fv is a (rough) data-generated estimate and fu is an ultrasmooth 'benchmark' 

against which the roughness of an estimator can be judged. The lli(i = 1,2) are 

some measures of distance, and h > 0 expresses the relative weight we want to give 

to the two objectives. This leads to a prescription fh,D for estimation: choose f to 

minimise (1). This prescription is known as a minimum penalized distance (MPD) 

estimator, for obvious reasons. 

The choice of h is usually made by invoking another optimality criterion such as 

minimizing the expected risk or predictive risk of the prescription fh,D· The latter 

choice leads to the appealing idea of cross-validation (see the paper by Lukas in 

this volume). Occasionally there will be a well-defined prior choice for h; see [26], 

§3.1. 

There is a full discussion in [26] of the various forms used for ll1 and ll2 in 

practice. We shall only look at a specific example. 

Example: Nonparametric regression (Curve Fitting) 

Here the model is 

(2) 

where f = (f(t;)f, f(·) the function of interest and E is a vector of noise compo

nents. Typically the choices of ll1 , ll2 are (Silverman [23], §2), 

(3) 
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so the benchmark of smoothness, f,., is implicitly linear. In this case, it is well

known that fh,D is a cubic spline (Schoenberg [21]; see [23], §2). 

The problem can be brought into the orbit of familiar statistical practice by 

parameterizing f(·). One way of doing this either exactly (Silverman [23], §6.1) or 

approximately ( 0 'Sullivan [19], §3) is to write f ( ·) as a linear combination of basis 

splines. In either case, (1) becomes, from (3), 

n 

L{x;- (Ab);} 2 + hb'Cb, (4) 
i=l 

where b is a parameter vector and A, C are appropriate matrices. Calculation of 

b, and hence fh,D, now looks like a least squares problem; an efficient, i.e. O(n ), 

algorithm is given in Hutchinson and de Hoog [14]. 

The point about ( 4) is that, to a statistician, it can arise as follows. There is 

a well-known procedure for combining information about a model from data and 

from prior knowledge, called Bayes Theorem. Informally, it can be expressed as 

prob(modelj data) ex prob(data I model) · prob(model); (5) 

here prob(AIB) means the probability of A given B. The first term on the RHS 

of (5) is usually called the likelihood, the second is the prior. Leaving aside the 

controversies associated with prior probabilities, we note that, on taking logs in 

(5), we obtain (1) with .6.1 = log( likelihood ) and .6.2 = log( prior ). The MPD 

prescription fh,D is now the model that is 'most likely, given the data', an intuitively 

reasonable choice. In this context, fh,D is often called a maximum a posteriori 

(MAP) estimator instead of MPD. 

Once this link between (1) and (5) has been forged, it gives us a possible way of 

choosing appropriate .6.1 , .6.2 in (1); ifthere is a natural statistical framework for the 

problem then expressing it in the form (5) provides the .6.; rather straightforwardly. 

For instance, in the example above, ( 4) is statistically reasonable if: 

e the errors c; are independent normal variables; and 
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• the parameters b have a prior normal distribution. 

Should either of these assumptions be untenable, the standard method based on 

(4) might have to be rethought; an example is when thee are not independent or 

cannot be assumed, or transformed, to be normally distributed. 

In summary, Bayes Theorem provides a natural way of incorporating relevant 

statistical knowledge into the smoothing algorithm. It will be further illustrated 

in Section 4. 

3 Natural Constraints 

In many applications, there will be natural constraints on some elements of the 

problem which it is desirable to preserve in the estimation procedure. For ex

ample, we might have f(·) 2: 0 in (2). This could be included via a constrained 

optimization (Wahba [29]), but it will often be better to build it explicitly into the 

estimation procedure. Examples can be found in Titterington [26]; see his §2.1 for 

probability estimates that are nonnegative and sum to 1, and §6.3 for nonnega

tivity imposed by choosing .6.2 as an entropy function. We shall discuss a slightly 

different case. 

Example. Nonparametric density estimation. 

Here f(·) is a probability density, so f(·) 2: 0 and J f(x)dx = 1. The data x 

are independent observations from f(·). The most common form of estimator for 

f(-) is a kernel-based one, namely 

n 

A.v(x) = (nh)- 1 I.:;K{(x- xi)/h}. (6) 
i=l 

Although this cannot (as far as I know) be derived from any criterion like ( 1), 

there is still an fv (when h = 0 i.e. K(·) is a 8-function) and an fu (when h-+ oo, 

effectively a constant), and his again a trade-off, between bias (fidelity to the data) 
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and variance (roughness). All this can be found in [26], §4, or in Silverman [24]. 

The point we wish to make here is that if K ( ·) is itself a probability density, then 

Jh,D will have the natural constraints built in from the start. For this reason, such 

a choice is nearly universal ([24], p.17). 

A more extensive example of incorporating constraints is given in Section 5. 

4 Image Restoration 

In a number of applications in remote sensing, data are typically collected on a 

two-dimensional rectangular array of sites, called pixels, one or more observations 

being made on each pixel. A well-known example is LANDSAT satellite data, 

consisting of readings in four spectral bands from pixels of about 80m2 • The data 

x are a distorted form of a true but unknown image, or scene, f, which we wish to 

reconstruct. Typically, the amount of data is very large. 

There is a variety of possible models for f and for the distortion mechanism. 

One common assumption is that imperfect resolution has blurred f, so that x;, for 

pixel i, is some combination of J; and neighbouring fi's; usually the combination 

is weighted linear. On top of this, there is additive noise. The case when f is also 

modelled stochastically is discussed in detail by Hall and Titterington [13] as a 

smoothing problem. We shall use a different example, based on work of Geman 

and Geman [7] and Besag [2]. For a review, see Ripley [20]. 

The simplest version of their model has the following assumptions: 

(a) Given f, the x; are independent and depend only on J;; 

(b) There is some prior probability model for f. 

Assumption (a) leads to a product form for the likelihood of II; prob(x;IJ;). The 

usual model in (b) is that f is a realisation of a Markov random field (MRF). This 
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means that the f; are assumed to have only local dependence via some neighbour 

structure (see [2], §2.2). A (nonobvious) consequence of this assumption (see, for 

instance, Isham [15]) is that the prior probability takes the form 

prob(f) = z-1 exp{-f3'L.rf>(f;- fi)}, 
irvj 

(7) 

a so-called nearest neighbour Gibbs distribution. Here, ¢>( ·) is a so-called potential 

function, j3 is a positive constant, and Z is a (typically revolting) normalizing 

constant. The sum in (7) is taken only over neighbours i, j, so the j might be the 

indices of the four nearest pixels to i. 

Referring back to ( 5) and ( 1), we can see clearly how the statistical assumptions 

have determined appropriate forms for ~1 and ~2 • In the regularization context, 

¢>(·)will be some measure of how smooth we believe f is initially, while h = ;3, so 

j3 implies how much weight we give to the prior information relative to the data. 

This duality of roles is rather satisfying. 

The main purpose of the example, to demonstrate a statistical basis for ( 1) in 

an application, has now been achieved. However, a few further comments are in 

order. 

In typical applications, neighbouring pixels are likely to have similar values a 

priori; think of land types in the satellite imaging context. In such cases, we would 

like any prior distribution to incorporate this property. It is intuitively clear that 

the choice of a MRF prior with¢>(·) in (7) being negative for small arguments (an 

attractive potentia0 makes realizations f with like-valued neighbours more proba

ble. Nonetheless, the choice of a MRF for the prior has a considerable element of 

mathematical convenience, especially as the qualitative properties of a MRF are 

not usually at all obvious on a larger scale. So it will usually not be easy to say 

whether a particular choice in (7) will produce realizations that 'look like' any pre

conceived notions we may have for f. Besag ([2], §2.5) gives a restoration procedure 

which relies only on the local behaviour of the prior, which is algorithmically, if 

perhaps not conceptually, satisfactory. 
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One feature which a MRF like (7) would not include is edges (e.g. roadways 

m a satellite picture). There are generalizations of the MRF idea that try to 

incorporate such features (Geman and Geman [7], Brown & Chui [3]). A related 

approach is to build a very detailed probability model of the class of possible f, 

assuming of course that the class is susceptible of such precise definition. A famous 

example is the HANDS project at Brown University (Chow et al [5]). 

Estimation off by maximising (5), i.e. MAP, is available in principal but very 

difficult to achieve in practice. A technique called simulated annealing has been 

suggested for this purpose: see [2], §2.3; [7]. The technique is in fact inspired 

precisely by the probability interpretation of (1) in this context. However, some 

evidence from the binary case, where the MAP estimate can be calculated by 

other means, suggests that in practice it is not likely to work very well (Greig et 

al. (12]). Very recently, Green [10] has provided a new approach based on the 

EM algorithm (see Section 5). We have already mentioned Besag's alternative 

procedure, originally proposed as an approximation to MAP. 

Finally, assumption (a) can be generalized to include x; being determined by 

neighbours of j; also, and the Xi being dependent ([2], §5.2, 3; Campbell and Kiiveri 

[4]). 

5 Emission Tomography. 

Emission tomography is one of a range of medical imaging techniques that attempt 

to reconstruct some feature inside the body from observations outside, a classic 

indirect problem. Its characteristic target is metabolic activity, which is studied 

by introducing a radioactive source, detecting emissions and hence building up 

a picture of the emission intensities inside the body. By contrast, transmission 

methods such as CAT scans send particles through the body. 

There are two principal forms of emission tomography, SPECT (single photon) 
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and PET (positron). We refer to Shepp and Vardi [22], or the papers by Natterer 

and Monk in this volume, for background information. Their formal structure is 

very similar. Particles are emitted in a Poisson process at rate f(y) from a pointy 

(inside the body). There is a probability I<(x, y), independently for each particle, 

of being picked up by a detector at x (outside the body). The rate of detection at 

x is therefore 

g(x) = J K(x,y)f(y)dy. (8) 

This relation would be fairly generally true for any emission process. The crucial 

extra property induced by the very plausible Poisson assumption for emissions 

is that the counts at each detector x are independent Poisson variables, means 

g(x). Thus we have a problem with much more structure than just the solution 

of a Fredholm integral equation (8) using data on g(·); obviously f ;:::-: 0 and the 

statistical properties of the data are clear-cut. It seems persuasive that any solution 

should contain and exploit this structure. 

For future discussion, we shall assume that I< is known. This ignores the very 

real practical difficulties caused by attenuation and scattering of emissions, among 

other things; see Vardi et al. [28] and Kak and Slaney [16], Ch 4. 

One common method of estimating f from (8) is to discretize the problem, and 

then treat (8) as a parameterized form of (2) (cf. (4)). The discussion in Section 

2 shows that this approach is not a natural consequence of the above structure. 

For further comments in the tomography context see Titterington [27] and the 

enlightening dialogue between Herman et al. (discussion of [28]) and the authors 

in their reply. 

Another method is to adapt the convolution backprojection procedure of trans

mission tomography ([16], Ch 3), which reduces (8) to an integral of f along a 

line through detector x. This takes no account of the different physics and de

tection apparatus; also, the counts in emission tomography are typically orders of 

magnitude smaller so that proper treatment of random fluctuations becomes more 
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important. For examples, see [22] (Figs 5, 7, 8, 9) and [28], §2.3.1. 

Because the detector counts are independent Poisson variables, the statistical 

technique known as maximum likelihood has obvious appeal. This means maxi

mizing the likelihood part of (5) with respect to f. In practice, the model will 

be discretized, so we have counts n1 in detector t (t = 1, ... , T), emission rate fs 

in body pixels (s = 1, ... , S), and the n1 are independent Poisson variables with 

means I:,sPs,ds, Ps,t being a (known) discretized version of K such that I:,tPs,t = 1. 

We wish to determine the f. from the n 1 by maximum likelihood (ML). 

One possible route to the solution is the EM algorithm (Dempster et al. [6]), 

usually thought of as a method for 'maximum likelihood with incomplete data'. If 

we had Vs,t, the count from source s that finished up in detector t, the problem 

would be trivial; the V8 ,t are independent Poisson variables with means Ps,ds, so 

}. = l:,1v,,1• We actually have nt = 2.::. v,,1, so the v's are the missing data. The 

EM algorithm proceeds iteratively: 

• given }Ji-I) (current estimate off,) and nt, estimate Vs,t (E step) 

• use the estimated complete data to get a new estimate }Jil by maximization 

(M step). 

As already indicated, the M step here is trivial. The E step is also easy, thanks 

to another useful property of Poisson variables; given the value of the sum of 

independent Poisson(>..) variables, N say, the expected contribution of component 

s to the sum is N>.,jE.>. •. That is, we 'backproject' the total data in a weighted 

fashion! Consequently, ([25], [28]), 

and 

' j'(i-1)/"' j'(i-1) 
Vs,t = ntPs,t s LJsPs,t s ' 

'(i) ' '(i-1) '(i-1) 
fs = EtVs,t = fs · I:,tPs,tntfi:,sPs,ds · 

(9) 

(10) 
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The EM method is not the only way to ML estimates, but it has the attractive 

features of ensuring the J. are nonnegative at each step (provided the initial values 

are) and of always increasing the likelihood at each step ([6], Theorem 1). So, as 

the problem is concave ([22]), convergence is guaranteed. 

This is by no means the end of the story, though we shall only sketch the rest. 

If S > T, the problem is dearly ill-posed; there is no unique ML esimate. In any 

case, ML solutions are very rough. In Silverman et al. [25], an EMS algorithm is 

proposed, which includes a simple local smoothing of the f!i) at each step, and this 

appears to converge. Nychka [17] relates this to penalized likelihood estimation 

(this is (5) with perhaps a heuristic penalty function replacing the prior; see [25], 

§2.3; [26], §2.2). Green [10] has suggested how to make this computationally feasi

ble, and applied it [11] specifically to emission tomography with a Markov random 

field as a prior distribution for the f., an idea already suggested by Geman and 

McClure [8], [9]. This links in with the previous section, and reinforces the relation 

between prior information and regularization. 

6 Conclusion 

It must be stressed that this rev1ew is very fragmentary. It has attempted to 

illustrate the two themes mentioned in the Introduction, but has inevitably omitted 

much of the detail of each example. I hope that there are enough references for the 

interested reader to track down these details, and to appreciate how much extra 

care and thought is needed to implement the methods in any particular case. 

I conclude with two final applications. One is to stereology, specifically the 

problem of obtaining information from planar cross-sections; this may be a more 

familiar problem to readers, and is worth a mention because of Bob Anderssen's 

association with it! See [1]. The basic problem is similar to recovering f from (8). 

It is another good instance of the alternative approaches via regularization (Nychka 
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et al.[18]; [19]) and probability modelling ([25], §3). The second is more speculative, 

but I believe that the diffusion tomography problem described by Latham in this 

volume can also be usefully treated by explicitly exploiting its probability structure. 
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