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DARBOUX TRANSFORMATION AND INVERSE SCATTERING 

M.J. Englefield 

1. INTRODUCTION 

This paper is a self-contained account of the application of the Darboux 

transformation to the one-dimensional SchrOdinger inverse problem, giving results that 

provide solutions to the Korteweg-de Vries equation. No originality is claimed by the 

author; the quoted references have been used for the material presented. 

2. FACTORIZATION OF SCHRODINGER EQUATION 

Consider ( -oo < x < oo) 

-fJ + V(x)¢ = E¢ (1) 

For E = Eo , let f be a solution with no zero. Define operators 

(2) 

Then (1) is 

( CB + Eo)¢ = E¢ . (3) 

The solution f contains two arbitrary parameters, one being Eo , the other fixing a 

definite solution in the two-dimensional space of solutions to (1 ). The values of the 

parameters are restricted by the condition f(x) f- 0 , which for example requires Eo~ E1 , 

where E1 is the least eigenvalue. 

Example: V(x) = 0, f(x) =cosh (ttx+ w), Eo=- tt2 . 
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3. THE DARBOUX TRANSFORMATION 

From (3) 

(BC+ Eo)B¢ E(B¢) , 

which is 

dZ~ N N N 

-w+ V¢=E¢ (4) 

where (5) 

and V(x) = V(x)- 2[!' (x)/ f(x)]' . (6) 

The new potential function V contains the aforementioned two parameters, that may be 

assigned a continuous range of values. In quantum mechanics two systems with potentials 

V and V are said to be related by a supersymmetry. 

Example: V(x) = 0, f(x) =cosh (J.lx + w) , V(x) = -2112 sech2 (Jlx + w) 

If [ (1 + I xl) I V(x) I dx < oo 
-oo 

(7) 

then Eo < 0 , say Eo = - 112 with J1 > 0 . 

Using f (±oo) -1 e fpx gives 

(8) 

4. STATEMENT OF THE DIRECT SCATTERING PROBLEM 

Assuming [}1 + I xl )/ V(x) I dx < oo and putting E = k2 , calculate from (1) the 

following scattering data: 
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(a) functions L(k), R(k), T(k) defined by (k > 0, E > 0) 

(i) ¢(- oo)""" eikx + L(k)e-ikx if ¢(oo)-+ T(k)eikx . 

(ii) ¢(oo)-+ e-ikx + R(k)eikx if ¢( · (k) -ikx - oo)""" T e . 

(b) numbers kj , 'rj , C. , M 
J 

(j = 1,2,·. ·, M) such that the normalizable solutions ¢. exist for 
J 

2 
E.= -k. (k = ik.), and 

J J J 

k.x -k.x 
¢(-oo)=C.e 1 , ¢(oo)=r.e 1 

J 1 
(9) 

when (¢., ¢ .) = [ I¢ .12 dx = 1 . The numbers E. are the eigenvalues, and the 
J J -oo J J 

C. and r. are called the asymptotic normalization constants. 
J J 

5. COMPARISON OF THE EIGENVALUES SUPPORTED BY V AND BY V 

Solutions of ( 4) are given by (5), and although in all cases Bf = 0 but f = 1/ f satisfies 

(4) with E= Eo . 

From (8) , ¢(± oo)""" 0 =} ¢(± oo) """0 . 

Hence there are just three possibilities for the spectra: 

(I) E = E = -k2 f= ¢M' /(±oo) 4 0, f (±oo) 4 ±oo o M M' 

The spectrum for V is the spectrum for V with EM omitted (this is the least 

eigenvalue for V ). 

(II) Either f( -oo)""" 0 and f(oo) """oo, or f( -oo)-+ oo and /(oo) """0 . 

f = 1/ f is not normalizable. Eigenvalues are the same. 
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(III) f(± oo)-; oo, j (± oo) -; 0 

f is the eigenfunction for a new eigenvalue. Spectrum for V is that of V plus the 

new eigenvalue EM+ I = Eo (which is the least eigenvalue for V ). 

Example: V(x) = 0 supports no eigenvalues; V(x) = -2p,2 sech2 (p,x + w) supports one 

eigenvalue -p,2 , the eigenfunction being f (x) = sech(p,x + w) . 

Note that the type I Darboux transformation is essentially the inverse of type III. 

6. NORMALIZATION OF THE EIGENFUNCTIONS FOR V 

(i) Since C and B are adjoint, 

(¢, ¢) = (B¢, B¢) = (¢, CB¢) 

= ( E- Eo)(¢, ¢), using (3) 

2 2 
= (p, - k.)(¢,¢) . 

J 
(10) 

(ii) For the extra eigenfunction in type III , let x be a solution of (3) independent of 

f, and put W = x' f- f' x . (This Wronskian is constant.) 

N2 
Then (x/ f)' = W/ f2 = Wf so 

(11) 

Example: V(x) = 0, f(x) = 2 cosh(Jtx + w), x(x) = e-Jlx. 

Then W can be evaluated as W(oo) = -2Jtew , and W 1 [x/ J( = L . 
-oo 
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From (ii) we have (without any integration!) 

The normalized eigenfunction is 
.L 

> N ( 2p) 2 

'¢ = (2ft) 2 f = 2 cosfi(px + w) 

7. COMPARISON OF SCATTERING DATA 

Consider the Darboux transformation of type III. Using (8) gives (Eo = -p2) 

(a) T(k) = T(k)(k + ip)/(k- ip) 

L(k) = -L(k)(k+ ip)/(k- ip,) 

R(k) = R(k)(k+ ip)/(k- ip,) 

(12) 

(13) 

The directly observable quantities I Tj2 , I L j2 , I R 12 are unchanged by the 

transformation. 

(b) Using (9) and (10) gives the asymptotic normalization constants for the M 

retained eigenvalues -k2 : 
J 

f.=f.~ r.=-r.~ 
J J~~, J J~~(. 

J J 

(14) 

For the new eigenfunction f = 1/ f (EM+l = Eo) the asymptotic normalization 

constants e and r follow from (11). 

Similar formulas are easily written down for the Darboux transformations of types I and 

II. 
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So STATEMENT OF THE INVERSE SCATTERING PROBLEM 

Given the scattering data, find V(x) . The given data can be either R(k) and k., 
J 

/ (j= 1,· · ·, M); or L(k) and k., l (j = 1,· · ·, M). The implied relations between 
J J J 

these sets, and also T( k) , follow by considering the scattering problem for complex k . 

In particular, the k. correspond to the poles of T( k) in the upper half of the complex 
J 

k-plane, at k = ik .. The usual problem has R(O) = -1, R(oo) = 0, k. 'f 0, and zero is not 
J J 

an eigenvalue. 

9. REFLECTIONLESS POTENTIALS 

If R(k) = 0 is given, then the inverse problem is solved by using M successive Darboux 

Transformations of type III, starting from V(x) = 0 . Each transformation introduces one 

of the required eigenvalues, and the second parameter in the transformation is chosen to fit 

the corresponding given asymptotic normalization constant ( £ . or r.) . 
J J 

The potential change due to each transformation is -2(!'/J)' = -2(£n f)" , and we 

construct a sequence of potentials 

vl = -2(£n f)" , 
1 

(15a) 

V2 = -2(£n j + Cn j )" = -2{Cn(f f)}" 
1 2 1 2 

(15b) 

V = -2{£n (f f .. · f )}" 
M 1 2 M 

(15c) 

where each f. is a solution in the previous potential V. 1 . The eigenvalues for the 
J y-

successive potentials are 

2 2 2 
-k < -k < ... < -k . 

M M-l 1 

2 -k . 
1 ' 

-k -k 2 2} 
21 1 

where 

The example given previously solves the reflectionless potential problem for M = 1, w~th 

Jt = k . From (12), w is chosen so that e -w .,fiji= r , i.e. w = -21 log(2Jt/ /) . 
1 1 1 
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In practice the functions [ and x. are also generated by Darboux transformations. To 
z z 

illustrate the method consider the case M = 3 and suppose eigenvalues E.= -1?: and 
I I 

asymptotic normalization constants r. are given. We start with three pairs of solutions 
I 

for V(x) = 0 , and indicate asymptotic forms as x-; oo (x-; -oo) to the right (left) of the 
function. 

l exp( -k x- w) (-- f = cosh(k x + w)-; l exp(k x + w) , 
L, 1 1 1 1 1 L, 1 1 

--2
1 exp(-k x- w ) (-- sinh( k x + w ) -; l exp( k x + w ) , 

2 2 2 2 L, 2 2 

lexp(-k x- w) (-- cosh(k x+ w)-; -21 exp(k x+ w), 
L, 3 3 3 3 3 3 

-k X 

X = e 1 
1 

-k X 

e 2 

-k X 

e 3 

(16a) 

(16b) 

(16c) 

The parameters w. will eventually be determined by the given r.; the alternation of cosh 
I I 

and sinh solutions ensures that the successive [ will have no zeros. 
I 

The asymptotic forms in (16a) are used to obtain W = -k ewt for (11), and hence 
1 1 

N 1 
construct, as in (12), the normalized function N f = N If where N2 = -2k . The 

1 1 1 1 1 1 

operator for the first Darboux transformation, B = ( dl dx) - (f 'I f) -; ( dl dx) ± k , is 
1 1 l 1 

applied to the functions and asymptotic forms in (16b) and (16c). This gives the following 

solutions for the potential (15a): 

..1. 
N If .... {2k} • exp( -k x- w ) 

1 1 1 1 1 
(17a) 

l(k +k)exp(-kx-w)(-f=B sinh(kx+w)-;l(k +k)exp(kx+w) (17b) 
L.2 1 2 2 21 2 2L.2 1 2 2 

-k.x 
-(k + k.) exp(-k.x) (-- B e 1 -; (k - k.) exp(-k.x) (i = 2,3) (17c) 

1 I I 1 11 I 

--21 (k +k)exp(-kx-w)(-B cosh(kx+w)-;-21 (k +k)exp(kx+w) (17d) 
31 3 31 3 3 31 3 3 

In (17a) only the right asymptotic form is required since r is given, and the positive 
1 

asymptotic forms in (17b) show that f(x) > 0 . Subsequent Darboux transformations 
2 
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need not be applied to (17a} since the changes in the asymptotic normalization constant 

follow from (14). 

The algorithm used on equations (16) is now applied to equations (17b ), (17c) and (17d). 

2 2 W2 
The asymptotic forms in ( 17b) and ( 17 c) are used to obtain W = k ( k - k ) e from 

2 2 2 1 

x = B exp( -k x). Then using (II) gives the normalized function 
2 1 2 

The operator for the second Darboux transformation, B 2 = ( d/ dx) - (~' / ~) --+ ( d/ dx) ± k2 , 

is applied to the functions and asymptotic forms given in (17d) and (17c), giving 

-21 (k +k)(k +k)exp(-kx-w).-f--+-21 (k +k)(k +k)exp(kx+w) (19a) 
132 3 3 3 3 132 3 3 3 

where 1 = B B cosh(k x+ w) 
3 2 1 3 3 

-k X -k X -k X 

(k + k )(k + k) e 3 .-. x = B B e 3 --+ (k - k )(k - k) e 3 
1 3 2 3 3 21 1 3 2 3 

(19b) 

These are solutions for the potential (15b ). 

Finally, the asymptotic forms in (19) are used to obtain 

2 2 2 2 w = -k (k - k) (k -· k) 
3 3313 2 1 

and then using (II) gives the normalized function 

.l 
N/1--+[2k(k -k)(k -k)/{(k +k)(k +k)}]'exp(-kx-w) 
33 3313 2 313 2 3 3 

(20) 

The values of the w. can now be expressed in terms of the given r .. 
I I 

From (20), 

1 [ 2k (k - k )(k - k )] 
w = _ log 3 a . . 1 3 2 

3 2 r 2 (k + k )(k + k) 
3 3 1 3 2 
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The effect on (18) of the last Darboux transformation is given by (14) with tt = k 
3 

leading to ( r < 0) 
2 

1 [2k ( k - k ) ( k + k )] 
w = log 2 2 1 2 a . 

2 2 r 2 (k + k )(k - k) 
2 2 1 3 2 

The effect on (17a) of the last two Darboux transformations is given by a double 

application of (14) leading to 

1 [2k(k + k)(k + k)l w = _ log 1 2 1 a 1 

1 2 r-2 (k - k )(k - k) 
1 2 1 3 1 

The required potential (15c) can be obtained by evaluating the ~ from (16a), (17b) and 

(19a). It is well-known that the result can be expressed in terms of the Wronskian of the 

functions in (16). 

10. THE GENERAL INVERSE PROBLEM 

If the given R(k) f- 0 then Darboux transformations can still be used to fit the rest of the 

scattering data. Thus we assume some method is available for obtaining an initial 

potential V (x) which has no eigenvalues (M = 0) but fits a given reflection coefficient. 
0 

However in view of (13), we fit V (x) not to the given reflection coefficient R(k) , but to 
0 

A(k _ ik.) 
R(k) i= 1 (k + i7/) 

J 

Then (13) shows we shall reach the required R(k) after making the M Darboux 

transformations as in the previous section. The initial potential V (x) is added to each 
0 

potential in the sequence (15). 

The main difference from the previous reflectionless case is that the solutions for V ( x) , 
0 

corresponding to the sinh and cosh solutions in (16), may only be known numerically. This 

is a severe limitation because these solutions have to be differentiated in order to apply the 

transformations and obtain the potential. 

However the asymptotic forms given in (16), (17) and (18) do remain valid, except that wi 
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should be replaced by w1 in the asymptotic forms as x _, -oo . The value of w1 is fixed 
I Z 

once the value of w. is chosen, and may always be obtained numerically. The alternation 
z 

of cosh and sinh solutions in (16) is simply replaced by solutions with alternately the same 

or opposite signs for the two asymptotic forms as x _, ±oo . 

The method can be extended to include a normalizable eigenfunction at k = 0 . This 

requires extending the class of potentials so that [oo I V( x) I dx < oo , allowing an 

asymptotic form 

V(x) _, £(£ + 1) as x_, oo or x_, -oo or both. 
(x ~ a) 2 

Then if f (i = 1,2) satisfy f" = Vf, we have f(x) = f(x) + cf(x) > 0 for some 
I I I 1 2 

continuous set of values of c . In the resulting Darboux transformation 

R(k) = -R(k) and T(k) = T(k) , 

and a value for c is fixed by a given asymptotic normalization constant r for the 
0 

1 zero-energy eigenfunction T . 
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